×
20.05.2016
216.015.3f1e

Результат интеллектуальной деятельности: СПОСОБ ПОДГОТОВКИ К ТРАНСПОРТИРОВАНИЮ СМЕСИ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ПО МАГИСТРАЛЬНЫМ ТРУБОПРОВОДАМ В ОХЛАЖДЕННОМ СОСТОЯНИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области подготовки к транспортированию смеси газа и газового конденсата. Способ включает очистку природного газа, многоступенчатое охлаждение его до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. %. Полученную углеводородную смесь охлаждают до температуры от -40 до -50°С при давлении от 10 до 12 МПа до однофазного жидкого состояния. Обеспечивается возможность транспортирования смеси сжиженных углеводородных газов с газоконденсатных месторождений Севера по магистральным трубопроводам. 4 ил.
Основные результаты: Способ подготовки к транспортированию смеси сжиженных углеводородов, содержащей природный газ и конденсат, включающий очистку природного газа, создание смеси природного газа и конденсата, отличающийся тем, что осуществляют многоступенчатое охлаждение природного газа до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. % и охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до однофазного жидкого состояния.

Изобретение относится к области подготовки смеси газа и газового конденсата газоконденсатных месторождений Севера к однофазному трубопроводному транспорту и может найти применение в нефтегазовой промышленности.

Известен способ перекачки криогенной жидкости самотечным способом по трубопроводу из хранилища в цистерну (патент RU №2006116911/22, опубл. 27.11.2006 г.) без потерь газовой фазы путем ее удаления из стояка трубопровода и возврата ее в хранилище.

Недостатком данного способа является то, что трубопровод предназначен для транспортировки криогенной жидкости, например сжиженного природного газа (СПГ), азота, кислорода, водорода (с температурой ниже 120 K). Поэтому для перекачки придется использовать дорогостоящие низкотемпературные никелевые нержавеющие стали. Кроме того, авторы предлагают перекачивать СПГ по низконапорным трубопроводам, что скажется на его производительности.

Известен также способ перекачки СПГ по магистральным криогенным трубопроводам при температуре 153-173 K (минус 120 - минус 100°C) (Магистральные трубопроводы охлажденного и сжиженного природного газа. Ответственный редактор А.Е. Полозов / Н.П. Акульшина, В.А. Андрианов, В.И. Зоркальцев и др. УРО РАН, Коми НЦ. СЫКТЫВКАР, 1988, с. 158). В этом случае предлагается использовать специально разработанные экономно-легированные стали (например, 10ХГНМАЮ) или криогенные никелевые нержавеющие стали. Согласно А.Е. Полозову (Полозов А.Е. Повышение прочности низкотемпературных теплоизолированных трубопроводов: Дис. д-ра техн. наук: 25.00.19: Курск, 2004. 348 с. ) переход на СПГ-проводы дает большой экономический и экологический эффект. Удельный вес трубной стали в затратах на строительство газопровода составляет 80%, а переход на перекачку СПГ по трубопроводам, по его мнению, позволяет перейти с 4 ниток газопровода на 1 нитку криогенного трубопровода, что дает экономию затрат по металлу 75%. С учетом затрат на теплоизоляцию СПГ-провода и повышенную стоимость ЭЛ-стали получаем экономию средств, равную 37%.

Недостатком этого способа является необходимость использования дорогих хладостойких никелевых сталей (не менее 8% никеля) и дорогостоящей криогенной вакуумной изоляции, а также необходимость поддержания низкой температуры (минус 161°С) при атмосферном давлении. Кроме того, СПГ придется перекачивать по низконапорным трубопроводам, что скажется на его производительности.

Известна система для хранения газа на основе метана (патент RU №2224171, опубл. 20.02.2004 г.). Она состоит из контейнера для хранения углеводородного растворителя и растворенного газа, образующего жидкую и паровую фазы и средство регулирования композиции для поддержания заранее определенного соотношения фаз. Настоящее изобретение касается улучшенной системы для сжижения и хранения газа и особенно системы для хранения газа, основным компонентом которого является метан, посредством смешивания с другим углеводородом (органическим растворителем) для хранения.

Недостатком является то, что данная система для хранения газа на основе метана имеет ограниченное применение (только на моторном транспортном средстве) и не может быть применена при транспортировании сжиженных углеводородов по трубопроводам.

