×
27.05.2016
216.015.42ec

Результат интеллектуальной деятельности: МАГНИТОЭЛЕКТРИЧЕСКАЯ МАШИНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электротехники, в частности к электрогенераторам постоянного тока. Технический результат - повышение рабочего магнитного потока. Магнитоэлектрическая машина содержит ротор с постоянными магнитами и статор, представляющий собой магнитопровод с пазами, в которых размещена трехфазная обмотка. На роторе закреплены постоянные магниты, причем число магнитных полюсов ротора равно числу магнитных полюсов трехфазной обмотки статора. Ротор представляет собой цилиндр, выполненный из двух частей: верхней и внутренней. Внутренняя часть ротора выполнена в виде цилиндра и изготовлена из ферромагнетика, а внешняя часть выполнена в виде полого цилиндра, в котором выполнены отверстия для размещения в них постоянных магнитов, и изготовлена из немагнитного материала. Внутренняя и внешняя части цилиндрического ротора жестко скреплены между собой. 4 ил.
Основные результаты: Магнитоэлектрическая машина, содержащая ротор с постоянными магнитами и статор, представляющий собой магнитопровод с пазами, в которых размещена трехфазная обмотка, ротор от статора отделен воздушным зазором δ и представляет собой цилиндр с закрепленными на нем постоянными магнитами, причем число магнитных полюсов ротора должно равняться числу магнитных полюсов трехфазной обмотки с током статора и удовлетворять выражению:2p=n, гдеp - число пар полюсов машины;n - четное число;трехфазная обмотка статора подключена к трехфазному выпрямительному блоку и соединена по схеме «звезда» или «треугольник», отличающаяся тем, что согласно заявляемому техническому решению ротор, представляющий собой цилиндр, выполнен из двух частей: верхней и внутренней, причем внутренняя его часть выполнена в виде цилиндра и изготовлена из ферромагнетика, а внешняя часть ротора выполнена в виде полого цилиндра, в котором выполнены отверстия, количество которых зависит от числа пар полюсов обмотки статора магнитоэлектрической машины, а также от геометрических размеров ротора и постоянных магнитов, для размещения в них постоянных магнитов и изготовлена из немагнитного материала, кроме того, внутренняя и внешняя части цилиндрического ротора жестко скреплены между собой.

Изобретение относится к области электротехники, а именно к электрическим машинам, в частности электрогенераторам постоянного тока, и может быть использовано в любой области науки и техники, где требуются автономные источники питания.

Классические асинхронные машины получили широкое распространение в сфере производства, применение их с целью получения электрической энергии затруднено из-за отсутствия в конструкции элементов, создающих магнитное поле.

Асинхронная машина имеет неподвижный статор, представляющий собой магнитопровод с пазами, в которых уложена трехфазная обмотка. Подвижный ротор располагается внутри статора и представляет собой также замкнутую трехфазную обмотку или металлическую замкнутую конструкцию, представляющую собой металлические стержни, соединенные с двух сторон проводником электрического тока по типу «беличья клетка» (например, учебник для вузов Копылов И.П. «Электрические машины», М.: Энергоатомиздат, 1986, - 360 с., стр. 154-159).

Указанная конструкция асинхронной машины, как правило, применяется только для целей преобразования электрической энергии в механическую энергию, так как в конструкции нет элементов для создания магнитного поля при отсутствии источника питания.

Наиболее близким устройством того же назначения по совокупности признаков является конструкция магнитоэлектрической машины [Патент №151437 от 10.04.2015 г.], которая содержит ротор с постоянными магнитами и неподвижный статор, представляющий собой магнитопровод с пазами, в которых размещена трехфазная обмотка, ротор с постоянными магнитами отделен от статора воздушным зазором δ и представляет собой цилиндр, выполненный из парамагнетика или диамагнетика, причем число полюсов ротора равно числу полюсов трехфазной обмотки статора и удовлетворяет выражению: 2p=n, где

p - число пар полюсов машины, n - четное число; трехфазная обмотка статора подключена к трехфазному выпрямительному блоку и соединена по схеме «звезда» или «треугольник».

Указанная конструкция обладает следующими недостатками.

