×
10.06.2016
216.015.4541

Результат интеллектуальной деятельности: СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу рентгенофазового определения криолитового отношения при электролитическом получении алюминия и может быть использовано при определении состава электролита. Способ включает отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита NaAlF, хиолита NaAlF, флюорита CaF, полуторного кальциевого криолита NaCaAlF, одинарного кальциевого криолита NaCaAlF и фторида натрия NaF, при этом концентрации вышеперечисленных фаз электролита определяют по формуле: , а криолитовое отношение определяют по формуле: где: - интенсивность аналитической линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической линии, М- количество фторидных фаз, Cj - концентрации минералогических фаз пробы; αj, βj - массовые доли соответственно NaF и AlF в j-й фазе. Обеспечивается упрощение и повышение его точности определения состава электролита. 2 ил., 4 табл.
Основные результаты: Способ рентгенофазового определения криолитового отношения при электролитическом получении алюминия, включающий отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита NaAlF, хиолита NaAlF, флюорита CaF, полуторного кальциевого криолита NaCaAlF, одинарного кальциевого криолита NaCaAlF и фторида натрия NaF, отличающийся тем, что определяют концентрации упомянутых минералогических фаз пробы электролита по формуле: где: - интенсивность аналитической дифракционной линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической дифракционной линии, М- количество фторидных фаз,а криолитовое отношение КО определяют по формуле: где: Cj - концентрации минералогических фаз пробы электролита; αj, βj - массовые доли соответственно NaF и AlF в j-й фазе.

Изобретение относится к электролитическому получению алюминия и может быть использовано при определении состава электролита с добавками фторида кальция, выраженного в виде такого технологического параметра, как криолитовое отношение (КО) (мольное отношения NaF/AlF3) методом рентгенофазового анализа.

Известен способ определения криолитового отношения электролита методом рентгенофлуоресцентного анализа [Патент РФ №2424379, МПК С25С 3/06, опубл. 17.11.09]. Способ включает построение градуировочных характеристик по интенсивностям флуоресценции аналитических Kα линий F, Al, Na, Mg с использованием стандартных образцов состава электролита, отбор пробы электролита, подготовку образца к анализу, определение концентраций элементов по построенным градуировочным характеристикам и определение значения криолитового отношения по определенным концентрациям элементов.

К недостаткам способа можно отнести необходимость построения градуировочных характеристик и наличия аттестованных стандартных образцов состава электролита, идентичных анализируемым пробам по фазовому составу и микрокристаллической структуре фаз.

Известен способ определения криолитового отношения в электролитах рентгенодифрактометрическим методом [Кирик С.Д., Куликова Н.Н., Якимов И.С., Клюева Т.И., Баранов И.А., Бузунов В.Ю., Голощапов В.Г. Цветные металлы, 1996, №9, стр. 75-77; С.Н. Архипов, А.А. Стекольщиков, Г.А. Лютинская, Л.Н. Максимова, Л.А. Пьянкова. Заводская лаборатория. Диагностика материалов 2006, том 72, №9, стр. 34-36]. Способ заключается в определении кристаллических фаз компонентов в охлажденной пробе электролита с последующим пересчетом в соответствии со стехиометрией значения КО и содержания CaF2 и MgF2. Содержание фаз определяется по заранее построенным градуировочным зависимостям от интенсивности их аналитических дифракционных линий, а общее содержание фторида кальция - по градуировочной зависимости интенсивности рентгеновской флуоресценции аналитической линии Ca, регистрируемой на специальном флуоресцентном канале.

К недостаткам способа можно отнести то, что для построения градуировочных характеристик необходимо использовать аттестованные стандартные образцы фазового состава (СОФС) с известным содержанием определяемых фаз, идентичные анализируемым пробам по фазовому составу и микрокристаллической структуре фаз и обеспечивающие градуировку дифрактометра по крайней мере по 6 фазам. Создание многофазных СОФС представляет сложную и трудоемкую научно-техническую задачу, т.к. от точности определения в них фазового состава зависит точность градуировки дифрактометра и анализа КО. Кроме того, описанный способ подразумевает периодическое мониторирование интенсивности измерительной системы для контроля дрейфа градуировочных характеристик. Создание СОФС электролита, градуировка прибора, мониторирование интенсивности рентгеновской трубки - данные мероприятия приводят к дополнительным затратам времени и ресурсов, а также могут служить дополнительным источником погрешности анализа КО.

Данный способ анализа принят за прототип.

Преимуществом предлагаемого способа является прямое автоматическое определение КО с точностью КО ±0,04 ед.абс КО без использования СОФС, без построения градуировочных характеристик фаз и без необходимости мониторирования дрейфа прибора.

