×
27.05.2016
216.015.420a

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ И ФАЗОЧАСТОТНЫХ ХАРАКТЕРИСТИК ТОКОВЫХ ШУНТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов. Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов содержит источник импульсного тока, в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора (СТ) подключен однополупериодный выпрямитель, к которому через резисторный ограничитель тока заряда подключен накопитель энергии, соединенный со вторым выводом вторичной обмотки повышающего СТ. К резисторному ограничителю тока заряда подключен первый электрод коммутатора. Первичная обмотка повышающего СТ подключена к источнику напряжения переменного тока. Через контактные клеммы тестируемый токовый шунт подключен ко второму электроду коммутатора и второму выводу вторичной обмотки повышающего СТ. Эталонный трансформатор тока размещен между тестируемым токовым шунтом и контактными клеммами. Блок регистрации и обработки сигнала содержит первый и второй АЦП, первый и второй блоки быстрого преобразования Фурье (ББПФ), блок функционального преобразования, вычислительное устройство, дисплей, которые подключены к общей цифровой шине данных. Первый АЦП подключен к потенциальному выходу тестируемого токового шунта и к первому ББПФ. Второй АЦП подключен к выходу эталонного трансформатора тока и к второму ББПФ, который соединен с блоком функционального преобразования. Блок регистрации и обработки сигнала дополнительно содержит блок формирования треугольного импульса и блок сравнения спектров, которые подключены к общей цифровой шине данных. Блок формирования треугольного импульса подключен к входам первого и второго АЦП, а блок сравнения спектров подключен к выходам первого и второго ББПФ. Технический результат заключается в снижении влияния искажения спектра преобразуемых сигналов на определяемые амплитудно-частотную и фазочастотную характеристики тестируемого шунта и уменьшение погрешности численных преобразований над спектрами на частотах, соответствующих высоким гармоникам спектров. 2 ил.
Основные результаты: Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов, содержащее источник импульсного тока, в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора подключен однополупериодный выпрямитель, к которому через резисторный ограничитель тока заряда подключен накопитель энергии, соединенный со вторым выводом вторичной обмотки повышающего сетевого трансформатора, к резисторному ограничителю тока заряда подключен первый электрод коммутатора, первичная обмотка повышающего сетевого трансформатора подключена к источнику напряжения переменного тока, через контактные клеммы тестируемый токовый шунт подключен ко второму электроду коммутатора и второму выводу вторичной обмотки повышающего сетевого трансформатора, эталонный трансформатор тока размещен между тестируемым токовым шунтом и контактными клеммами, блок регистрации и обработки сигнала содержит первый и второй аналого-цифровые преобразователи, первый и второй блоки быстрого преобразования Фурье, блок функционального преобразования, вычислительное устройство, дисплей, которые подключены к общей цифровой шине данных, при этом первый аналого-цифровой преобразователь подключен к потенциальному выходу тестируемого токового шунта, а второй аналого-цифровой преобразователь подключен к выходу эталонного трансформатора тока, первый аналого-цифровой преобразователь подключен к первому блоку быстрого преобразования Фурье, второй аналого-цифровой преобразователь подключен к второму блоку быстрого преобразования Фурье, который соединен с блоком функционального преобразования, отличающееся тем, что блок регистрации и обработки сигнала дополнительно содержит блок формирования треугольного импульса и блок сравнения спектров, которые подключены к общей цифровой шине данных, блок формирования треугольного импульса подключен к входам первого и второго аналого-цифровых преобразователей, а блок сравнения спектров подключен к выходам первого и второго блоков быстрого преобразования Фурье.

Изобретение относится к области электроизмерительной техники и может быть использовано для контроля и определения динамических метрологических характеристик при производстве и эксплуатации токовых шунтов.