При вращении ротора с постоянными магнитами электродвижущая сила (ЭДС), наводимая в обмотке статора, зависит от скорости вращения и при неравномерном вращении задача стабилизации напряжения становится актуальной. Особенно обеспечение заданного уровня напряжения на выводах магнитоэлектрической машины важно для обеспечения заряда аккумулятора в составе ветроэнергетической установки.

Ротор, на котором расположены постоянные магниты, представляет собой цилиндр из немагнитного материала (диамагнетика или парамагнетика), что приводит к уменьшению результирующего магнитного потока в зазоре из-за разомкнутой магнитной цепи, так как магнитный поток полюсов постоянных магнитов, обращенных к центру цилиндра, не замкнут из-за низкой магнитной проницаемости материала цилиндра (например, µ≈1).

Задачей заявляемой магнитоэлектрической машины является стабилизация постоянного напряжения в нагрузке за счет использования системы стабилизации, а также увеличение результирующего магнитного потока за счет изготовления специальной конструкции ротора, включающей в свой состав ферромагнитные (материалы, обладающие высокой магнитной проницаемостью, например, µ>2000) и немагнитные материалы (материалы обладающие низкой магнитной проницаемостью, например, µ≈1).

Данный технический результат достигается тем, что в магнитоэлектрической машине, содержащей ротор с постоянными магнитами и статор, представляющий собой магнитопровод с пазами, в которых размещена трехфазная обмотка, ротор от статора отделен воздушным зазором 8 и представляет собой цилиндр с закрепленными на нем постоянными магнитами, причем число магнитных полюсов ротора должно равняться числу магнитных полюсов трехфазной обмотки с током статора и удовлетворять выражению:

2p=n, где

p - число пар полюсов машины;

n - четное число,

трехфазная обмотка статора подключена к трехфазному выпрямительному блоку и соединена по схеме «звезда» или «треугольник», согласно заявленному техническому решению ротор представляет собой цилиндр, состоящий из двух частей: внутренней и внешней, внутренняя часть цилиндра выполнена в виде цилиндра и изготовлена из ферромагнетика, а внешняя часть ротора выполнена в виде полого цилиндра и изготовлена из немагнитного материала, во внешней части ротора выполнены отверстия для размещения в них постоянных магнитов, количество отверстий зависит от числа пар полюсов обмотки статора магнитоэлектрической машины, а также от геометрических размеров ротора и постоянных магнитов, внутренняя и внешняя части ротора жестко скреплены между собой.

На фиг. 1 представлена конструкция предлагаемой магнитоэлектрической машины.

На фиг. 2 приведено распределение магнитного поля у четырехполюсной магнитоэлектрической машины (2p=4, т.е. две пары полюсов).

На фиг. 3 представлена трехфазная мостовая схема выпрямителя.

На фиг. 4 представлена схема, в которой магнитоэлектрическая машина является частью асинхронного электропривода.

Магнитоэлектрическая машина содержит корпус 1, статор 2, представляющий собой магнитопровод с пазами 3, в которых размещена трехфазная обмотка 4, ротор 5 представляющий собой цилиндр, выполненный из двух частей: внешней и внутренней, внутренняя часть которого выполнена в виде цилиндра и изготовлена из ферромагнетика (например, сталь) 7, а внешняя часть 8 ротора 5 выполнена в виде полого цилиндра, изготовленного из немагнитного материала (например, алюминия), в котором выполнены отверстия, предназначенные для размещения в них постоянных магнитов 6, количество отверстий зависит от числа пар полюсов обмотки статора магнитоэлектрической машины, а также от геометрических размеров ротора и постоянных магнитов. Внутренняя 7 и внешняя 8 части цилиндрического ротора жестко скреплены между собой (на фиг. 1 не показано). Ротор от статора отделен воздушным зазором δ и представляет собой цилиндр с закрепленными на нем постоянными магнитами, причем число магнитных полюсов ротора должно равняться числу магнитных полюсов трехфазной обмотки с током статора и удовлетворять выражению:

2p=n, где

p - число пар полюсов машины;

n - четное число;

