×
10.06.2016
216.015.4541

СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу рентгенофазового определения криолитового отношения при электролитическом получении алюминия и может быть использовано при определении состава электролита. Способ включает отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита NaAlF, хиолита NaAlF, флюорита CaF, полуторного кальциевого криолита NaCaAlF, одинарного кальциевого криолита NaCaAlF и фторида натрия NaF, при этом концентрации вышеперечисленных фаз электролита определяют по формуле: , а криолитовое отношение определяют по формуле: где: - интенсивность аналитической линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической линии, М- количество фторидных фаз, Cj - концентрации минералогических фаз пробы; αj, βj - массовые доли соответственно NaF и AlF в j-й фазе. Обеспечивается упрощение и повышение его точности определения состава электролита. 2 ил., 4 табл.
Основные результаты: Способ рентгенофазового определения криолитового отношения при электролитическом получении алюминия, включающий отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита NaAlF, хиолита NaAlF, флюорита CaF, полуторного кальциевого криолита NaCaAlF, одинарного кальциевого криолита NaCaAlF и фторида натрия NaF, отличающийся тем, что определяют концентрации упомянутых минералогических фаз пробы электролита по формуле: где: - интенсивность аналитической дифракционной линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической дифракционной линии, М- количество фторидных фаз,а криолитовое отношение КО определяют по формуле: где: Cj - концентрации минералогических фаз пробы электролита; αj, βj - массовые доли соответственно NaF и AlF в j-й фазе.
Реферат Свернуть Развернуть

Изобретение относится к электролитическому получению алюминия и может быть использовано при определении состава электролита с добавками фторида кальция, выраженного в виде такого технологического параметра, как криолитовое отношение (КО) (мольное отношения NaF/AlF3) методом рентгенофазового анализа.

Известен способ определения криолитового отношения электролита методом рентгенофлуоресцентного анализа [Патент РФ №2424379, МПК С25С 3/06, опубл. 17.11.09]. Способ включает построение градуировочных характеристик по интенсивностям флуоресценции аналитических Kα линий F, Al, Na, Mg с использованием стандартных образцов состава электролита, отбор пробы электролита, подготовку образца к анализу, определение концентраций элементов по построенным градуировочным характеристикам и определение значения криолитового отношения по определенным концентрациям элементов.

К недостаткам способа можно отнести необходимость построения градуировочных характеристик и наличия аттестованных стандартных образцов состава электролита, идентичных анализируемым пробам по фазовому составу и микрокристаллической структуре фаз.

Известен способ определения криолитового отношения в электролитах рентгенодифрактометрическим методом [Кирик С.Д., Куликова Н.Н., Якимов И.С., Клюева Т.И., Баранов И.А., Бузунов В.Ю., Голощапов В.Г. Цветные металлы, 1996, №9, стр. 75-77; С.Н. Архипов, А.А. Стекольщиков, Г.А. Лютинская, Л.Н. Максимова, Л.А. Пьянкова. Заводская лаборатория. Диагностика материалов 2006, том 72, №9, стр. 34-36]. Способ заключается в определении кристаллических фаз компонентов в охлажденной пробе электролита с последующим пересчетом в соответствии со стехиометрией значения КО и содержания CaF2 и MgF2. Содержание фаз определяется по заранее построенным градуировочным зависимостям от интенсивности их аналитических дифракционных линий, а общее содержание фторида кальция - по градуировочной зависимости интенсивности рентгеновской флуоресценции аналитической линии Ca, регистрируемой на специальном флуоресцентном канале.

К недостаткам способа можно отнести то, что для построения градуировочных характеристик необходимо использовать аттестованные стандартные образцы фазового состава (СОФС) с известным содержанием определяемых фаз, идентичные анализируемым пробам по фазовому составу и микрокристаллической структуре фаз и обеспечивающие градуировку дифрактометра по крайней мере по 6 фазам. Создание многофазных СОФС представляет сложную и трудоемкую научно-техническую задачу, т.к. от точности определения в них фазового состава зависит точность градуировки дифрактометра и анализа КО. Кроме того, описанный способ подразумевает периодическое мониторирование интенсивности измерительной системы для контроля дрейфа градуировочных характеристик. Создание СОФС электролита, градуировка прибора, мониторирование интенсивности рентгеновской трубки - данные мероприятия приводят к дополнительным затратам времени и ресурсов, а также могут служить дополнительным источником погрешности анализа КО.

