×
20.05.2016
216.015.3f1e

Результат интеллектуальной деятельности: СПОСОБ ПОДГОТОВКИ К ТРАНСПОРТИРОВАНИЮ СМЕСИ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ПО МАГИСТРАЛЬНЫМ ТРУБОПРОВОДАМ В ОХЛАЖДЕННОМ СОСТОЯНИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области подготовки к транспортированию смеси газа и газового конденсата. Способ включает очистку природного газа, многоступенчатое охлаждение его до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. %. Полученную углеводородную смесь охлаждают до температуры от -40 до -50°С при давлении от 10 до 12 МПа до однофазного жидкого состояния. Обеспечивается возможность транспортирования смеси сжиженных углеводородных газов с газоконденсатных месторождений Севера по магистральным трубопроводам. 4 ил.
Основные результаты: Способ подготовки к транспортированию смеси сжиженных углеводородов, содержащей природный газ и конденсат, включающий очистку природного газа, создание смеси природного газа и конденсата, отличающийся тем, что осуществляют многоступенчатое охлаждение природного газа до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. % и охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до однофазного жидкого состояния.

Изобретение относится к области подготовки смеси газа и газового конденсата газоконденсатных месторождений Севера к однофазному трубопроводному транспорту и может найти применение в нефтегазовой промышленности.

Известен способ перекачки криогенной жидкости самотечным способом по трубопроводу из хранилища в цистерну (патент RU №2006116911/22, опубл. 27.11.2006 г.) без потерь газовой фазы путем ее удаления из стояка трубопровода и возврата ее в хранилище.

Недостатком данного способа является то, что трубопровод предназначен для транспортировки криогенной жидкости, например сжиженного природного газа (СПГ), азота, кислорода, водорода (с температурой ниже 120 K). Поэтому для перекачки придется использовать дорогостоящие низкотемпературные никелевые нержавеющие стали. Кроме того, авторы предлагают перекачивать СПГ по низконапорным трубопроводам, что скажется на его производительности.

Известен также способ перекачки СПГ по магистральным криогенным трубопроводам при температуре 153-173 K (минус 120 - минус 100°C) (Магистральные трубопроводы охлажденного и сжиженного природного газа. Ответственный редактор А.Е. Полозов / Н.П. Акульшина, В.А. Андрианов, В.И. Зоркальцев и др. УРО РАН, Коми НЦ. СЫКТЫВКАР, 1988, с. 158). В этом случае предлагается использовать специально разработанные экономно-легированные стали (например, 10ХГНМАЮ) или криогенные никелевые нержавеющие стали. Согласно А.Е. Полозову (Полозов А.Е. Повышение прочности низкотемпературных теплоизолированных трубопроводов: Дис. д-ра техн. наук: 25.00.19: Курск, 2004. 348 с. ) переход на СПГ-проводы дает большой экономический и экологический эффект. Удельный вес трубной стали в затратах на строительство газопровода составляет 80%, а переход на перекачку СПГ по трубопроводам, по его мнению, позволяет перейти с 4 ниток газопровода на 1 нитку криогенного трубопровода, что дает экономию затрат по металлу 75%. С учетом затрат на теплоизоляцию СПГ-провода и повышенную стоимость ЭЛ-стали получаем экономию средств, равную 37%.

Недостатком этого способа является необходимость использования дорогих хладостойких никелевых сталей (не менее 8% никеля) и дорогостоящей криогенной вакуумной изоляции, а также необходимость поддержания низкой температуры (минус 161°С) при атмосферном давлении. Кроме того, СПГ придется перекачивать по низконапорным трубопроводам, что скажется на его производительности.

Известна система для хранения газа на основе метана (патент RU №2224171, опубл. 20.02.2004 г.). Она состоит из контейнера для хранения углеводородного растворителя и растворенного газа, образующего жидкую и паровую фазы и средство регулирования композиции для поддержания заранее определенного соотношения фаз. Настоящее изобретение касается улучшенной системы для сжижения и хранения газа и особенно системы для хранения газа, основным компонентом которого является метан, посредством смешивания с другим углеводородом (органическим растворителем) для хранения.

Недостатком является то, что данная система для хранения газа на основе метана имеет ограниченное применение (только на моторном транспортном средстве) и не может быть применена при транспортировании сжиженных углеводородов по трубопроводам.