трехфазная обмотка статора подключена к трехфазному выпрямительному блоку и соединена по схеме «звезда» или «треугольник». Для случая, когда расположение постоянных магнитов 6 на роторе 5 представлено двумя парами полюсов (2p=4), конфигурация магнитного поля представляет собой замкнутые линии магнитного поля с четырьмя выраженными областями. Поясняющее расположение магнитных полюсов магнитоэлектрической машины изображено на (Фиг. 2). Выпрямительный блок 9 (Фиг. 4) представлен в виде одной из стандартных выпрямительных схем, выполненных на диодах (Фиг. 3), например, по трехфазной мостовой схеме. В любой промежуток времени должны быть включены два диода - один из катодной, а другой - из анодной группы. Поочередная работа различных пар диодов приводит к появлению на нагрузке магнитоэлектрической машины выпрямленного напряжения, состоящего из частей линейных напряжений. Трехфазная обмотка может быть выполнена как однослойной, так и двухслойной. Описание размещения трехфазной обмотки в статоре рассмотрены, например, в учебнике для вузов Копылов И.П. «Электрические машины», М: Энергоатомиздат, 1986, - 360 с., стр. 159-162 или Григорьев В.Ф. «Обмотки якоря (статора) электрических машин»: Метод. указания / В.Ф. Григорьев, А.В. Бунзя, Е.М. Азарова. - Екатеринбург: Изд-во УрГУПС, 2012 - 34 с., стр. 23-33.

Корпус 1 магнитоэлектрической машины обычно отливают из алюминиевого сплава или чугуна. Сердечник статора 2 изготовлен шихтованным, набранным из отдельных статорных пластин. Между пластинами расположена изоляция, которая может быть выполнена, например, окалиной. Пакет статорных пластин с изоляцией образует пакет, который скрепляют сваркой или при помощи скоб.

Магнитоэлектрическая машина содержит асинхронный двигатель (АД) 9, трехфазный выпрямитель (В) 10 (далее выпрямительный блок), нагрузочное сопротивление (Н) 11, частотный преобразователь (ЧП) 12 для регулирования скорости вращения ротора АД, блок защиты и включения сети 13, трансформатор тока 14, резистивную цепочку, предназначенную для измерения фазного напряжения АД 15, и аккумуляторную батарею 16.

Учитывая особенности электроснабжения различных электроприемников, целесообразным является ограничение выходного напряжения магнитоэлектрической машины, например, в том случае, если выходное напряжение больше номинального напряжения потребителя. Поэтому предпочтительно, чтобы магнитоэлектрическая машина также включала в свой состав блок стабилизации напряжения, включающий в свой состав аккумуляторную батарею, разрядное сопротивление Rp, а также систему переключателей, обеспечивающих заряд аккумуляторной батареи.

Учитывая, что предлагаемая магнитоэлектрическая машина использует внешнее двигательное устройство (например, двигатель или ветроколесо), рассмотрим конкретный пример работы предложенной магнитоэлектрической машины.

Приводят во вращательное движение магнитоэлектрическую машину от внешнего двигательного устройства. В качестве внешнего двигательного устройства используем асинхронный двигатель 9 (Фиг. 4). Начинается вращение ротора 5 с размещенными на нем постоянными магнитами 6. В замкнутом контуре трехфазной обмотки 4 статора 2 при изменении магнитного потока, проходящего через него, возникает электрический ток (индуцирование), который затем подается на вход выпрямительного блока с целью получения постоянного напряжения. Полученный таким образом автономный источник питания может использоваться в сетях постоянного тока. Присоединение к инвертору напряжения позволит использовать устройство в сетях переменного напряжения.

На обмотку статора асинхронного двигателя (АД) через блок защиты и включения сети 13 подают переменное напряжение, имеющее частоту, задаваемую преобразователем частоты - частотным преобразователем (ЧП) 12.

Измерительные трансформаторы тока (14)предназначены для измерения тока и расположены до и после преобразователя частоты 12.

Резистивная цепочка 15 соединена со статорной обмоткой асинхронного двигателя 9 параллельно и предназначена для обеспечения возможности подключения измерительных приборов для измерения напряжения на статорной обмотке асинхронного двигателя 9.

