×
10.06.2016
216.015.4569

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЧАСТОТЫ ВРАЩЕНИЯ

Вид РИД

Изобретение

Аннотация: Использование: для измерения частоты вращения. Сущность изобретения заключается в том, что проводят дискретизацию сигнала датчика частоты вращения, выделение его колебательных составляющих (мод) и нахождение колебательной составляющей с максимальной амплитудой, по частоте которой определяют частоту вращения. Технический результат: повышение помехоустойчивости. 2 н.п. ф-лы, 2 ил.

Предлагаемое изобретение относится к измерительной технике и может быть использовано в системах автоматического измерения, управления и аварийной защиты, в состав которых входят датчики частоты вращения, вырабатывающие сигналы, частота которых пропорциональна частоте вращения объекта контроля, в частности индукционные датчики частоты вращения и расхода.

Известны способы [1, 2, 3] и устройства [4, 5] для измерения частоты вращения, основанные на измерении частоты следования импульсов, сформированных из сигналов датчиков частоты вращения. Для формирования импульсов производят анализ параметров одной или двух полуволн противоположной полярности каждого сигнала индукционного датчика частоты вращения и, если параметры удовлетворяют определенным требованиям, вырабатывают требуемый импульс.

Общим недостатком известных способов и устройств является низкая помехоустойчивость, так как они работают только, если отношение амплитуды сигнала к амплитуде помехи больше двух.

Известны также способы и устройства для измерения параметров сигналов, основанные на представлении выборочных данных (дискретных отчетов сигнала) в виде конечной линейной комбинации изменяющихся по амплитуде колебательных составляющих, характеризуемых амплитудами, начальными фазами, частотами и коэффициентами затухания, параметры которых рассчитываются с высокой точностью [6, 7, 8, 9]. Например, применение преобразования Прони для измерения параметров колебательных составляющих на фоне стационарных и случайных помех и шумов обеспечивает погрешности измерения порядка десятых и сотых долей процента [6, 7]. Известно применение этих способов и устройств для аппроксимации и сжатия-восстановления сигналов. Однако применение этих способов для измерения частоты вращения не известно.

Из известных наиболее близкими по технической сущности являются способ и устройство для сжатия и восстановления сигналов [9], основанные на представлении сигналов линейной комбинацией экспонент (изменяющихся по амплитуде колебательных составляющих), включающий дискретизацию сигнала, накопление кадра дискретных отсчетов, выделение колебательных составляющих сигнала и вычисление параметров колебательных составляющих, по которым сигнал восстанавливают, в котором число колебательных составляющих ограничивают составляющими, дисперсия которых превышает заранее установленное значение, и в зависимости от этого числа изменяют длительность кадра данных.

Известный способ-прототип реализует следующую последовательность действий.

1. Непрерывный сигнал дискретизируют с постоянным шагом, то есть представляют его дискретными отсчетами.

2. Формируют кадр данных, накапливая дискретные отсчеты, причем количество отсчетов задают в зависимости от числа колебательных составляющих, полученного в процессе обработки предшествующего кадра данных.

3. Выделяют из отсчетов колебательные составляющие.

4. Рассчитывают дисперсию выделяемых колебательных составляющих.

5. Сравнивают значение дисперсии колебательных составляющих с значением, определяемым предельно допустимой погрешностью сжатия-восстановления сигнала.

6. Выделяют колебательные составляющие, дисперсия которых больше предельно допустимой погрешности сжатия-восстановления сигнала.

7. Рассчитывают параметры выделенных колебательных составляющих сигнала.

8. Число выделенных колебательных составляющих используют для задания количества дискретных значений сигнала в следующем кадре данных и для управления расчетом параметров колебаний.

9. Переходят к обработке следующего кадра данных.

10. Восстанавливают по полученным значениям параметров колебательных составляющих кадры исходного сигнала.

На фиг. 1 приведена функциональная схема устройства, реализующего способ-прототип. Устройство для сжатия и восстановления сигналов содержит последовательно соединенные аналого-цифровой преобразователь 1, запоминающее устройство 2, блок выделения колебательных составляющих сигнала 3, блок вычисления параметров колебательных составляющих 4, блок восстановления сигнала 5, а также блок ограничения числа колебательных составляющих 6, вход которого подключен к выходу блока выделения колебательных составляющих сигнала 3, а выход - к управляющим входам запоминающего устройства 2, блока выделения колебательных составляющих сигнала 3 и блока вычисления параметров колебательных составляющих 4.