Известен измеритель относительных амплитудно-частотных характеристик [RU 2291452 C2, МПК G01R 27/28 (2006.01), опубл. 01.11.2001], содержащий генератор качающейся частоты, выход которого подключен к входу измеряемого объекта, выход которого подключен к входам амплитудного детектора и формирователя опорного сигнала, выполненного в виде последовательно соединенных преобразователя частоты в код, дешифратора и блока хранения и выборки, выход которого является выходом формирователя опорного сигнала, а второй вход соединен с входом преобразователя частоты в код, являющегося входом формирователя опорного сигнала, последовательно соединенные преобразователь частоты в напряжение, дифференциатор, компаратор и согласующий блок, выход которого подключен к второму входу индикатора, вход преобразователя частоты в напряжение подключен к выходу генератора качающейся частоты, а второй вход компаратора соединен с общей шиной. Последовательно соединены масштабный усилитель, амплитудный селектор, временной селектор, декадный счетчик и второй дешифратор, выход которого подключен к третьему входу индикатора, первый вход которого соединен с первым входом амплитудного селектора и выходом делителя, второй вход которого соединен с выходом амплитудного детектора, а первый соединен с выходом формирователя опорного сигнала и входом масштабного усилителя. Второй вход временного селектора соединен с входной шиной.

Недостатками этого устройства являются невозможность определения фазочастотной характеристики.

Известно устройство для определения амплитудно-частотных характеристик токовых шунтов [Cherbaucich С., Crotti G., Kuljaca N., Novo M. Evaluation of the dynamic behaviour of heavy current shunts // Metrology in the 3rd Millennium: Proc. XVII IMEKO World Congress. - 22-27 June, 2003. - Dubrovnik, Croatia, 2003. - P. 586-589], содержащее источник импульсного тока, в котором последовательно соединены резисторный ограничитель тока заряда, накопитель энергии из коаксиального кабеля и коммутатор (газоразрядное устройство), к которому подключен эталонный трансформатор тока и тестируемый шунт. Источник импульсного тока подключен к источнику постоянного напряжения. Амплитудно-частотную характеристику шунта определяют как отношение односторонней функции спектральной плотности сигнала с выхода трансформатора тока к односторонней функции спектральной плотности сигнала с выхода шунта на заданной частоте. Результаты визуализируют в виде графической зависимости.

Недостатки данного устройства заключаются в невозможности определения фазочастотной характеристики шунта и в уменьшении точности определения амплитудно-частотной характеристики из-за погрешности квантования аналого-цифрового преобразователя цифрового осциллографа.

Известно устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов [Заревич А.И., Муравьев С.В., Бедарева Е.В., Карпенко С.Р. Импульсный метод определения частотных характеристик сильноточных шунтов // Известия Томского политехнического университета. - 2012. - Т. 321. - №4. - С.137-140], выбранное в качестве прототипа (фиг. 1), содержащее источник импульсного тока 1 (ИИТ), в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора 2 подключен однополупериодный выпрямитель 3, к которому через резисторный ограничитель тока заряда 4 подключен накопитель энергии 5, соединенный со вторым выводом вторичной обмотки повышающего сетевого трансформатора 2. Накопитель энергии 5 выполнен на конденсаторах. К резисторному ограничителю тока заряда 4 подключен первый электрод коммутатора 6 (газоразрядное устройство). Первичная обмотка повышающего сетевого трансформатора 2 подключена к промышленному источнику напряжения переменного тока 7 с действующим значением выходного напряжения 220 В. Через контактные клеммы 8 тестируемый токовый шунт 9 подключен ко второму электроду коммутатора 6 и второму выводу вторичной обмотки повышающего сетевого трансформатора 2. Эталонный трансформатор тока 10 размещен между тестируемым токовым шунтом 9 и контактными клеммами 8. Блок регистрации и обработки сигнала 11 (БРОС) содержит первый аналого-цифровой преобразователь 12 (АЦП1), первый блок быстрого преобразования Фурье 13 (БПФ1), второй аналого-цифровой преобразователь 14 (АЦП2), второй блок быстрого преобразования Фурье 15 (БПФ2), блок функционального преобразования 16 (БФП), вычислительное устройство 17 (ВУ), дисплей 18 (Д), который подключены к общей цифровой шине данных 19. Первый аналого-цифровой преобразователь 12 (АЦП1) подключен к потенциальному выходу тестируемого токового шунта 9, а второй аналого-цифровой преобразователь 14 (АЦП2) - к выходу эталонного трансформатора тока 10. Первый аналого-цифровой преобразователь 12 (АЦП1) подключен к первому блоку быстрого преобразования Фурье 13 (БПФ1). Второй аналого-цифровой преобразователь 14 (АЦП2) подключен к второму блоку быстрого преобразования Фурье 15 (БПФ2), который соединен с блоком функционального преобразования 16 (БФП).