Данный способ анализа принят за прототип.

Преимуществом предлагаемого способа является прямое автоматическое определение КО с точностью КО ±0,04 ед.абс КО без использования СОФС, без построения градуировочных характеристик фаз и без необходимости мониторирования дрейфа прибора.

Техническим результатом предлагаемого способа является исключение всех операций, связанных с градуировкой по фазам, при автоматическом рентгенофазовом анализе состава проб электролита с точностью, характеризуемой СКО ±0,04 ед.абс КО.

Указанный технический результат достигается тем, что способ рентгенофазового определения криолитового отношения при электролитическом получении алюминия, включающий отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF, согласно изобретению концентрации вышеперечисленных фаз электролита определяют по формуле:

,

где: - интенсивность аналитической линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической линии, М - количество фторидных фаз,

а криолитовое отношение определяют по формуле:

,

где: Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе.

Предлагаемый способ отличается от метода, применяемого в ближайшем аналоге отсутствием построения градуировочных характеристик, и не требует использования СОФС. Корундовые числа, накапливаемые в базах дифракционных данных, - это отношение интенсивностей максимальных дифракционных пиков анализируемой фазы и корунда в смеси 1:1:

Однако использование корундовых чисел фаз из баз дифракционных данных не всегда обеспечивает высокую точность фазового анализа из-за особенностей конкретного фазового состава анализируемых материалов, где реальные корундовые числа фаз - другие. Это в полной мере относится и к задаче анализа промышленных электролитов.

Точные корундовые числа фаз могут рассчитываться по данным химического анализа фторидных компонентов представительной группы проб промышленного электролита и интенсивностям аналитических дифракционных линий фаз в этих же пробах по методу [2] или аналогичными расчетными методами. Для расчета корундовых чисел также можно, и предпочтительнее, использовать комплект стандартных образцов промышленного электролита с аттестованным химическим составом (при его наличии).

Сущность способа заключается в том, что в отобранных и подготовленных к анализу образцах электролита с учетом интенсивности фона измеряется интенсивность аналитических дифракционных линий фаз криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 и фторида натрия NaF. Позиции используемых аналитических линий и расчетные корундовые числа фаз приведены в таблице 1.

С использованием расчетных корундовых чисел, определенных по [2], рассчитывается суммарная интенсивность аналитических линий фаз:

где CryInt, ChiInt, FluInt, CaCry2Int, CaCry1Int, NaFInt - интенсивность аналитических дифракционных линий фаз, указанных в таблице 1.

Концентрации фаз Cj определяются согласно (2) по следующим формулам:

При КО<3,0 фаза NaF отсутствует и ее концентрация не рассчитывается.

Криолитовое отношение вычисляют по формуле:

где CNaF, - валовые концентрации фтористого натрия и фтористого алюминия в пробе электролита. Поскольку криолитовое отношение - это мольное отношение фтористого натрия к фтористому алюминию, а молекулярная масса NaF вдвое меньше молекулярной массы AlF3, в числителе формулы (5) стоит множитель 2.

Валовые концентрации NaF и AlF3 определяются путем вычленения из каждой фазы содержащихся в ней массовых долей фторида натрия и фторида алюминия. Это можно обобщить следующей, эквивалентной (5), формулой:

где Cj - концентрации минералогических фаз пробы; αj, βji - массовые доли соответственно NaF и AlF3 в j-й фазе.

Массовые доли фтористого натрия и фтористого алюминия во фторсодержащих фазах проб электролита приведены в таблице 2.

Окончательно формула для вычисления криолитового отношения примет вид:

В предлагаемом способе за счет определения концентраций минералогических фаз электролита производства алюминия по формуле (4), применение которой не требует использования стандартных образцов фазового состава, построения градуировочных характеристик фаз и коррекции их дрейфа, и дальнейшем расчете КО по формуле (7) снижено количество операций при рентгенофазовом анализе состава проб электролита с сохранением точности, характеризуемой стандартным отклонением ±0,04 ед.абс КО, то есть достаточной для технологического контроля химического состава электролита в производстве алюминия.