Техническим результатом предлагаемого способа является исключение всех операций, связанных с градуировкой по фазам, при автоматическом рентгенофазовом анализе состава проб электролита с точностью, характеризуемой СКО ±0,04 ед.абс КО.

Указанный технический результат достигается тем, что способ рентгенофазового определения криолитового отношения при электролитическом получении алюминия, включающий отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF, согласно изобретению концентрации вышеперечисленных фаз электролита определяют по формуле:

,

где: - интенсивность аналитической линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической линии, М - количество фторидных фаз,

а криолитовое отношение определяют по формуле:

,

где: Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе.

Предлагаемый способ отличается от метода, применяемого в ближайшем аналоге отсутствием построения градуировочных характеристик, и не требует использования СОФС. Корундовые числа, накапливаемые в базах дифракционных данных, - это отношение интенсивностей максимальных дифракционных пиков анализируемой фазы и корунда в смеси 1:1:

Однако использование корундовых чисел фаз из баз дифракционных данных не всегда обеспечивает высокую точность фазового анализа из-за особенностей конкретного фазового состава анализируемых материалов, где реальные корундовые числа фаз - другие. Это в полной мере относится и к задаче анализа промышленных электролитов.

Точные корундовые числа фаз могут рассчитываться по данным химического анализа фторидных компонентов представительной группы проб промышленного электролита и интенсивностям аналитических дифракционных линий фаз в этих же пробах по методу [2] или аналогичными расчетными методами. Для расчета корундовых чисел также можно, и предпочтительнее, использовать комплект стандартных образцов промышленного электролита с аттестованным химическим составом (при его наличии).

Сущность способа заключается в том, что в отобранных и подготовленных к анализу образцах электролита с учетом интенсивности фона измеряется интенсивность аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF. Позиции используемых аналитических линий и расчетные корундовые числа фаз приведены в таблице 1.

С использованием расчетных корундовых чисел, определенных по [2], рассчитывается суммарная интенсивность аналитических линий фаз:

где CryInt, ChiInt, FluInt, CaCry2Int, CaCry1Int, NaFInt - интенсивность аналитических дифракционных линий фаз, указанных в таблице 1.

Концентрации фаз Cj определяются согласно (2) по следующим формулам:

При КО<3,0 фаза NaF отсутствует и ее концентрация не рассчитывается.

Криолитовое отношение вычисляют по формуле:

где CNaF, - валовые концентрации фтористого натрия и фтористого алюминия в пробе электролита. Поскольку криолитовое отношение - это мольное отношение фтористого натрия к фтористому алюминию, а молекулярная масса NaF вдвое меньше молекулярной массы AlF3, в числителе формулы (5) стоит множитель 2.

Валовые концентрации NaF и AlF3 определяются путем вычленения из каждой фазы содержащихся в ней массовых долей фторида натрия и фторида алюминия. Это можно обобщить следующей, эквивалентной (5), формулой:

где Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе.

Массовые доли фтористого натрия и фтористого алюминия во фторсодержащих фазах проб электролита приведены в таблице 2.

Окончательно формула для вычисления криолитового отношения примет вид:

В предлагаемом способе за счет определения концентраций минералогических фаз электролита производства алюминия по формуле (4), применение которой не требует использования стандартных образцов фазового состава, построения градуировочных характеристик фаз и коррекции их дрейфа, и дальнейшем расчете КО по формуле (7) снижено количество операций при рентгенофазовом анализе состава проб электролита с сохранением точности, характеризуемой стандартным отклонением ±0,04 ед.абс КО, то есть достаточной для технологического контроля химического состава электролита в производстве алюминия.

Примеры определения криолитового отношения электролита

В качестве тестируемых материалов в примерах были использованы 15 отраслевых стандартных образцов промышленного электролита с добавками фторида кальция с аттестованными характеристиками [3]. Пробы отраслевых стандартных образцов электролита подготавливали к анализу в соответствии с методикой подготовки проб промышленного электролита к рентгенодифракционному измерению КО. Далее проводили их анализ по прототипу и по предлагаемому способу на широко используемом для контроля КО в алюминиевой промышленности специализированном рентгеновском дифрактометре X'pert Pro (PANalytical, Нидерланды).

Пример 1 (прототип).

В таблице 3 приведены аттестованные и измеренные по прототипу криолитовые отношения в подготовленных пробах 15-ти отраслевых стандартных образцов (ОСО) электролита.

На рис. 1 приведена графическая зависимость измеренного значения КО от аттестованного значения КО, построенная по данным таблицы 3. Точность определения криолитового отношения по прототипу составляет 0,033 ед. КО.