Недостатком указанного устройства является влияние на определяемые амплитудно-частотные и фазочастотные характеристики шунта неидентичности аналого-цифровых преобразователей. Это влияние проявляется в виде искажения спектра преобразуемых сигналов и в виде возрастания погрешности численных преобразований над спектрами на частотах, соответствующих высоким гармоникам спектров.

Задачей изобретения является расширение арсенала средств аналогичного назначения.

Поставленная задача решена за счет того, что устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов так же, как в прототипе, содержит источник импульсного тока, в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора подключен однополупериодный выпрямитель, к которому через резисторный ограничитель тока заряда подключен накопитель энергии, соединенный со вторым выводом вторичной обмотки повышающего сетевого трансформатора, к резисторному ограничителю тока заряда подключен первый электрод коммутатора, первичная обмотка повышающего сетевого трансформатора подключена к источнику напряжения переменного тока, через контактные клеммы тестируемый токовый шунт подключен ко второму электроду коммутатора и второму выводу вторичной обмотки повышающего сетевого трансформатора, эталонный трансформатор тока размещен между тестируемым токовым шунтом и контактными клеммами, блок регистрации и обработки сигнала содержит первый и второй аналого-цифровые преобразователи, первый и второй блоки быстрого преобразования Фурье, блок функционального преобразования, вычислительное устройство, дисплей, которые подключены к общей цифровой шине данных, при этом первый аналого-цифровой преобразователь подключен к потенциальному выходу тестируемого токового шунта, а второй аналого-цифровой преобразователь подключен к выходу эталонного трансформатора тока, первый аналого-цифровой преобразователь подключен к первому блоку быстрого преобразования Фурье, второй аналого-цифровой преобразователь подключен к второму блоку быстрого преобразования Фурье, который соединен с блоком функционального преобразования.

Согласно изобретению блок регистрации и обработки сигнала дополнительно содержит блок формирования треугольного импульса и блок сравнения спектров, которые подключены к общей цифровой шине данных. Блок формирования треугольного импульса подключен к входам первого и второго аналого-цифровых преобразователей, а блок сравнения спектров подключен к выходам первого и второго блоков быстрого преобразования Фурье.

Предложенная конструкция за счет формирования тестовых сигналов в форме треугольных импульсов с последующим сравнением их спектров и определением выравнивающих коэффициентов позволяет скомпенсировать неодинаковость аналого-цифровых преобразователей, проявляющуюся в относительном искажении спектров сигналов. Таким образом, осуществляется снижение влияния искажения спектра преобразуемых сигналов на определяемые амплитудно-частотную и фазочастотную характеристики тестируемого шунта и уменьшение погрешности численных преобразований над спектрами на частотах, соответствующих высоким гармоникам спектров.

На фиг. 1 представлена схема устройства-прототипа.

На фиг. 2 показана схема заявляемого устройства для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов.