Известен «Метод бестарной транспортировки и хранения газа в жидкой среде» («Method of bulk transport and storage of gas in a liquid medium») (патент US 8257475 B2, опубл. 04.09.2012 г.). Интегрированная система с установленным судном для загрузки газового потока предназначена для отделения тяжелых углеводородов, сжатия газа, его дальнейшего охлаждения, смешивания газа с осушителем, смешивания его с жидкостным носителем или растворителем, и затем охлаждения смеси до условий обработки, хранения и транспортирования. После транспортирования продукта к месту его предназначения, технологическая линия подготовки углеводородов и метод жидкостного перемещения обеспечивают разгрузку жидкости в систему хранения, отделение жидкостного носителя, и перемещение газового потока к системе хранения или транспортирования. Рассматриваются только способы смешивания и сорбции природного газа в легком углеводородном растворителе (в основном, пропане) и устройства для хранения и транспортировки судами - газовозами сжиженных углеводородных газов.

Недостатком является то, что необходимого количества легкого углеводородного растворителя (в основном, пропана) в смеси практически невозможно получить непосредственно на месторождении.

В качестве ближайшего аналога принят способ подготовки к транспортированию смеси углеводородов, содержащей природный газ и конденсат, известный из патента RU 2476789 С1, приоритет 27.02.2013 г.

При реализации способа по первому варианту осуществляют первичную сепарацию жидкости из входного потока, в газ первичной сепарации добавляется метанол, охлаждение полученного потока происходит в аппарате воздушного охлаждения, в параллельно расположенных первом и втором рекуперативных теплообменниках, и газа в узле редуцирования и рекуперации холода, сепарация - в низкотемпературном сепараторе. Газ низкотемпературной сепарации нагревают в теплообменнике и в узле редуцирования и рекуперации холода, после чего направляют в трубопровод продуктового газа. Конденсат первичной сепарации направляют на дегазацию и отделение водной или водно-метанольной фазы в первый трехфазный разделитель, из которого выделившийся газ подают на вход в низкотемпературный сепаратор, а конденсат нагревают в третьем рекуперативном теплообменнике и кубовом подогревателе, после чего направляют в нижнюю сепарационную часть ректификационной колонны. Конденсат низкотемпературной сепарации нагревают в теплообменнике и подвергают дегазации и отделению водно-метанольной фазы во втором трехфазном разделителе, после чего конденсат подают в ректификационную колонну в качестве орошения. Газ из ректификационной колонны и газ дегазации из второго трехфазного разделителя компримируют в узле компримирования и смешивают с газом низкотемпературной сепарации. Конденсат из ректификационной колонны охлаждают в третьем рекуперативном теплообменнике и втором аппарате воздушного охлаждения и направляют на отделение водно-метанольной фазы в третий трехфазный разделитель, дожимают и подают в трубопровод продуктового конденсата.

Недостатком данного технического решения является то, что задачей данного способа низкотемпературной подготовки природного газа и извлечения нестабильного конденсата из пластового газа является разделение природного газа и газового конденсата (его извлечение из пластового газа) и дальнейшая транспортировка по отдельным трубопроводам. Задача нашего технического решения состоит в смешении природного газа и газового конденсата и совместная транспортировка углеводородной смеси по низкотемпературному трубопроводу потребителю.

Заявленное изобретение отличается тем, что осуществляют очистку природного газа, многоступенчатое его охлаждение его до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве 3-10 вес. %, охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до получения однофазного жидкого состояния.

Техническим результатом является обеспечение возможности транспортирования смеси сжиженных углеводородных газов, состоящей из природного газа и газового конденсата, по магистральным трубопроводам при температуре от -40 до -50°С и давлении от 10 до 12 МПа.

Технический результат достигается тем, что с целью обеспечения транспортирования смеси в однофазном жидком состоянии по магистральным трубопроводам с газоконденсатных месторождений природный газ охлаждают до температуры от -0 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. %, охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до получения однофазного жидкого состояния.