Пример 2 (предлагаемый способ)

Измеряют интенсивности аналитических дифракционных линий фаз, позиции которых указаны в таблице 1, криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 в подготовленных пробах 15-ти ОСО (аналогичных используемым в предыдущем примере). По формуле (2) рассчитывают концентрации приведенных фаз в образцах, используя следующие значения корундовых чисел соответственно: Величину криолитового отношения стандартных образцов рассчитывают по формуле (7).

В таблице 4 приведены аттестованные и измеренные по предлагаемому способу криолитовые отношения стандартных образцов электролита.

На рис. 2 приведена графическая зависимость измеренного значения КО от аттестованного значения КО, построенная по данным таблицы 4.

Как следует из приведенного примера, использование предложенного способа анализа проб электролита на рентгеновском дифрактометре позволяет добиться точности определения КО 0,034 ед. КО.

Список использованной литературы

1. С.R. Hubbard, Е.Н. Evans, and D.K. Smith. The Reference Intensity Ratio for Computer Simulated Powder Patterns // J. Appl. Cryst. 9, 169 (1976).

2. Якимов И.С., Дубинин П.С., Пиксина O.E. Интеграция методов группового количественного рентгенофазового анализа и ссылочных интенсивностей // Контроль. Диагностика. 2010. №12. С. 42-47.

3. Якимов И.С., Дубинин П.С., Залога А.Н., Пиксина О.Е., Кирик С.Д. Разработка отраслевых стандартных образцов электролита алюминиевых электролизеров // Стандартные образцы. 2008. №4. С. 34-42.

Способ рентгенофазового определения криолитового отношения при электролитическом получении алюминия, включающий отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита NaAlF, хиолита NaAlF, флюорита CaF, полуторного кальциевого криолита NaCaAlF, одинарного кальциевого криолита NaCaAlF и фторида натрия NaF, отличающийся тем, что определяют концентрации упомянутых минералогических фаз пробы электролита по формуле: где: - интенсивность аналитической дифракционной линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической дифракционной линии, М- количество фторидных фаз,а криолитовое отношение КО определяют по формуле: где: Cj - концентрации минералогических фаз пробы электролита; αj, βj - массовые доли соответственно NaF и AlF в j-й фазе.
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
Источник поступления информации: Роспатент

Showing 21-30 of 328 items.
10.06.2016
№216.015.4625

Электролизер для получения жидких металлов электролизом расплавов

Изобретение относится к электролизерам для производства жидких металлов, в частности алюминия, электролизом расплавленных солей. Электролизер содержит корпус, подину, крышку, установленные вертикально или наклонно малорасходуемые полые перфорированные и/или открыто пористые электроды,...
Тип: Изобретение
Номер охранного документа: 0002586183
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46e3

Способ укрытия анодного массива

Изобретение относится к способу укрытия анодного массива при производстве алюминия электролитическим способом в алюминиевом электролизере. Способ включает загрузку криолит-глиноземной шихты, состоящей из смеси дробленого электролита и глинозема, на поверхность анодного массива в два слоя, при...
Тип: Изобретение
Номер охранного документа: 0002586184
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4a88

Расходомер текучей среды

Изобретение относится к технике измерения и может быть использовано для измерения расхода текучих сред в каналах для транспортирования газов или жидкостей. Расходомер текучей среды содержит корпус (1), в проточной части которого закреплен измерительный орган в виде пластины (2), установленной с...
Тип: Изобретение
Номер охранного документа: 0002594421
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f8f

Рыбные рубленые изделия, обогащенные пророщенным зерном пшеницы

Рыбные рубленые изделия содержат рыбный фарш, сухари панировочные и добавку. В качестве добавки используют набухший порошок из пророщенного зерна пшеницы, который предварительно замачивают в воде, в соотношении 1:1,25, при температуре 65±1°C в течение 60 мин. Все компоненты используют при...
Тип: Изобретение
Номер охранного документа: 0002595165
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.5424

Сырьевая смесь для изготовления арболита

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении материалов на основе древесных заполнителей. Технический результат заключается в создании более дешевого строительного материала с обеспечением прочностных характеристик и плотности,...
Тип: Изобретение
Номер охранного документа: 0002593836
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5452

Стенд для исследования буровых рабочих органов

Изобретение относится к испытательной технике, в частности к оборудованию для испытания буровых рабочих органов. Технический результат заключается в повышении эффективности и расширении диапазона возможностей путем измерения крутящего момента, осевого усилия и скорости погружения рабочего...
Тип: Изобретение
Номер охранного документа: 0002593612
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5597

Устройство для усиления несущих конструкций

Изобретение относится к области строительства и может быть использовано для усиления несущих конструкций колонн, простенков и кирпичных столбов. Технический результат заключается в увеличении ее несущей способности. Устройство для усиления несущих конструкций включает установленный на несущую...
Тип: Изобретение
Номер охранного документа: 0002593611
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55e2