Примеры определения криолитового отношения электролита

В качестве тестируемых материалов в примерах были использованы 15 отраслевых стандартных образцов промышленного электролита с добавками фторида кальция с аттестованными характеристиками [3]. Пробы отраслевых стандартных образцов электролита подготавливали к анализу в соответствии с методикой подготовки проб промышленного электролита к рентгенодифракционному измерению КО. Далее проводили их анализ по прототипу и по предлагаемому способу на широко используемом для контроля КО в алюминиевой промышленности специализированном рентгеновском дифрактометре X'pert Pro (PANalytical, Нидерланды).

Пример 1 (прототип).

В таблице 3 приведены аттестованные и измеренные по прототипу криолитовые отношения в подготовленных пробах 15-ти отраслевых стандартных образцов (ОСО) электролита.

На рис. 1 приведена графическая зависимость измеренного значения КО от аттестованного значения КО, построенная по данным таблицы 3. Точность определения криолитового отношения по прототипу составляет 0,033 ед. КО.

Пример 2 (предлагаемый способ)

Измеряют интенсивности аналитических дифракционных линий фаз, позиции которых указаны в таблице 1, криолита Na3AlF6, хиолита Na5Al3F14, флюорита CaF2, полуторного кальциевого криолита Na2Ca3Al2F14, одинарного кальциевого криолита NaCaAlF6 в подготовленных пробах 15-ти ОСО (аналогичных используемым в предыдущем примере). По формуле (2) рассчитывают концентрации приведенных фаз в образцах, используя следующие значения корундовых чисел соответственно: Величину криолитового отношения стандартных образцов рассчитывают по формуле (7).

В таблице 4 приведены аттестованные и измеренные по предлагаемому способу криолитовые отношения стандартных образцов электролита.

На рис. 2 приведена графическая зависимость измеренного значения КО от аттестованного значения КО, построенная по данным таблицы 4.

Как следует из приведенного примера, использование предложенного способа анализа проб электролита на рентгеновском дифрактометре позволяет добиться точности определения КО 0,034 ед. КО.

Список использованной литературы

1. С.R. Hubbard, Е.Н. Evans, and D.K. Smith. The Reference Intensity Ratio for Computer Simulated Powder Patterns // J. Appl. Cryst. 9, 169 (1976).

2. Якимов И.С., Дубинин П.С., Пиксина O.E. Интеграция методов группового количественного рентгенофазового анализа и ссылочных интенсивностей // Контроль. Диагностика. 2010. №12. С. 42-47.

3. Якимов И.С., Дубинин П.С., Залога А.Н., Пиксина О.Е., Кирик С.Д. Разработка отраслевых стандартных образцов электролита алюминиевых электролизеров // Стандартные образцы. 2008. №4. С. 34-42.

Способ рентгенофазового определения криолитового отношения при электролитическом получении алюминия, включающий отбор пробы электролита, подготовку образца к анализу, измерение интенсивности аналитических дифракционных линий фаз криолита NaAlF, хиолита NaAlF, флюорита CaF, полуторного кальциевого криолита NaCaAlF, одинарного кальциевого криолита NaCaAlF и фторида натрия NaF, отличающийся тем, что определяют концентрации упомянутых минералогических фаз пробы электролита по формуле: где: - интенсивность аналитической дифракционной линии j-й фазы, - корундовое число j-й фазы, рассчитанное для данной аналитической дифракционной линии, М- количество фторидных фаз,а криолитовое отношение КО определяют по формуле: где: Cj - концентрации минералогических фаз пробы электролита; αj, βj - массовые доли соответственно NaF и AlF в j-й фазе.
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
СПОСОБ РЕНТГЕНОФАЗОВОГО ОПРЕДЕЛЕНИЯ КРИОЛИТОВОГО ОТНОШЕНИЯ ПРИ ЭЛЕКТРОЛИТИЧЕСКОМ ПОЛУЧЕНИИ АЛЮМИНИЯ
Источник поступления информации: Роспатент

Showing 1-10 of 328 items.
27.02.2015
№216.013.2cc3

Способ подготовки проб калийсодержащего электролита алюминиевого производства для анализа состава и определения криолитового отношения методом рфа