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов (фиг. 2) содержит источник импульсного тока 1 (ИИТ), в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора 2 подключен однополупериодный выпрямитель 3, к которому через резисторный ограничитель тока заряда 4 подключен накопитель энергии 5, соединенный со вторым выводом вторичной обмотки повышающего сетевого трансформатора 2. Накопитель энергии 5 выполнен на конденсаторах. К резисторному ограничителю тока заряда 4 подключен первый электрод коммутатора 6 (газоразрядное устройство). Первичная обмотка повышающего сетевого трансформатора 2 подключена к промышленному источнику напряжения переменного тока 7 с действующим значением выходного напряжения 220 В. Через контактные клеммы 8 тестируемый токовый шунт 9 подключен ко второму электроду коммутатора 6 и второму выводу вторичной обмотки повышающего сетевого трансформатора 2. Эталонный трансформатор тока 10 размещен между тестируемым токовым шунтом 9 и контактными клеммами 8. Блок регистрации и обработки сигнала 11 (БРОС) содержит первый аналого-цифровой преобразователь 12 (АЦП1), первый блок быстрого преобразования Фурье 13 (БПФ1), второй аналого-цифровой преобразователь 14 (АЦП2), второй блок быстрого преобразования Фурье 15 (БПФ2), блок функционального преобразования 16 (БФП), вычислительное устройство 17 (ВУ), дисплей 18 (Д), которые подключены к общей цифровой шине данных 19. Блок регистрации и обработки сигнала 11 (БРОС) дополнительно содержит блок формирования треугольного импульса 20 (ФТИ), блок сравнения спектров 21 (БСС), которые также подключены к общей цифровой шине данных 19. Первый аналого-цифровой преобразователь 12 (АЦП1) подключен к потенциальному выходу тестируемого токового шунта 9, а второй аналого-цифровой преобразователь 14 (АЦП2) - к выходу эталонного трансформатора тока 10. Первый аналого-цифровой преобразователь 12 (АЦП1) подключен к первому блоку быстрого преобразования Фурье 13 (БПФ1). Второй аналого-цифровой преобразователь 14 (АЦП2) подключен к второму блоку быстрого преобразования Фурье 15 (БПФ2), который соединен с блоком функционального преобразования 16 (БФП). Блок формирования треугольного импульса 20 (ФТИ) подключен к входам первого и второго аналого-цифровых преобразователей 12 (АЦП1) и 14 (АЦП2). Блок сравнения спектров 21 (БСС) подключен к выходам первого и второго блоков быстрого преобразования Фурье 13 (БПФ1) и 15 (БПФ2).

Первый аналого-цифровой преобразователь 12 (АЦП1) и второй аналого-цифровые преобразователи 14 (АЦП2) реализованы с помощью аналого-цифровых преобразователей AD6649. Блоки быстрого преобразования Фурье 13 (БПФ1), 15 (БПФ2) реализованы с помощью цифровых сигнальных процессоров ADSP-21991. Блок функционального преобразования 16 (БФП) реализован с помощью цифрового сигнального процессора ADSP-21467. Вычислительное устройство 17 (ВУ) реализовано с помощью микропроцессора ADSP-BF523. Блоки формирования треугольного импульса 20 (ФТИ) и сравнения сигналов 21 (БСС) реализованы с помощью микроконтроллеров ADSP-TS201S.

Схемотехнические решения всех блоков устройства ориентированы на применение интегральной микроэлектронной элементной базы и возможность их дальнейшей более глубокой интеграции.

Устройство работает следующим образом.

В начале блок формирования треугольного импульса 20 (ФТИ) формирует тестовый сигнал в форме треугольного импульса с амплитудой, равной динамическому диапазону первого и второго аналого-цифровых преобразователей 12 (АЦП1) и 14 (АЦП2). С помощью аналого-цифровых преобразователей 12 (АЦП1) и 14 (АЦП2) этот сигнал переводят в массив чисел в двоичном формате, а с помощью блоков быстрого преобразования Фурье 13 (БПФ1) и 15 (БПФ2) подвергают быстрому преобразованию Фурье. Таким образом, получают два массива чисел, соответствующих спектрам сигналов с выходов первого аналого-цифрового преобразователя 12 (АЦП1) {S1i} второго аналого-цифрового преобразователя 14 (АЦП1) {S2i}, где i - номер числа в массиве.

Полученные массивы чисел поступают на входы блока сравнения спектров 21 (БСС), который определяет поэлементную разницу между ними и формирует массив выравнивающих коэффициентов {Ki}:

{Ki}={S1i/S2i}.

Результаты этих операций сохраняют в памяти вычислительного устройства 17 (ВУ) в виде массивов данных.