Сырьевая смесь для изготовления арболита

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении материалов на основе древесных заполнителей. Техническим результатом является улучшение условий гидратации цемента в арболитовой смеси, повышение прочности арболита, снижение энергозатрат и...
Тип: Изобретение
Номер охранного документа: 0002593608
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.57bc

Способ изготовления стеновых изделий

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении стеновых изделий в виде безобжиговых кирпичей и блоков. Технический результат заключается в повышении прочности и однородности стенового материала - безобжигового кирпича на основе глиежей...
Тип: Изобретение
Номер охранного документа: 0002588504
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5ae3

Стенд для испытания рабочих органов дорожно-строительных машин

Изобретение относится к испытательной технике, в частности к оборудованию для испытания рабочих органов дорожно-строительных машин. Стенд для испытания рабочих органов дорожно-строительных машин содержит опорную раму со стойками, установленную на опорной раме несущую плиту с упорами для...
Тип: Изобретение
Номер охранного документа: 0002589757
Дата охранного документа: 10.07.2016
Showing 21-30 of 114 items.
10.06.2016
№216.015.4625

Электролизер для получения жидких металлов электролизом расплавов

Изобретение относится к электролизерам для производства жидких металлов, в частности алюминия, электролизом расплавленных солей. Электролизер содержит корпус, подину, крышку, установленные вертикально или наклонно малорасходуемые полые перфорированные и/или открыто пористые электроды,...
Тип: Изобретение
Номер охранного документа: 0002586183
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46e3

Способ укрытия анодного массива

Изобретение относится к способу укрытия анодного массива при производстве алюминия электролитическим способом в алюминиевом электролизере. Способ включает загрузку криолит-глиноземной шихты, состоящей из смеси дробленого электролита и глинозема, на поверхность анодного массива в два слоя, при...
Тип: Изобретение
Номер охранного документа: 0002586184
Дата охранного документа: 10.06.2016
20.08.2016
№216.015.4a88

Расходомер текучей среды

Изобретение относится к технике измерения и может быть использовано для измерения расхода текучих сред в каналах для транспортирования газов или жидкостей. Расходомер текучей среды содержит корпус (1), в проточной части которого закреплен измерительный орган в виде пластины (2), установленной с...
Тип: Изобретение
Номер охранного документа: 0002594421
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f8f

Рыбные рубленые изделия, обогащенные пророщенным зерном пшеницы

Рыбные рубленые изделия содержат рыбный фарш, сухари панировочные и добавку. В качестве добавки используют набухший порошок из пророщенного зерна пшеницы, который предварительно замачивают в воде, в соотношении 1:1,25, при температуре 65±1°C в течение 60 мин. Все компоненты используют при...
Тип: Изобретение
Номер охранного документа: 0002595165
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.5424

Сырьевая смесь для изготовления арболита

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении материалов на основе древесных заполнителей. Технический результат заключается в создании более дешевого строительного материала с обеспечением прочностных характеристик и плотности,...
Тип: Изобретение
Номер охранного документа: 0002593836
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5452

Стенд для исследования буровых рабочих органов

Изобретение относится к испытательной технике, в частности к оборудованию для испытания буровых рабочих органов. Технический результат заключается в повышении эффективности и расширении диапазона возможностей путем измерения крутящего момента, осевого усилия и скорости погружения рабочего...
Тип: Изобретение
Номер охранного документа: 0002593612
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5597

Устройство для усиления несущих конструкций

Изобретение относится к области строительства и может быть использовано для усиления несущих конструкций колонн, простенков и кирпичных столбов. Технический результат заключается в увеличении ее несущей способности. Устройство для усиления несущих конструкций включает установленный на несущую...
Тип: Изобретение
Номер охранного документа: 0002593611
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.55e2

Сырьевая смесь для изготовления арболита

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении материалов на основе древесных заполнителей. Техническим результатом является улучшение условий гидратации цемента в арболитовой смеси, повышение прочности арболита, снижение энергозатрат и...
Тип: Изобретение
Номер охранного документа: 0002593608
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.57bc

Способ изготовления стеновых изделий

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении стеновых изделий в виде безобжиговых кирпичей и блоков. Технический результат заключается в повышении прочности и однородности стенового материала - безобжигового кирпича на основе глиежей...
Тип: Изобретение
Номер охранного документа: 0002588504
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5ae3

Стенд для испытания рабочих органов дорожно-строительных машин

Изобретение относится к испытательной технике, в частности к оборудованию для испытания рабочих органов дорожно-строительных машин. Стенд для испытания рабочих органов дорожно-строительных машин содержит опорную раму со стойками, установленную на опорной раме несущую плиту с упорами для...
Тип: Изобретение
Номер охранного документа: 0002589757
Дата охранного документа: 10.07.2016
+ добавить свой РИД