Способ поясняется следующими фигурами: Фиг. 1 - схема технологии получения смеси сжиженных углеводородов; Фиг. 2 - Р-Т-диаграмма (давление - температура) различных индивидуальных веществ и смесей (в массовых процентах):

1 - метан Ткр=-82,4°С, Ркр=4,6 МПа,

2 - типичный природный газ Ткр=-73°С, Ркр=5,4 МПа,

3 - пластовый газ Ткр=-50,8°С, Ркр=8,7 МПа,

4 - смесь газа и газового конденсата в соотношении 97:3 Ткр=-39,6°С, Ркр=10,03 МПа,

5 - смесь газа и газового конденсата в соотношении 95:5 Ткр=-37,1°С, Ркр=10,45 МПа,

6 - смесь газа и газового конденсата в соотношении 93:7 Ткр=-34,96°С, Ркр=10,81 МПа,

7 - смесь газа и газового конденсата в соотношении 90:10 Ткр=-28,9°С, Ркр=11,72 МПа;

Фиг. 3 - компонентный состав пластового газа Южно-Тамбейского газоконденсатного месторождения (% объемные) и типичного природного газа (% массовые);

Фиг. 4 - принципиальная схема трубопроводного транспорта сжиженных углеводородных газов:

1 - установка комплексной подготовки газа,

2 - установка получения углеводородной смеси,

3 - трубопровод,

4 - головная насосная станция,

5 - промежуточные станции охлаждения,

6 - промежуточные насосные станции,

7 - низкотемпературное хранилище,

8 - установка регазификации,

9 - подача газа потребителям.

Способ осуществляется следующим образом. Природный газ непосредственно с газоконденсатного месторождения поступает в блок осушки, где из него извлекаются частицы воды, проходит через фильтр (очистка от кислых компонентов, тонкая очистка от ртути и удаление азота) (фиг. 1). После этого газ проходит многоступенчатый этап охлаждения и повышения давления с добавлением на каждой ступени газового конденсата и высокомолекулярных соединений. Полученная смесь сжиженных углеводородов при температуре от -40 до -50°С и давлении не более 12 МПа приводится в жидкое состояние. После сжижения она поступает непосредственно в трубопровод.

С учетом необходимого запаса по давлению и температуре для предотвращения газообразования при обосновании и разработке технологии предварительно приняты начальная температура минус 40 - минус 50°С и давление 10-12 МПа. Более высокое давление и низкая температура смеси приведет к удорожанию строительства из-за необходимости использовать дорогие никелевые стали и увеличения толщины стенки трубы. Существующие сорта сталей марки Х70 и Х80 работоспособны при вышеуказанных давлениях и температурах.

Особенности получения смеси сжиженного метана и газового конденсата обусловлены необходимостью получения сравнительно высокой температуры сжижения при сравнительно низком давлении. Поэтому стандартная схема производства сжиженного природного газа (СПГ) может быть существенно удешевлена за счет использования только первой части схемы производства СПГ (отказа от блока получения температуры -160°С).

Благоприятным фактором для получения смеси природного газа, конденсата и нефти в однофазном состоянии является то, что большинство месторождений п. о. Ямал являются газоконденсатными. Массовое содержание нефти и газового конденсата достигает от 3 до 10%. Исследования проводились на примере Южно-Тамбейского газоконденсатного месторождения. Суммарные запасы углеводородов Южно-Тамбейского ГКМ по данным Государственного баланса от 01.01.2008 г. составляют: газа по категории С1 - 1003,92 млрд м3; С2 - 252,186 млрд м3; конденсата по категории С1 - 47,48 млн т; С2 - 18,78 млн т. Суммарные запасы газа (С1+С2) составляют 1256,1 млрд м. Суммарные запасы конденсата (С1+С2) составляют 66,26 млн т.

На фиг. 2 представлена фазовая диаграмма Р-Т (давление - температура) смеси природного газа и газового конденсата. Она показывает, что добавление 3% газового конденсата по массе к добываемому природному газу приводит к тому, что критическая температура смеси повышается с минус 73°С для типичного природного газа и с минус 50,8°С для пластового газа Южно-Тамбейского месторождения до минус 39,6°С (критическое давление составляет 10,03 МПа). Состав типичного природного газа и пластового газа Южно-Тамбейского месторождения представлен на фиг. 3. При добавлении 5% критическая температура смещается до минус 37,1°С при критическом давлении 10,45 МПа. При содержании газового конденсата 7 и 10% критическая температура составляет минус 34,96 и минус 28,9°С, а критическое давление 10,81 и 11,72 МПа соответственно. Фазовые диаграммы Р-Т (давление - температура) и критические параметры смеси при различном содержании газового конденсата представлены на фиг. 2.