Далее вход тестируемого шунта 9 подключают к выходным клеммам 8 источника импульсного тока 1 (ИИТ); который подключают к источнику напряжения переменного тока 7, напряжение которого повышают сетевым трансформатором 2 до напряжения, на 50% превышающего напряжение срабатывания коммутатора (газоразрядного устройства) 6. Выходное напряжение сетевого трансформатора 2 выпрямляют однополупериодным выпрямителем 3 и через резисторный ограничитель тока заряда 4 заряжают им накопитель энергии 5. При достижении напряжением на накопителе энергии 5 значения пробоя газоразрядного устройства 6 оно срабатывает, при этом на выходных клеммах источника импульсного тока 8 развивается напряжение, и накопитель энергии 5 разряжается через тестируемый шунт 9.

Сигналы с выходов тестируемого шунта 9 и эталонного трансформатора тока 10 подают на входы блока регистрации и обработки сигнала 11 (БРОС) и с помощью аналого-цифровых преобразователей 12 (АЦП1) и 14 (АЦП2) переводят в массив чисел в двоичном формате, а с помощью блоков быстрого преобразования Фурье 13 (БПФ1) и 15 (БПФ2) подвергают быстрому преобразованию Фурье. Таким образом, получают два массива чисел, соответствующих спектрам сигналов с выходов тестируемого шунта {SШ,i} и эталонного трансформатора тока {SТ,i}, где i - номер числа в массиве.

Массив чисел, соответствующий спектру сигнала с выхода эталонного трансформатора тока {SТ,i}, подают на вход блока функционального преобразования 16 (БФП), где поэлементно умножают на массив выравнивающих коэффициентов {Ki}, получая, таким образом, выравненный спектр сигнала с выхода эталонного трансформатора тока {SТВ,i}:

{SТВ,i}={Ki*ST,i}.

После чего вычислительное устройство 17 (ВУ) определяет массив данных, соответствующих комплексному коэффициенту передачи токового шунта 9 {KШ,i}. Для этого вычислительное устройство 17 (ВУ) реализует поэлементное деление массивов {SШ,i} и {SТВ,i}:

{KШ,i}={SШ,i / SТВ,i}.

Модуль комплексного коэффициента передачи токового шунта 9 является его амплитудно-частотной характеристикой, а аргумент - фазочастотной характеристикой.

Результаты расчета комплексного коэффициента передачи шунта 9 также сохраняют в памяти вычислительного устройства 17 (ВУ) в виде массивов данных.

Визуализацию амплитудно-частотной и фазочастотной характеристик токового шунта 9 производят посредством дисплея 18 (Д).

Устройство для определения амплитудно-частотных и фазочастотных характеристик токовых шунтов, содержащее источник импульсного тока, в котором к первому выводу вторичной обмотки повышающего сетевого трансформатора подключен однополупериодный выпрямитель, к которому через резисторный ограничитель тока заряда подключен накопитель энергии, соединенный со вторым выводом вторичной обмотки повышающего сетевого трансформатора, к резисторному ограничителю тока заряда подключен первый электрод коммутатора, первичная обмотка повышающего сетевого трансформатора подключена к источнику напряжения переменного тока, через контактные клеммы тестируемый токовый шунт подключен ко второму электроду коммутатора и второму выводу вторичной обмотки повышающего сетевого трансформатора, эталонный трансформатор тока размещен между тестируемым токовым шунтом и контактными клеммами, блок регистрации и обработки сигнала содержит первый и второй аналого-цифровые преобразователи, первый и второй блоки быстрого преобразования Фурье, блок функционального преобразования, вычислительное устройство, дисплей, которые подключены к общей цифровой шине данных, при этом первый аналого-цифровой преобразователь подключен к потенциальному выходу тестируемого токового шунта, а второй аналого-цифровой преобразователь подключен к выходу эталонного трансформатора тока, первый аналого-цифровой преобразователь подключен к первому блоку быстрого преобразования Фурье, второй аналого-цифровой преобразователь подключен к второму блоку быстрого преобразования Фурье, который соединен с блоком функционального преобразования, отличающееся тем, что блок регистрации и обработки сигнала дополнительно содержит блок формирования треугольного импульса и блок сравнения спектров, которые подключены к общей цифровой шине данных, блок формирования треугольного импульса подключен к входам первого и второго аналого-цифровых преобразователей, а блок сравнения спектров подключен к выходам первого и второго блоков быстрого преобразования Фурье.
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ И ФАЗОЧАСТОТНЫХ ХАРАКТЕРИСТИК ТОКОВЫХ ШУНТОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ АМПЛИТУДНО-ЧАСТОТНЫХ И ФАЗОЧАСТОТНЫХ ХАРАКТЕРИСТИК ТОКОВЫХ ШУНТОВ
Источник поступления информации: Роспатент