Изобретение относится к получению алюминия электролизом глинозема в расплаве фтористых солей и может быть использовано при технологическом контроле состава электролита методом количественного рентгенофазового анализа (РФА) калийсодержащего электролита с добавками кальция либо кальция и магния....
Тип: Изобретение
Номер охранного документа: 0002542927
Дата охранного документа: 27.02.2015
20.05.2015
№216.013.4b93

Способ определения компонентного состава и криолитового отношения твердых проб калийсодержащего электролита алюминиевого производства методом рфа

Изобретение относится к способу определения компонентного состава и криолитового отношения калийсодержащего электролита и может быть использовано в цветной металлургии, а именно при технологическом контроле состава электролита методом количественного рентгенофазового анализа. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002550861
Дата охранного документа: 20.05.2015
10.07.2015
№216.013.6047

Способ получения алюминиево-кремниевых сплавов в алюминиевых электролизерах

Изобретение относится к способу электролитического получения алюмокремниевых сплавов -силуминов с использованием кремнезема и кремнеземсодержащих материалов, например, отработанной подины, содержащей большое количество кремнезема, глинозема и электролита, необходимых для электролиза. Способ...
Тип: Изобретение
Номер охранного документа: 0002556188
Дата охранного документа: 10.07.2015
27.03.2016
№216.014.c5b2

Станок шарошечного бурения

Изобретение относится к горной промышленности, а именно к станкам шарошечного бурения. Станок включает мачту, буровую головку с буровым снарядом, канатно-полиспастную систему с гидроцилиндром привода подачи, гидрораспределитель гидроцилиндров привода подачи с управляющими камерами подъема и...
Тип: Изобретение
Номер охранного документа: 0002578684
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0515

Композиция для получения сорбента на основе карбамидоформальдегидной смолы

Изобретение относится к композиции для получения сорбента для очистки загрязненных объектов от нефтепродуктов. Композиция содержит следующие компоненты в масс. %: карбамидоформальдегидная смола 25-30; шлам газоочистки производства алюминия 8-12; магнетит 5-7; пенообразователь, содержащий ПАВ,...
Тип: Изобретение
Номер охранного документа: 0002587440
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.053a

Способ измерения расстояния между бортовой и наземной приёмопередающими станциями

Изобретение относится к способам измерения расстояния и может быть использовано в радионавигации и радиолокации. Достигаемый технический результат изобретения - сокращение времени и повышение точности измерения расстояния между бортовой и наземной приемопередающими станциями. Указанный...
Тип: Изобретение
Номер охранного документа: 0002587471
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2c21

Способ получения легированного оксидом висмута серебряно-оловооксидного материала для электроконтактов

Изобретение относится к способу получения легированного оксидом висмута серебряно-оловооксидного материала для электрических контактов и может найти применение в электротехнической промышленности. Способ включает сплавление металлического серебра, олова и висмута в инертной атмосфере при...
Тип: Изобретение
Номер охранного документа: 0002579846
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d16

Кормоприготовитель

Изобретение относится к сельскому хозяйству, а именно к устройствам для приготовления комбикормов. Кормоприготовитель содержит корпус в виде стоек на опорной плите, цилиндрическую рабочую камеру с торцевыми крышками, в которой расположены ведущий и ведомый элементы с измельчающими зубьями....
Тип: Изобретение
Номер охранного документа: 0002579773
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30da

Устройство для бурения скважин

Изобретение относится к горной промышленности и может быть использовано для бурения взрывных скважин на карьерах и шахтах, а также для проходки технологических скважин, в том числе при бурении сложноструктурных пород. Устройство для бурения скважин содержит корпус, вращательно-подающий механизм...
Тип: Изобретение
Номер охранного документа: 0002580118
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.367a

Способ вентиляции глубоких карьеров

Изобретение относится к горной промышленности и может быть использовано при искусственном проветривании застойных зон глубоких карьеров. Техническим результатом предлагаемого решения является повышение эффективности регулирования вентиляционных потоков и их распределения между застойными...
Тип: Изобретение
Номер охранного документа: 0002581644
Дата охранного документа: 20.04.2016
Showing 1-10 of 114 items.
27.02.2015
№216.013.2cc3