Известен «Метод бестарной транспортировки и хранения газа в жидкой среде» («Method of bulk transport and storage of gas in a liquid medium») (патент US 8257475 B2, опубл. 04.09.2012 г.). Интегрированная система с установленным судном для загрузки газового потока предназначена для отделения тяжелых углеводородов, сжатия газа, его дальнейшего охлаждения, смешивания газа с осушителем, смешивания его с жидкостным носителем или растворителем, и затем охлаждения смеси до условий обработки, хранения и транспортирования. После транспортирования продукта к месту его предназначения, технологическая линия подготовки углеводородов и метод жидкостного перемещения обеспечивают разгрузку жидкости в систему хранения, отделение жидкостного носителя, и перемещение газового потока к системе хранения или транспортирования. Рассматриваются только способы смешивания и сорбции природного газа в легком углеводородном растворителе (в основном, пропане) и устройства для хранения и транспортировки судами - газовозами сжиженных углеводородных газов.

Недостатком является то, что необходимого количества легкого углеводородного растворителя (в основном, пропана) в смеси практически невозможно получить непосредственно на месторождении.

В качестве ближайшего аналога принят способ подготовки к транспортированию смеси углеводородов, содержащей природный газ и конденсат, известный из патента RU 2476789 С1, приоритет 27.02.2013 г.

При реализации способа по первому варианту осуществляют первичную сепарацию жидкости из входного потока, в газ первичной сепарации добавляется метанол, охлаждение полученного потока происходит в аппарате воздушного охлаждения, в параллельно расположенных первом и втором рекуперативных теплообменниках, и газа в узле редуцирования и рекуперации холода, сепарация - в низкотемпературном сепараторе. Газ низкотемпературной сепарации нагревают в теплообменнике и в узле редуцирования и рекуперации холода, после чего направляют в трубопровод продуктового газа. Конденсат первичной сепарации направляют на дегазацию и отделение водной или водно-метанольной фазы в первый трехфазный разделитель, из которого выделившийся газ подают на вход в низкотемпературный сепаратор, а конденсат нагревают в третьем рекуперативном теплообменнике и кубовом подогревателе, после чего направляют в нижнюю сепарационную часть ректификационной колонны. Конденсат низкотемпературной сепарации нагревают в теплообменнике и подвергают дегазации и отделению водно-метанольной фазы во втором трехфазном разделителе, после чего конденсат подают в ректификационную колонну в качестве орошения. Газ из ректификационной колонны и газ дегазации из второго трехфазного разделителя компримируют в узле компримирования и смешивают с газом низкотемпературной сепарации. Конденсат из ректификационной колонны охлаждают в третьем рекуперативном теплообменнике и втором аппарате воздушного охлаждения и направляют на отделение водно-метанольной фазы в третий трехфазный разделитель, дожимают и подают в трубопровод продуктового конденсата.

Недостатком данного технического решения является то, что задачей данного способа низкотемпературной подготовки природного газа и извлечения нестабильного конденсата из пластового газа является разделение природного газа и газового конденсата (его извлечение из пластового газа) и дальнейшая транспортировка по отдельным трубопроводам. Задача нашего технического решения состоит в смешении природного газа и газового конденсата и совместная транспортировка углеводородной смеси по низкотемпературному трубопроводу потребителю.

Заявленное изобретение отличается тем, что осуществляют очистку природного газа, многоступенчатое его охлаждение его до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве 3-10 вес. %, охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до получения однофазного жидкого состояния.

Техническим результатом является обеспечение возможности транспортирования смеси сжиженных углеводородных газов, состоящей из природного газа и газового конденсата, по магистральным трубопроводам при температуре от -40 до -50°С и давлении от 10 до 12 МПа.

Технический результат достигается тем, что с целью обеспечения транспортирования смеси в однофазном жидком состоянии по магистральным трубопроводам с газоконденсатных месторождений природный газ охлаждают до температуры от -0 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. %, охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до получения однофазного жидкого состояния.