Работает устройство для сжатия и восстановления сигналов следующим образом. Аналого-цифровой преобразователь 1 осуществляет дискретизацию и квантование непрерывного входного сигнала, преобразуя его в последовательность цифровых отсчетов. В запоминающем устройстве 2 накапливаются дискретные значения сигнала, формируя кадр данных. При формировании первого кадра данных количество накапливаемых значений сигнала задано конструктивно. В дальнейшем оно изменяется по команде блока ограничения числа колебательных составляющих 6 в зависимости от числа колебательных составляющих, выделенных при обработке предшествующего кадра данных. В блоке выделения колебательных составляющих сигнала 3 производит разложение сигнала в пределах накопленного кадра данных на колебательные составляющие одним из возможных методов. В блоке вычисления параметров колебательных составляющих 4 осуществляется расчет частот, коэффициентов затухания амплитуды, амплитуд и начальных фаз каждой из выделенных колебательных составляющих. Колебательные составляющие, дисперсия которых превышает значение, задаваемое предельно допустимой погрешностью сжатия-восстановления сигнала, передаются для расчета их параметров в блок вычисления параметров колебательных составляющих 4. Число выделенных колебательные составляющих фиксируется и используется для задания числа дискретных отсчетов в запоминающем устройстве 2 при формировании следующего кадра данных. Значение числа отсчетов в кадре данных также передается в блок выделения колебательных составляющих сигнала 3 и в блок вычисления параметров колебательных составляющих 4 для организации вычислений при заданном числе отсчетов в кадре данных. Полученные значения для всех выделенных колебательных составляющих описывают сжимаемый сигнал по кадрам данных. Они передаются через канал связи. В блоке восстановления сигнала 5 полученные значения параметров колебаний используются для синтеза с помощью цифроаналогового преобразования колебаний, которые после суммирования их мгновенных значений формируют восстановленный сигнал.

Техническим результатом предлагаемого способа и устройства является повышение помехоустойчивости при измерении частоты вращения. Это достигается тем, что в способе измерения частоты вращения, основанном на представлении выходного сигнала датчика частоты вращения линейной комбинацией изменяющихся по амплитуде колебательных составляющих, включающем дискретизацию сигнала, накопление кадра дискретных отсчетов, выделение колебательных составляющих сигнала и вычисление параметров колебательных составляющих, выделяют колебательную составляющую сигнала с максимальной амплитудой и по ее частоте определяют частоту вращения.

Заявленный способ реализует следующую последовательность действий.

1. Непрерывный выходной сигнал датчика частоты вращения дискретизируют с постоянным шагом, то есть представляют его дискретными отсчетами.

2. Формируют кадр данных, накапливая дискретные отсчеты, причем количество отсчетов задают в зависимости от значения частоты вращения, полученного в процессе обработки предшествующего кадра данных.

3. Выделяют из отсчетов колебательные составляющие.

4. Рассчитывают амплитуды выделенных колебательных составляющих сигнала и выделяют колебательную составляющую сигнала с максимальной амплитудой.

5. Рассчитывают частоту выделенной колебательной составляющей сигнала с максимальной амплитудой.

6. Полученное значение частоты пропорционально частоте вращения и его используют для задания количества дискретных значений сигнала в следующем кадре данных.

7. Переходят к обработке следующего кадра данных.

Применение выделения из сигнала датчика частоты вращения колебательной составляющей с максимальной амплитудой и нахождение ее частоты, по которой определяют частоту вращения, позволяет производить измерение частоты вращения, если амплитуда полезного сигнала датчика частоты вращения превышает амплитуду помехи, хотя бы на несколько процентов. Таким образом, обеспечивается повышение помехоустойчивости.

Технический результат достигается также за счет применения нового устройства для реализации заявленного способа измерения частоты вращения, содержащего последовательно соединенные датчик частоты вращения, аналого-цифровой преобразователь, запоминающее устройство, блок выделения колебательных составляющих, блок вычисления параметров колебаний, в котором выход блока вычисления параметров колебаний соединен с управляющим входом запоминающего устройства.