Создаваемый статорной обмоткой магнитный поток, пересекая короткозамкнутый ротор асинхронного двигателя АД 9, индуцирует в нем электрический ток. Взаимодействие магнитного поля, создаваемого статорной обмоткой, и тока, протекающего в роторе, приводит к появлению электромагнитной силы, действующей на ротор 5 и приводящей его во вращение. Ротор АД 9 и ротор 5 магнитоэлектрической машины механически связаны, например, ременной передачей, поэтому ротор 5 магнитоэлектрической машины приводится во вращение. Так как на роторе 5 магнитоэлектрической машины расположены постоянные магниты 6, то при вращении ротора 5 происходит изменение магнитного потока, пронизывающего витки трехфазной обмотки 4 статора 2 магнитоэлектрической машины. В замкнутом контуре трехфазной обмотки 4 статора 2 при изменении магнитного потока, проходящего через него, возникает электрический ток (индуцирование). Далее, полученное переменное напряжение подается на выпрямительный блок 10, а затем на нагрузочное сопротивление (Н) 11. Применение преобразователя частоты с асинхронным двигателем (АД) в качестве регулируемого внешнего двигательного устройства позволяет привести во вращение ротор предложенной магнитоэлектрической машины и тем самым обеспечить переменное значение ЭДС в трехфазной обмотке магнитоэлектрической машины. Кроме этого, предложенная схема электропривода позволяет измерить напряжение на трехфазной обмотке магнитоэлектрической машины.

В качестве преобразователя частоты может использоваться стандартный частотный преобразователь (например, фирмы Hyundai).

Система стабилизации напряжения 17 работает следующим образом.

Аккумуляторная батарея 16 подключена к выпрямительному устройству 10 через выключатель QF1, а также через контакты промежуточного реле KV2, которые в нормальном положении замкнуты. Происходит заряд аккумулятора. Питание нагрузочного сопротивления (Н) 11 может осуществляться от аккумуляторной батареи 16, если потребитель постоянного тока, или через стандартный блок инвертора напряжения (на фиг. 4 не показан), если потребитель переменного тока.

В том случае, если напряжение на трехфазной обмотке 4 статора 2 выше, чем напряжение, необходимое для заряда аккумуляторной батареи 16, то KV2 отключается, a KV1 включается, тем самым реализуя защиту аккумуляторной батареи 16.

Таким образом, разработанную магнитоэлектрическую машину можно использовать в сетях постоянного тока, а в случае необходимости, дополнительно установить инвертор напряжения для получения переменного напряжения с заданными параметрами и использовать в сетях переменного тока.

Указанная конструкция ротора позволяет повысить рабочий магнитный поток магнитоэлектрической машины, а следовательно, повысить индуктированную ЭДС в обмотке. Двухкомпонентная конструкция ротора позволяет избежать магнитного насыщения в узких промежутках между отверстиями с магнитами и при этом повысить магнитный поток за счет применения магнитопроводящей внутренней части.

Магнитоэлектрическая машина, содержащая ротор с постоянными магнитами и статор, представляющий собой магнитопровод с пазами, в которых размещена трехфазная обмотка, ротор от статора отделен воздушным зазором δ и представляет собой цилиндр с закрепленными на нем постоянными магнитами, причем число магнитных полюсов ротора должно равняться числу магнитных полюсов трехфазной обмотки с током статора и удовлетворять выражению:2p=n, гдеp - число пар полюсов машины;n - четное число;трехфазная обмотка статора подключена к трехфазному выпрямительному блоку и соединена по схеме «звезда» или «треугольник», отличающаяся тем, что согласно заявляемому техническому решению ротор, представляющий собой цилиндр, выполнен из двух частей: верхней и внутренней, причем внутренняя его часть выполнена в виде цилиндра и изготовлена из ферромагнетика, а внешняя часть ротора выполнена в виде полого цилиндра, в котором выполнены отверстия, количество которых зависит от числа пар полюсов обмотки статора магнитоэлектрической машины, а также от геометрических размеров ротора и постоянных магнитов, для размещения в них постоянных магнитов и изготовлена из немагнитного материала, кроме того, внутренняя и внешняя части цилиндрического ротора жестко скреплены между собой.
МАГНИТОЭЛЕКТРИЧЕСКАЯ МАШИНА
МАГНИТОЭЛЕКТРИЧЕСКАЯ МАШИНА
МАГНИТОЭЛЕКТРИЧЕСКАЯ МАШИНА
МАГНИТОЭЛЕКТРИЧЕСКАЯ МАШИНА
МАГНИТОЭЛЕКТРИЧЕСКАЯ МАШИНА
Источник поступления информации: Роспатент