Showing 71-80 of 257 items.
25.08.2017
№217.015.bf6c

Способ получения электроизоляционной композиции

Изобретение относится к кабельной промышленности и может быть использовано при изготовлении изоляции и оболочек кабелей и проводов, характеризующихся пониженным выделением дыма при горении. Для получения электроизоляционной композиции смешивают полиолефин - полиэтилен высокого давления,...
Тип: Изобретение
Номер охранного документа: 0002617165
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfa2

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002617137
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c05c

Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98

Изобретение относится к области радиохимии, в частности к способу получения технеция-99m для медицины. Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98 включает обработку оксида алюминия кислотой до полного прекращения ее взаимодействия с...
Тип: Изобретение
Номер охранного документа: 0002616669
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c6c3

Способ идентификации переменного тока в проводнике с помощью замыкающего геркона

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для построения дифференциально-фазных защит. Способ идентификации переменного тока в проводнике с помощью замыкающего геркона, заключающийся в том, что геркон устанавливают вблизи проводника,...
Тип: Изобретение
Номер охранного документа: 0002618795
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c703

Способ получения нанодисперсного порошка диоксида титана со структурой рутила

Изобретение относится к неорганической химии и может быть использовано при изготовлении керамических материалов, сегнетоэлектриков, наполнителей лакокрасочных и полимерных материалов. Способ получения нанодисперсного рутильного диоксида титана включает осаждение его из раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002618879
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c7c6

Тиристорный преобразователь частоты

Изобретение относится к преобразовательной технике и может быть использовано в качестве источника питания обмоток двухфазных асинхронных двигателей, для индукционного нагрева поверхности металла, для питания тигельных печей, для сварки металлоконструкций и изделий. Тиристорный преобразователь...
Тип: Изобретение
Номер охранного документа: 0002619079
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c902

Устройство для определения содержания феррита в материале

Изобретение относится к измерительной технике, а именно к испытаниям магнитных материалов, и может быть использовано для определения содержания феррита в материале, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых переходов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002619310
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.cb77

Способ вскрытия монацитового концентрата

Изобретение относится к извлечению редкоземельных металлов и тория из фосфатных руд и концентратов, в частности монацита. Вскрытие монацита проводят фосфорной кислотой при температуре от 300 до 550°С, в течение 1-2 часов. Растворение образовавшегося плава осуществляют раствором фосфорной...
Тип: Изобретение
Номер охранного документа: 0002620229
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cd4e

Устройство управления тиратроном с холодным катодом

Изобретение относится к высоковольтной импульсной технике и предназначено для управления тиратроном с холодным катодом серии ТДИ путем формирования импульсов поджига с нормированной крутизной фронта и следующих с высокой частотой следования импульсов. Устройство управления включает повышающий...
Тип: Изобретение
Номер охранного документа: 0002619779
Дата охранного документа: 18.05.2017
25.08.2017
№217.015.cd9c

Способ неразрушающего контроля шероховатости поверхностного слоя металла

Предлагаемое изобретение относится к области неразрушающего контроля и может быть использовано для контроля шероховатости поверхностного слоя металла контролируемого изделия. Способ неразрушающего контроля шероховатости поверхностного слоя металла заключается в измерении термоЭДС, возникающей...
Тип: Изобретение
Номер охранного документа: 0002619798
Дата охранного документа: 18.05.2017
Showing 71-80 of 144 items.
25.08.2017
№217.015.bf6c