На фиг. 2 приведен вариант структурной схемы устройства измерения частоты вращения, реализующего предлагаемый способ. Устройство состоит из датчика частоты вращения 1, аналого-цифрового преобразователя 2, запоминающего устройства 3, блока выделения колебательных составляющих сигнала 4 и блока вычисления параметров колебательных составляющих 5.

Все элементы устройства соединены последовательно, причем выход блока вычисления параметров колебательных составляющих 5 соединен с управляющим входом запоминающего устройства 3.

Все элементы, входящие в состав устройства, могут быть реализованы в виде отдельных функциональных узлов, например, как в устройстве-прототипе [9], или программным способом при использовании микроконтроллера, оснащенного аналого-цифровым преобразователем.

Работает устройство следующим образом.

Датчик частоты вращения 1 вырабатывает сигнал, обычно импульсный, частота которого пропорциональна измеряемой частоте вращения. На этот сигнал накладываются шумы и помехи. Аналого-цифровой преобразователь 2 осуществляет дискретизацию и квантование суммарного сигнала, преобразуя его в последовательность цифровых отсчетов. В запоминающем устройстве 3 накапливаются дискретные значения сигнала, формируя кадр данных. При формировании первого кадра данных число накапливаемых дискретных отсчетов задано конструктивно. В дальнейшем оно изменяется по команде блока вычисления параметров колебаний 5 в зависимости от значения частоты, пропорциональной частоте вращения, полученного при обработке предшествующего кадра данных. При необходимости в запоминающем устройстве 3 производится децимация (прореживание) отсчетов, так как обычно способы, основанные на представлении дискретных отчетов сигнала в виде конечной линейной комбинации изменяющихся по амплитуде колебательных составляющих, хорошо работают при обработке сравнительно небольшого количества отсчетов, до нескольких тысяч, при этом за время периода самой высокочастотной колебательной составляющей должно быть не менее 6-10 отсчетов [6, 7]. Блок выделения колебательных составляющих сигнала 4 производит разложение сигнала в пределах накопленного кадра данных на колебательные составляющие одним из возможных методов. В блоке вычисления параметров колебательных составляющих 5 производится расчет амплитуд колебательных составляющих и выделение колебательной составляющей, имеющей максимальную амплитуду, и определение ее частоты, пропорциональной частоте вращения.

Технический результат - повышение помехоустойчивости при измерении частоты вращения - достигается за счет того, что измерение амплитуд и частот колебательных составляющих, выделяемых блоком выделения колебательных составляющих (мод) 4, возможно с погрешностями порядка десятых и сотых долей процента, что позволяет выделить наиболее мощную колебательную составляющую на фоне шумов и помех, амплитуды которых лишь незначительно меньше амплитуды полезного сигнала.

Источники информации

1. Патент RU 2352058 C1, МПК H03K 5/153, опубл. 10.04.2009 г.

2. Патент RU 2399153 C1, H03K 5/153, опубл. 10.09.2010 г.

3. Патент RU 2400929 C1, H03K 5/153, опубл. 27.09.2010 г.

4. Патент RU 2173022 C2, МПК7 H03K 5/153, опубл. 27.08.2001 г.

5. Патент RU 2399154 C1, H03K 5/153, опубл. 10.09.2010 г.

6. Мясникова М.Г., Цыпин Б.В., Михайлов П.Г. Преобразование Прони в задаче измерения параметров гармонических сигналов в шумах // Датчики и системы. 2007. №4. С. 19-22.

7. Цыпин Б.В., Мясникова М.Г., Козлов В.В., Ионов С.В. Применение методов цифрового спектрального оценивания в задаче измерения параметров сигнала // Измерительная техника. 2010. №10. С. 26-30. В.V. Tsypin, М.G. Myasnikova, V.V. Kozlov, S.V. Ionov Application of methods of digital spectral estimation in the measurement of the parameters of a signal // Measurement Techniques. 2011. V. 53. N. 10. P. 1118-1124.

8. Патент RU 2472287 C1, H03M 7/30, опубл. 10.01.2013 г.

9. Решение от 05.02. 2015 г. о выдаче патента на изобретение по заявке №2014116341/08.


СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЧАСТОТЫ ВРАЩЕНИЯ
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЧАСТОТЫ ВРАЩЕНИЯ
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЧАСТОТЫ ВРАЩЕНИЯ
Источник поступления информации: Роспатент

Showing 11-20 of 71 items.
10.11.2014
№216.013.0406

Способ изготовления газового сенсора с наноструктурой и газовый сенсор на его основе

Изобретение относится к изготовлению газовых сенсоров, предназначенных для детектирования различных газов. Предложен способ изготовления газового сенсора, в котором образуют гетероструктуру из различных материалов, в ней формируют газочувствительный слой, после чего ее закрепляют в корпусе...
Тип: Изобретение
Номер охранного документа: 0002532428
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0797

Устройство для электрохимического исследования коррозии металлов

Устройство для электрохимического исследования коррозии металлов относится к области исследования коррозионного поведения материалов в различных средах с помощью построения коррозионных диаграмм, что позволяет оценить характер воздействия отдельных факторов на скорость коррозии, а также выявить...
Тип: Изобретение
Номер охранного документа: 0002533344
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0854

Способ контролируемого роста квантовых точек из коллоидного золота

Изобретение относится к области прецизионной наноэлектроники. Способ контролируемого роста квантовых точек (КТ) из коллоидного золота в системе совмещенного АСМ/СТМ заключается в выращивании КТ при отрицательном приложенном напряжении между иглой кантилевера совмещенного АСМ/СТМ и проводящей...
Тип: Изобретение
Номер охранного документа: 0002533533
Дата охранного документа: 20.11.2014
20.12.2014
№216.013.1158

Смеситель-электрокоалесцентор

Изобретение относится к смесителям-электрокоалесценторам и может использоваться для получения водонефтяных эмульсий на установках электрообессоливания нефти. Смеситель-электрокоалесцентор представляет собой вертикальный заземленный корпус, выполненный в виде трубы Вентури, соосно которому...
Тип: Изобретение
Номер охранного документа: 0002535863
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1238

Сейсмический локатор наземных объектов

Заявленное изобретение относится к области технических средств охраны и может быть использовано для определения азимута на обнаруженный объект и расстояния до него по сейсмическому сигналу при охране протяженных участков местности, территорий и подступов к различным объектам. Устройство...
Тип: Изобретение
Номер охранного документа: 0002536087
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.124d

Способ и устройство цифрового спектрально-временного анализа сигналов

Изобретение относится к области цифровой обработки сигналов и информационно-измерительной техники и может быть использовано для спектрально-временного анализа в системах обработки данных. Способ основан на разложении сигналов на эмпирические моды, включающий: а) дискретизацию; б) выделение...
Тип: Изобретение
Номер охранного документа: 0002536108
Дата охранного документа: 20.12.2014
20.01.2015
№216.013.2018

Способ изготовления наноструктурированного чувствительного элемента датчика вакуума и датчик вакуума

Изобретение относится к измерительной технике и может использоваться при изготовлении датчиков вакуума для измерения давления разреженного газа в вакуумных установках различного назначения. Предложен способ изготовления наноструктурированного чувствительного элемента датчика вакуума,...
Тип: Изобретение
Номер охранного документа: 0002539657
Дата охранного документа: 20.01.2015
10.04.2015
№216.013.3b16

Способ маскирования аналоговых речевых сигналов

Изобретение относится к средствам маскирования аналоговый речевых сигналов и может быть использован в системах связи силовых ведомств. Технический результат заключается в сокращении времени выполнения преобразования. Аналоговый речевой сигнал дискретизируется со стандартной частотой 8000 Гц....
Тип: Изобретение
Номер охранного документа: 0002546614
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3ccb

Способ получения наноструктурированного слоя на поверхности металлов в условиях звукокапиллярного эффекта

Изобретение относится к способу получения наноструктурированного слоя на поверхности металлов в условиях звукокапиллярного эффекта. На первом этапе осуществляют горизонтальное перемещение детали со скоростью υ=(10÷100) мм/мин с обработкой алмазным кругом с заданной зернистостью...
Тип: Изобретение
Номер охранного документа: 0002547051
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.465f

Способ и устройство для сжатия и восстановления сигналов

Изобретение относится к области цифровой обработки сигналов. Технический результат заключается в увеличении коэффициента сжатия сигнала. В способе сжатия и восстановления сигналов, основанном на представлении сигналов линейной комбинацией экспонент, включающем дискретизацию сигнала, накопление...
Тип: Изобретение
Номер охранного документа: 0002549519
Дата охранного документа: 27.04.2015
Showing 11-20 of 87 items.
27.10.2013
№216.012.7b77