Showing 41-50 of 151 items.
10.10.2014
№216.012.fc61

Нанополупроводниковый газовый датчик

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака. Изобретение может быть использовано в экологии. Датчик микропримесей аммиака содержит полупроводниковое основание и подложку....
Тип: Изобретение
Номер охранного документа: 0002530455
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd71

Способ защиты от эксцентриситета ротора электрической машины переменного тока

Изобретение относится к области электротехники и может быть использовано в электрических машинах переменного тока. Техническим результатом является расширение функциональных возможностей и области применения, повышение чувствительности. Способ защиты от эксцентриситета ротора машины переменного...
Тип: Изобретение
Номер охранного документа: 0002530727
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.0119

Способ очистки орбит от космического мусора

Изобретение относится к ракетно-космической технике и может быть использовано для увода с рабочих орбит объектов космического мусора (ОКМ) на орбиты утилизации. Способ включает выведение космического аппарата-буксира (КАБ) и автономного стыковочного модуля (АСМ) в области орбит, предназначенных...
Тип: Изобретение
Номер охранного документа: 0002531679
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.018d

Пневматическая пружина

Изобретение относится к машиностроению. Пневматическая пружина содержит резервуар (1), шток (4) с поршнем (6) и уплотнительный элемент (5) штока. Поршень (6) образует в резервуаре (1) надпоршневую (7) и подпоршневую (8) полости, соединенные сквозным каналом (11). Поршень (6) имеет на своей...
Тип: Изобретение
Номер охранного документа: 0002531795
Дата охранного документа: 27.10.2014
10.12.2014
№216.013.0ca6

Способ работы насос-компрессора и устройство для его осуществления

Изобретение относится к области насосо- и компрсссоростроения и может быть использовано при создании машин для сжатия и подачи одновременно или попеременно жидкостей и газов. Способ состоит в том, что перед сменой жидкости осуществляют очистку гидравлической магистрали и рубашки, окружающей...
Тип: Изобретение
Номер охранного документа: 0002534655
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0cb3

Способ моделирования процесса газификации остатков жидкого ракетного топлива и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении физического моделирования процессов газификации остатков жидкого топлива в баках отделяющихся частей (ОЧ) ступени ракет-носителей (РН) в условиях малой гравитации с использованием...
Тип: Изобретение
Номер охранного документа: 0002534668
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dd9

Способ обработки изображения

Изобретение относится к средствам обработки цифровых изображений. Техническим результатом является повышение скорости обработки изображений. В способе покадровая обработка изображений делится на подготовительный этап и этап обработки изображения, подготовительный этап состоит из установки...
Тип: Изобретение
Номер охранного документа: 0002534962
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e15

Наноэмульсия с биологически активными веществами

Изобретение относится к фармацевтической и косметологической промышленности, в частности к наноэмульсиям типа вода в масле для трансдермального применения с биологически активными соединениями. Наноэмульсия типа вода в масле содержит 35-80% гидрофобной фазы, 1-15% гидрофильной фазы,...
Тип: Изобретение
Номер охранного документа: 0002535022
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f7b

Пневматическая пружина

Изобретение относится к машиностроениию. Пневматическая пружина содержит резервуар (1), размещенные в нем шток (4) с поршнем (6) и уплотнительный элемент (5) штока. Поршень образует в резервуаре надпоршневую (8) и подпоршневую (9) полости. Поршень имеет на боковой поверхности набор кольцевых...
Тип: Изобретение
Номер охранного документа: 0002535380
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1a68

Универсальная прямозубая машина объемного действия

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании машин объемного действия, использующихся для подачи жидкости под напором и газа под давлением. Прямозубая машина объемного действия содержит корпус, всасывающее окно и нагнетательный клапан 17,...
Тип: Изобретение
Номер охранного документа: 0002538188
Дата охранного документа: 10.01.2015
Showing 41-50 of 160 items.
27.09.2014
№216.012.f8d8