Способ поясняется следующими фигурами: Фиг. 1 - схема технологии получения смеси сжиженных углеводородов; Фиг. 2 - Р-Т-диаграмма (давление - температура) различных индивидуальных веществ и смесей (в массовых процентах):

1 - метан Ткр=-82,4°С, Ркр=4,6 МПа,

2 - типичный природный газ Ткр=-73°С, Ркр=5,4 МПа,

3 - пластовый газ Ткр=-50,8°С, Ркр=8,7 МПа,

4 - смесь газа и газового конденсата в соотношении 97:3 Ткр=-39,6°С, Ркр=10,03 МПа,

5 - смесь газа и газового конденсата в соотношении 95:5 Ткр=-37,1°С, Ркр=10,45 МПа,

6 - смесь газа и газового конденсата в соотношении 93:7 Ткр=-34,96°С, Ркр=10,81 МПа,

7 - смесь газа и газового конденсата в соотношении 90:10 Ткр=-28,9°С, Ркр=11,72 МПа;

Фиг. 3 - компонентный состав пластового газа Южно-Тамбейского газоконденсатного месторождения (% объемные) и типичного природного газа (% массовые);

Фиг. 4 - принципиальная схема трубопроводного транспорта сжиженных углеводородных газов:

1 - установка комплексной подготовки газа,

2 - установка получения углеводородной смеси,

3 - трубопровод,

4 - головная насосная станция,

5 - промежуточные станции охлаждения,

6 - промежуточные насосные станции,

7 - низкотемпературное хранилище,

8 - установка регазификации,

9 - подача газа потребителям.

Способ осуществляется следующим образом. Природный газ непосредственно с газоконденсатного месторождения поступает в блок осушки, где из него извлекаются частицы воды, проходит через фильтр (очистка от кислых компонентов, тонкая очистка от ртути и удаление азота) (фиг. 1). После этого газ проходит многоступенчатый этап охлаждения и повышения давления с добавлением на каждой ступени газового конденсата и высокомолекулярных соединений. Полученная смесь сжиженных углеводородов при температуре от -40 до -50°С и давлении не более 12 МПа приводится в жидкое состояние. После сжижения она поступает непосредственно в трубопровод.

С учетом необходимого запаса по давлению и температуре для предотвращения газообразования при обосновании и разработке технологии предварительно приняты начальная температура минус 40 - минус 50°С и давление 10-12 МПа. Более высокое давление и низкая температура смеси приведет к удорожанию строительства из-за необходимости использовать дорогие никелевые стали и увеличения толщины стенки трубы. Существующие сорта сталей марки Х70 и Х80 работоспособны при вышеуказанных давлениях и температурах.

Особенности получения смеси сжиженного метана и газового конденсата обусловлены необходимостью получения сравнительно высокой температуры сжижения при сравнительно низком давлении. Поэтому стандартная схема производства сжиженного природного газа (СПГ) может быть существенно удешевлена за счет использования только первой части схемы производства СПГ (отказа от блока получения температуры -160°С).

Благоприятным фактором для получения смеси природного газа, конденсата и нефти в однофазном состоянии является то, что большинство месторождений п. о. Ямал являются газоконденсатными. Массовое содержание нефти и газового конденсата достигает от 3 до 10%. Исследования проводились на примере Южно-Тамбейского газоконденсатного месторождения. Суммарные запасы углеводородов Южно-Тамбейского ГКМ по данным Государственного баланса от 01.01.2008 г. составляют: газа по категории С1 - 1003,92 млрд м3; С2 - 252,186 млрд м3; конденсата по категории С1 - 47,48 млн т; С2 - 18,78 млн т. Суммарные запасы газа (С1+С2) составляют 1256,1 млрд м. Суммарные запасы конденсата (С1+С2) составляют 66,26 млн т.

На фиг. 2 представлена фазовая диаграмма Р-Т (давление - температура) смеси природного газа и газового конденсата. Она показывает, что добавление 3% газового конденсата по массе к добываемому природному газу приводит к тому, что критическая температура смеси повышается с минус 73°С для типичного природного газа и с минус 50,8°С для пластового газа Южно-Тамбейского месторождения до минус 39,6°С (критическое давление составляет 10,03 МПа). Состав типичного природного газа и пластового газа Южно-Тамбейского месторождения представлен на фиг. 3. При добавлении 5% критическая температура смещается до минус 37,1°С при критическом давлении 10,45 МПа. При содержании газового конденсата 7 и 10% критическая температура составляет минус 34,96 и минус 28,9°С, а критическое давление 10,81 и 11,72 МПа соответственно. Фазовые диаграммы Р-Т (давление - температура) и критические параметры смеси при различном содержании газового конденсата представлены на фиг. 2.