Электропривод шаговый

Изобретение относится к области электротехники и может быть использовано в шаговом электроприводе, в котором не шаговый электродвигатель работает в шаговом режиме и расположен на некотором расстоянии от источника управляющего напряжения. Техническим результатом является упрощение схемы...
Тип: Изобретение
Номер охранного документа: 0002497269
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.7f72

Устройство для диагностики состояния биологических объектов

Изобретение относится к медицинской технике. Устройство содержит источник стабилизированного тока, схему управления, кнопки "Пуск" и "Опрос", ключ, измеритель временных интервалов, три пороговых элемента, устройство записи и считывания информации, блок памяти, формирователь энергетических...
Тип: Изобретение
Номер охранного документа: 0002498299
Дата охранного документа: 10.11.2013
20.12.2013
№216.012.8d7c

Способ ремонта асфальтобетонных покрытий

Изобретение относится к области дорожного строительства и может быть использовано при реконструкции и ремонте дорог. Технический результат: получение более ровной поверхности, увеличение прочности и долговечности ремонтируемого участка дороги, снижение стоимости и трудоемкости работ по ремонту...
Тип: Изобретение
Номер охранного документа: 0002501903
Дата охранного документа: 20.12.2013
20.12.2013
№216.012.8e4c

Кодоуправляемые стрелочные часы

Изобретение относится к области часовой промышленности и направлено на упрощение конструкции часов и повышение надежности их функционирования, что обеспечивается за счет того, что кодоуправляемые стрелочные часы содержат хранитель времени, цифровой компаратор, последовательно соединенные...
Тип: Изобретение
Номер охранного документа: 0002502111
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.9021

Устройство для вибрационной обработки деталей

Изобретение относится к области машиностроения и может быть использовано при отделочно-зачистной вибрационной обработке деталей. Устройство содержит корпус с днищем округлой формы, основание с вибратором и пружинной подвеской и цилиндрический рабочий барабан, свободно размещенный в корпусе....
Тип: Изобретение
Номер охранного документа: 0002502590
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.91a7

Способ определения концентрации и среднего размера наночастиц в золе

Заявляемый способ может найти применение при создании и производстве наноструктурированных пленок из пленкообразующих золей для газочувствительных сенсоров. Способ заключается в том, что изготавливают эталонные образцы с заданной начальной концентрацией наночастиц. Записывают инфракрасные...
Тип: Изобретение
Номер охранного документа: 0002502980
Дата охранного документа: 27.12.2013
10.03.2014
№216.012.aa89

Устройство обнаружения движущихся наземных транспортных средств по акустическим сигналам

Устройство содержит микрофон (1), предварительный усилитель (2), аналого-цифровой преобразователь (3), формирователь временного окна (4), блок (7) спектрального представления сигнала, фильтр верхних частот (5), блок (6) оценки изменения уровня сигнала внутри временного окна, блок (8)...
Тип: Изобретение
Номер охранного документа: 0002509372
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.afb3

Вакуумный конденсатор переменной емкости

Изобретение относится к области электронной техники и может быть использовано при модернизации выпускаемых и разработке новых типов вакуумных конденсаторов. Вакуумный конденсатор переменной емкости содержит вакуумированный корпус, состоящий из цилиндрической диэлектрической оболочки,...
Тип: Изобретение
Номер охранного документа: 0002510694
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c80e

Способ определения литогенности желчи

Изобретение относится к медицине и может быть использовано для определения оптимальных сроков дренирования желчных протоков у больных с патологией билиарного тракта различной этиологии. Описан способ определения литогенности желчи, заключающийся в определении ее физико-химических свойств, при...
Тип: Изобретение
Номер охранного документа: 0002516973
Дата охранного документа: 20.05.2014
27.06.2014
№216.012.d74c

Способ получения пористых отливок

Изобретение относится к литейному производству. Водорастворимый наполнитель нагревают в печи и засыпают в нагретую металлическую форму. После заливки металла в форму осуществляется пропитка наполнителя расплавом под действием центробежных сил. Частота вращения формы определяется по формуле ,...
Тип: Изобретение
Номер охранного документа: 0002520894
Дата охранного документа: 27.06.2014
+ добавить свой РИД