Устройство защиты от однофазного замыкания на землю в сети с изолированной нейтралью

Использование: в области электротехники. Технический результат - повышение чувствительности и надежности функционирования устройства защиты. Устройство содержит кольцеобразный магнитопровод, охватывающий проводники сети и реле тока. При этом кольцеобразный магнитопровод имеет поперечный...
Тип: Изобретение
Номер охранного документа: 0002529541
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fc61

Нанополупроводниковый газовый датчик

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака. Изобретение может быть использовано в экологии. Датчик микропримесей аммиака содержит полупроводниковое основание и подложку....
Тип: Изобретение
Номер охранного документа: 0002530455
Дата охранного документа: 10.10.2014
10.10.2014
№216.012.fd71

Способ защиты от эксцентриситета ротора электрической машины переменного тока

Изобретение относится к области электротехники и может быть использовано в электрических машинах переменного тока. Техническим результатом является расширение функциональных возможностей и области применения, повышение чувствительности. Способ защиты от эксцентриситета ротора машины переменного...
Тип: Изобретение
Номер охранного документа: 0002530727
Дата охранного документа: 10.10.2014
27.10.2014
№216.013.0119

Способ очистки орбит от космического мусора

Изобретение относится к ракетно-космической технике и может быть использовано для увода с рабочих орбит объектов космического мусора (ОКМ) на орбиты утилизации. Способ включает выведение космического аппарата-буксира (КАБ) и автономного стыковочного модуля (АСМ) в области орбит, предназначенных...
Тип: Изобретение
Номер охранного документа: 0002531679
Дата охранного документа: 27.10.2014
27.10.2014
№216.013.018d

Пневматическая пружина

Изобретение относится к машиностроению. Пневматическая пружина содержит резервуар (1), шток (4) с поршнем (6) и уплотнительный элемент (5) штока. Поршень (6) образует в резервуаре (1) надпоршневую (7) и подпоршневую (8) полости, соединенные сквозным каналом (11). Поршень (6) имеет на своей...
Тип: Изобретение
Номер охранного документа: 0002531795
Дата охранного документа: 27.10.2014
10.12.2014
№216.013.0ca6

Способ работы насос-компрессора и устройство для его осуществления

Изобретение относится к области насосо- и компрсссоростроения и может быть использовано при создании машин для сжатия и подачи одновременно или попеременно жидкостей и газов. Способ состоит в том, что перед сменой жидкости осуществляют очистку гидравлической магистрали и рубашки, окружающей...
Тип: Изобретение
Номер охранного документа: 0002534655
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0cb3

Способ моделирования процесса газификации остатков жидкого ракетного топлива и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении физического моделирования процессов газификации остатков жидкого топлива в баках отделяющихся частей (ОЧ) ступени ракет-носителей (РН) в условиях малой гравитации с использованием...
Тип: Изобретение
Номер охранного документа: 0002534668
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dd9

Способ обработки изображения

Изобретение относится к средствам обработки цифровых изображений. Техническим результатом является повышение скорости обработки изображений. В способе покадровая обработка изображений делится на подготовительный этап и этап обработки изображения, подготовительный этап состоит из установки...
Тип: Изобретение
Номер охранного документа: 0002534962
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e15

Наноэмульсия с биологически активными веществами

Изобретение относится к фармацевтической и косметологической промышленности, в частности к наноэмульсиям типа вода в масле для трансдермального применения с биологически активными соединениями. Наноэмульсия типа вода в масле содержит 35-80% гидрофобной фазы, 1-15% гидрофильной фазы,...
Тип: Изобретение
Номер охранного документа: 0002535022
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f7b

Пневматическая пружина

Изобретение относится к машиностроениию. Пневматическая пружина содержит резервуар (1), размещенные в нем шток (4) с поршнем (6) и уплотнительный элемент (5) штока. Поршень образует в резервуаре надпоршневую (8) и подпоршневую (9) полости. Поршень имеет на боковой поверхности набор кольцевых...
Тип: Изобретение
Номер охранного документа: 0002535380
Дата охранного документа: 10.12.2014
+ добавить свой РИД