Таким образом, добавление в природный газ газового конденсата позволит транспортировать эту смесь в жидком однофазном состоянии при температуре минус 40 - минус 50°С и давлении 10-12 МПа (с учетом необходимого запаса по давлению). Так как состав газового конденсата, добываемого из различных скважин газоконденсатного месторождения, различен, управление температурой и давлением сжижения планируется добавлением небольшого количества специальных добавок высокомолекулярных соединений, получаемых на разрабатываемом месторождении.

На фиг. 4 изображена принципиальная схема трубопроводного транспорта смеси сжиженных углеводородов.

Природный газ с газоконденсатного месторождения Севера поступает на установку комплексной подготовки газа (УКПГ) 1, где производится его очистка, осушка и отделение от примесей.

Затем очищенный и охлажденный природный газ и охлажденный газовый конденсат подается на установку получения углеводородной смеси (УПУС) 2, где происходят следующие процессы: повышение давления одновременно с охлаждением газа и впрыскиванием газового конденсата под высоким давлением в нижнюю часть установкичерез специальную форсунку до достижения необходимых параметров смеси сжиженных углеводородов (давление не более 12 МПа и температура от -40 до -50°С). Часть газа, которая не успевает перейти в сжиженное состояние, поступает обратно в нижнюю часть установки смешивания. Процесс подготовки смеси повторяется до тех пор, пока вся смесь не перейдет в однофазное жидкое состояние при вышеуказанных температуре и давлении. Полученная смесь под давлением подается в предварительно охлажденный трубопровод 3.

Принципиальным отличием установки комплексной подготовки сжиженных углеводородов от установки подготовки СПГ является то, что мы отказываемся от цикла сжижения смеси углеводородов от -50°С до -160°С, что значительно снижает затраты.

Дальше полученная смесь поступает на головную насосную станцию (ГНС) 4, на которой поддерживаются необходимые условия перекачки. В состав ГНС входят: приемные емкости, подпорная и основная насосные и узел учета. Они служат для приема сжиженных углеводородных газов и для хранения некоторого его запаса с целью обеспечения бесперебойности работы трубопровода.

Чтобы предотвратить нагрев газа за счет теплопритока от окружающей среды, трубопроводы покрывают тепловой изоляцией (например, из пенополиуретана толщиной 50-70 мм), а вдоль трассы размещают промежуточные станции охлаждения (ПСО) 5.

Промежуточные насосные станции (ПНС) 6 располагаются на расстояниях, определяемых на основании гидравлического и теплового расчета. По расчетам, перекачивающие и охлаждающие станции нужно устанавливать на расстоянии около 100 км.

В конце трубопровода размещаются низкотемпературное хранилище (НХ) 7 и установка регазификации (УР) 8 сжиженной углеводородной смеси. На установке регазификации смесь разделяется на составляющие: газ, газовый конденсат, высокомолекулярные соединения. Газ подается в магистральный газопровод, а газовый конденсат транспортируется по трубопроводам или железнодорожным или автомобильным транспортом.

Предлагаемый способ подготовки позволяет осуществить перекачку смеси природного газа и нестабильного газового конденсата по магистральным трубопроводам с газоконденсатных месторождений Севера. Из проведенного исследования следует, что предложенный способ комбинированной транспортировки СПГ по Северному морскому пути и смеси сжиженных углеводородов по подземным магистральным трубопроводам позволит существенно сократить затраты на транспорт газа и газового конденсата, сократить количество ледоколов и танкеров.

Способ подготовки к транспортированию смеси сжиженных углеводородов, содержащей природный газ и конденсат, включающий очистку природного газа, создание смеси природного газа и конденсата, отличающийся тем, что осуществляют многоступенчатое охлаждение природного газа до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. % и охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до однофазного жидкого состояния.
СПОСОБ ПОДГОТОВКИ К ТРАНСПОРТИРОВАНИЮ СМЕСИ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ПО МАГИСТРАЛЬНЫМ ТРУБОПРОВОДАМ В ОХЛАЖДЕННОМ СОСТОЯНИИ
СПОСОБ ПОДГОТОВКИ К ТРАНСПОРТИРОВАНИЮ СМЕСИ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ПО МАГИСТРАЛЬНЫМ ТРУБОПРОВОДАМ В ОХЛАЖДЕННОМ СОСТОЯНИИ
Источник поступления информации: Роспатент