Способ подготовки проб калийсодержащего электролита алюминиевого производства для анализа состава и определения криолитового отношения методом рфа

Изобретение относится к получению алюминия электролизом глинозема в расплаве фтористых солей и может быть использовано при технологическом контроле состава электролита методом количественного рентгенофазового анализа (РФА) калийсодержащего электролита с добавками кальция либо кальция и магния....
Тип: Изобретение
Номер охранного документа: 0002542927
Дата охранного документа: 27.02.2015
20.05.2015
№216.013.4b93

Способ определения компонентного состава и криолитового отношения твердых проб калийсодержащего электролита алюминиевого производства методом рфа

Изобретение относится к способу определения компонентного состава и криолитового отношения калийсодержащего электролита и может быть использовано в цветной металлургии, а именно при технологическом контроле состава электролита методом количественного рентгенофазового анализа. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002550861
Дата охранного документа: 20.05.2015
10.07.2015
№216.013.6047

Способ получения алюминиево-кремниевых сплавов в алюминиевых электролизерах

Изобретение относится к способу электролитического получения алюмокремниевых сплавов -силуминов с использованием кремнезема и кремнеземсодержащих материалов, например, отработанной подины, содержащей большое количество кремнезема, глинозема и электролита, необходимых для электролиза. Способ...
Тип: Изобретение
Номер охранного документа: 0002556188
Дата охранного документа: 10.07.2015
27.03.2016
№216.014.c5b2

Станок шарошечного бурения

Изобретение относится к горной промышленности, а именно к станкам шарошечного бурения. Станок включает мачту, буровую головку с буровым снарядом, канатно-полиспастную систему с гидроцилиндром привода подачи, гидрораспределитель гидроцилиндров привода подачи с управляющими камерами подъема и...
Тип: Изобретение
Номер охранного документа: 0002578684
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0515

Композиция для получения сорбента на основе карбамидоформальдегидной смолы

Изобретение относится к композиции для получения сорбента для очистки загрязненных объектов от нефтепродуктов. Композиция содержит следующие компоненты в масс. %: карбамидоформальдегидная смола 25-30; шлам газоочистки производства алюминия 8-12; магнетит 5-7; пенообразователь, содержащий ПАВ,...
Тип: Изобретение
Номер охранного документа: 0002587440
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.053a

Способ измерения расстояния между бортовой и наземной приёмопередающими станциями

Изобретение относится к способам измерения расстояния и может быть использовано в радионавигации и радиолокации. Достигаемый технический результат изобретения - сокращение времени и повышение точности измерения расстояния между бортовой и наземной приемопередающими станциями. Указанный...
Тип: Изобретение
Номер охранного документа: 0002587471
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2c21

Способ получения легированного оксидом висмута серебряно-оловооксидного материала для электроконтактов

Изобретение относится к способу получения легированного оксидом висмута серебряно-оловооксидного материала для электрических контактов и может найти применение в электротехнической промышленности. Способ включает сплавление металлического серебра, олова и висмута в инертной атмосфере при...
Тип: Изобретение
Номер охранного документа: 0002579846
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d16

Кормоприготовитель

Изобретение относится к сельскому хозяйству, а именно к устройствам для приготовления комбикормов. Кормоприготовитель содержит корпус в виде стоек на опорной плите, цилиндрическую рабочую камеру с торцевыми крышками, в которой расположены ведущий и ведомый элементы с измельчающими зубьями....
Тип: Изобретение
Номер охранного документа: 0002579773
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30da

Устройство для бурения скважин

Изобретение относится к горной промышленности и может быть использовано для бурения взрывных скважин на карьерах и шахтах, а также для проходки технологических скважин, в том числе при бурении сложноструктурных пород. Устройство для бурения скважин содержит корпус, вращательно-подающий механизм...
Тип: Изобретение
Номер охранного документа: 0002580118
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.367a

Способ вентиляции глубоких карьеров

Изобретение относится к горной промышленности и может быть использовано при искусственном проветривании застойных зон глубоких карьеров. Техническим результатом предлагаемого решения является повышение эффективности регулирования вентиляционных потоков и их распределения между застойными...
Тип: Изобретение
Номер охранного документа: 0002581644
Дата охранного документа: 20.04.2016
+ добавить свой РИД