Способ получения электроизоляционной композиции

Изобретение относится к кабельной промышленности и может быть использовано при изготовлении изоляции и оболочек кабелей и проводов, характеризующихся пониженным выделением дыма при горении. Для получения электроизоляционной композиции смешивают полиолефин - полиэтилен высокого давления,...
Тип: Изобретение
Номер охранного документа: 0002617165
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.bfa2

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования - контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: осуществляют проведение испытания на изменение величины...
Тип: Изобретение
Номер охранного документа: 0002617137
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c05c

Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98

Изобретение относится к области радиохимии, в частности к способу получения технеция-99m для медицины. Способ изготовления хроматографического генератора технеция-99m из облученного нейтронами молибдена-98 включает обработку оксида алюминия кислотой до полного прекращения ее взаимодействия с...
Тип: Изобретение
Номер охранного документа: 0002616669
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c6c3

Способ идентификации переменного тока в проводнике с помощью замыкающего геркона

Изобретение относится к энергетике, а именно к измерительной технике, и может быть использовано для построения дифференциально-фазных защит. Способ идентификации переменного тока в проводнике с помощью замыкающего геркона, заключающийся в том, что геркон устанавливают вблизи проводника,...
Тип: Изобретение
Номер охранного документа: 0002618795
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c703

Способ получения нанодисперсного порошка диоксида титана со структурой рутила

Изобретение относится к неорганической химии и может быть использовано при изготовлении керамических материалов, сегнетоэлектриков, наполнителей лакокрасочных и полимерных материалов. Способ получения нанодисперсного рутильного диоксида титана включает осаждение его из раствора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002618879
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c7c6

Тиристорный преобразователь частоты

Изобретение относится к преобразовательной технике и может быть использовано в качестве источника питания обмоток двухфазных асинхронных двигателей, для индукционного нагрева поверхности металла, для питания тигельных печей, для сварки металлоконструкций и изделий. Тиристорный преобразователь...
Тип: Изобретение
Номер охранного документа: 0002619079
Дата охранного документа: 11.05.2017
25.08.2017
№217.015.c902

Устройство для определения содержания феррита в материале

Изобретение относится к измерительной технике, а именно к испытаниям магнитных материалов, и может быть использовано для определения содержания феррита в материале, измерения температурных зависимостей степени ферритизации и определения по ним температур магнитных фазовых переходов. Устройство...
Тип: Изобретение
Номер охранного документа: 0002619310
Дата охранного документа: 15.05.2017
25.08.2017
№217.015.cb77

Способ вскрытия монацитового концентрата

Изобретение относится к извлечению редкоземельных металлов и тория из фосфатных руд и концентратов, в частности монацита. Вскрытие монацита проводят фосфорной кислотой при температуре от 300 до 550°С, в течение 1-2 часов. Растворение образовавшегося плава осуществляют раствором фосфорной...
Тип: Изобретение
Номер охранного документа: 0002620229
Дата охранного документа: 23.05.2017
25.08.2017
№217.015.cd4e

Устройство управления тиратроном с холодным катодом

Изобретение относится к высоковольтной импульсной технике и предназначено для управления тиратроном с холодным катодом серии ТДИ путем формирования импульсов поджига с нормированной крутизной фронта и следующих с высокой частотой следования импульсов. Устройство управления включает повышающий...
Тип: Изобретение
Номер охранного документа: 0002619779
Дата охранного документа: 18.05.2017
25.08.2017
№217.015.cd9c

Способ неразрушающего контроля шероховатости поверхностного слоя металла

Предлагаемое изобретение относится к области неразрушающего контроля и может быть использовано для контроля шероховатости поверхностного слоя металла контролируемого изделия. Способ неразрушающего контроля шероховатости поверхностного слоя металла заключается в измерении термоЭДС, возникающей...
Тип: Изобретение
Номер охранного документа: 0002619798
Дата охранного документа: 18.05.2017
+ добавить свой РИД