Showing 51-60 of 161 items.
10.09.2014
№216.012.f35a

Установка для испытания образцов материалов на изгиб

Изобретение относится к испытательной технике, к установкам для испытания образцов материалов на изгиб. Установка содержит основание, установленную на нем поворотную платформу, захват образца, закрепленный на платформе, два центробежных груза, предназначенные для закрепления на концах образца,...
Тип: Изобретение
Номер охранного документа: 0002528120
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f39d

Способ разработки мощных крутопадающих месторождений неустойчивых руд

Изобретение относится к горнодобывающей промышленности и может быть использовано при подземной разработке мощных крутопадающих рудных месторождений, характеризующихся низкими прочностными характеристиками руд. Способ разработки мощных крутопадающих месторождений неустойчивых руд включает...
Тип: Изобретение
Номер охранного документа: 0002528188
Дата охранного документа: 10.09.2014
27.09.2014
№216.012.f6f6

Энергонезависимый технологический комплекс по производству продукции из торфа

Изобретение относится к торфяной промышленности, в частности к способам переработки торфяного сырья и производства продукции на его основе. Техническим результатом является обеспечение возможности производства различной торфяной продукции из торфяного сырья любого вида и качества при...
Тип: Изобретение
Номер охранного документа: 0002529059
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f71e

Опорно-поворотное устройство стрелового крана

Изобретение относится к стреловым кранам с механизмами поворота стрелы. Опорно-поворотное устройство стрелового крана содержит неповоротную и поворотную части крана, центральную цапфу, роликовый сепаратор с роликами цилиндрической формы, направляющий кольцевой рельс. Ролики выполнены в виде...
Тип: Изобретение
Номер охранного документа: 0002529099
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f79f

Способ кристаллизации фосфатов рзм из растворов экстракционной фосфорной кислоты

Изобретение может быть использовано в химической промышленности при переработке апатитового сырья на минеральные удобрения. Для кристаллизации фосфатов редкоземельных металлов (РЗМ) из пересыщенных растворов экстракционной фосфорной кислоты используют твердый затравочный материал -...
Тип: Изобретение
Номер охранного документа: 0002529228
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f7c3

Способ получения алюминия

Изобретение относится к способу получения алюминия из металлургического глинозема. Способ включает плавление непрерывно поступающего глинозема в расплаве жидкого электрокорунда при плазменно-дуговом нагреве в реакторе под вакуумом, с последующим осаждением первичного алюминия и его...
Тип: Изобретение
Номер охранного документа: 0002529264
Дата охранного документа: 27.09.2014
10.10.2014
№216.012.fad9

Устройство для бестраншейной прокладки трубопроводов способом прокола

Изобретение относится к области бестраншейной прокладки трубопроводов. Устройство для бестраншейной прокладки трубопроводов способом прокола содержит подающий механизм из направляющей рамы с горизонтальными и вертикальными направляющими катками с возможностью их взаимодействия с внешней...
Тип: Изобретение
Номер охранного документа: 0002530063
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0553

Центральная установка для циклических испытаний

Изобретение относится к испытательной технике, к исследованию образцов и изделий на прочность при циклическом нагружении. Установка содержит корпус, установленную на нем платформу с приводом вращения, расположенные на ней дополнительные платформы, захват для образца, размещенный на одной из...
Тип: Изобретение
Номер охранного документа: 0002532761
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0554

Способ диагностики и оценки остаточного ресурса электроприводов переменного тока

Изобретение относится к диагностике технического состояния силового электрооборудования. Осуществляют запись зависимостей от времени напряжения и тока, потребляемых электродвигателем, выполняемую с помощью датчиков напряжения. Обрабатывают сигналы фильтром низких частот. Определяют расхождение...
Тип: Изобретение
Номер охранного документа: 0002532762
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.0602

Способ пылеподавления на открытых угольных складах

Изобретение относится к горной промышленности, а именно к способам закрепления пылящих поверхностей открытых угольных складов. Техническим результатом является повышение эффективности пылеподавления на пылящих поверхностях. Способ заключается в нанесении на пылящие поверхности открытых угольных...
Тип: Изобретение
Номер охранного документа: 0002532939
Дата охранного документа: 20.11.2014
Showing 51-60 of 198 items.
27.05.2014
№216.012.cb09

Термонагружатель к стенду для исследования образцов материалов при энергообмене

Изобретение относится к средствам испытаний образцов материалов при сложном нагружении и может быть использовано совместно со стендами для исследования энергообмена при деформировании и разрушении твердых тел. Термонагружатель содержит платформу, установленные на ней фрикционный элемент, привод...
Тип: Изобретение
Номер охранного документа: 0002517743
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cb52

Стенд для ударных испытаний образцов при исследовании энергообмена

Изобретение относится к испытательной технике, к испытаниям на прочность. Стенд содержит раму с направляющей, жестко связанный с рамой пассивный захват образца, соосный ему активный захват, расположенные на раме ведущий и ведомый барабаны, привод вращения ведущего барабана, замкнутый гибкий...
Тип: Изобретение
Номер охранного документа: 0002517816
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.cb53

Центробежная установка для испытания образцов материалов при энергообмене

Изобретение относится к испытательной технике, к центробежным установкам для исследования энергообмена при деформировании и разрушении образцов материалов. Центробежная установка содержит основание, установленные на основании платформу с приводом вращения, закрепленный на платформе пассивный...
Тип: Изобретение
Номер охранного документа: 0002517817
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cbed

Установка для испытания образцов материалов на усталость при сложном напряженном состоянии

Изобретение относится к испытательной технике, к испытаниям на прочность. Установка содержит два двигателя разной мощности с параллельными валами и встречно направленными крутящими моментами, два рычага, одни концы которых соединены с валом соответствующего двигателя, захваты для образца, один...
Тип: Изобретение
Номер охранного документа: 0002517976
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.ccf7

Центробежная установка для исследования энергообмена при разрушении

Изобретение относится к испытательной технике и применяется при исследованиях влияния массовых сил на энергообмен при деформировании и разрушении материалов и изделий. Центробежная установка содержит основание, установленный на нем первый привод вращения с валом, первую платформу вращения,...
Тип: Изобретение
Номер охранного документа: 0002518242
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdcf

Пассажирский лифт для многоэтажных зданий

Пассажирский лифт для многоэтажных зданий содержит кинематически связанный с электродвигателем шкив трения, огибаемый тяговым стальным проволочным канатом с закрепленной на одном из его концов кабиной для размещения людей, при выполнении канатоведущего шкива многоручьевым с запасовкой на него...
Тип: Изобретение
Номер охранного документа: 0002518458
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cdf5

Пластинчатый питатель тяжелого типа

Пластинчатый питатель тяжелого типа содержит пластинчатую ленту, состоящую из прилегающих друг к другу с щелевыми зазорами (1) плоских пластин (2, 3), закрепленных на двухцепном тяговом органе, огибающем приводную и натяжную звездочку. На передних кромках пластин с возможностью огибания их...
Тип: Изобретение
Номер охранного документа: 0002518496
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cefe

Лотковый питатель

Лотковый питатель содержит кинематически связанный с кривошипно-шатунным приводом (1) лоток (2) с его опиранием на стационарные роликовые или катковые опоры (3), неподвижные борта (4). На верхней части бортов (4) у задней торцевой стенки (5) закреплены фланцы (6) с возможностью их соединения с...
Тип: Изобретение
Номер охранного документа: 0002518761
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf55

Установка для испытания материалов на прочность

Изобретение относится к испытательной технике и может быть использовано для испытания образцов материалов на прочность. Сущность: установка содержит основание (1), на котором установлены захваты (2, 3) для образца (4), нагружатель (5), связанный с захватами (2, 3), приспособление для нагрева в...
Тип: Изобретение
Номер охранного документа: 0002518848
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d22f

Трехцепной скребковый конвейер

Скребковый конвейер содержит бесконечно замкнутый и опирающийся на направляющие желобчатого рештачного става (1) тяговый орган, состоящий из трех параллельных тяговых цепей - двух наружных (2, 3) и внутренней (4). К наружным цепям поочередно прикреплены своим концами скребки (5), а чередующиеся...
Тип: Изобретение
Номер охранного документа: 0002519578
Дата охранного документа: 20.06.2014
+ добавить свой РИД