Таким образом, добавление в природный газ газового конденсата позволит транспортировать эту смесь в жидком однофазном состоянии при температуре минус 40 - минус 50°С и давлении 10-12 МПа (с учетом необходимого запаса по давлению). Так как состав газового конденсата, добываемого из различных скважин газоконденсатного месторождения, различен, управление температурой и давлением сжижения планируется добавлением небольшого количества специальных добавок высокомолекулярных соединений, получаемых на разрабатываемом месторождении.

На фиг. 4 изображена принципиальная схема трубопроводного транспорта смеси сжиженных углеводородов.

Природный газ с газоконденсатного месторождения Севера поступает на установку комплексной подготовки газа (УКПГ) 1, где производится его очистка, осушка и отделение от примесей.

Затем очищенный и охлажденный природный газ и охлажденный газовый конденсат подается на установку получения углеводородной смеси (УПУС) 2, где происходят следующие процессы: повышение давления одновременно с охлаждением газа и впрыскиванием газового конденсата под высоким давлением в нижнюю часть установкичерез специальную форсунку до достижения необходимых параметров смеси сжиженных углеводородов (давление не более 12 МПа и температура от -40 до -50°С). Часть газа, которая не успевает перейти в сжиженное состояние, поступает обратно в нижнюю часть установки смешивания. Процесс подготовки смеси повторяется до тех пор, пока вся смесь не перейдет в однофазное жидкое состояние при вышеуказанных температуре и давлении. Полученная смесь под давлением подается в предварительно охлажденный трубопровод 3.

Принципиальным отличием установки комплексной подготовки сжиженных углеводородов от установки подготовки СПГ является то, что мы отказываемся от цикла сжижения смеси углеводородов от -50°С до -160°С, что значительно снижает затраты.

Дальше полученная смесь поступает на головную насосную станцию (ГНС) 4, на которой поддерживаются необходимые условия перекачки. В состав ГНС входят: приемные емкости, подпорная и основная насосные и узел учета. Они служат для приема сжиженных углеводородных газов и для хранения некоторого его запаса с целью обеспечения бесперебойности работы трубопровода.

Чтобы предотвратить нагрев газа за счет теплопритока от окружающей среды, трубопроводы покрывают тепловой изоляцией (например, из пенополиуретана толщиной 50-70 мм), а вдоль трассы размещают промежуточные станции охлаждения (ПСО) 5.

Промежуточные насосные станции (ПНС) 6 располагаются на расстояниях, определяемых на основании гидравлического и теплового расчета. По расчетам, перекачивающие и охлаждающие станции нужно устанавливать на расстоянии около 100 км.

В конце трубопровода размещаются низкотемпературное хранилище (НХ) 7 и установка регазификации (УР) 8 сжиженной углеводородной смеси. На установке регазификации смесь разделяется на составляющие: газ, газовый конденсат, высокомолекулярные соединения. Газ подается в магистральный газопровод, а газовый конденсат транспортируется по трубопроводам или железнодорожным или автомобильным транспортом.

Предлагаемый способ подготовки позволяет осуществить перекачку смеси природного газа и нестабильного газового конденсата по магистральным трубопроводам с газоконденсатных месторождений Севера. Из проведенного исследования следует, что предложенный способ комбинированной транспортировки СПГ по Северному морскому пути и смеси сжиженных углеводородов по подземным магистральным трубопроводам позволит существенно сократить затраты на транспорт газа и газового конденсата, сократить количество ледоколов и танкеров.

Способ подготовки к транспортированию смеси сжиженных углеводородов, содержащей природный газ и конденсат, включающий очистку природного газа, создание смеси природного газа и конденсата, отличающийся тем, что осуществляют многоступенчатое охлаждение природного газа до температуры от -30 до -50°С с добавлением охлажденного до температуры от -20 до -50°С конденсата в количестве от 3 до 10 вес. % и охлаждение полученной углеводородной смеси до температуры от -40 до -50°С при давлении от 10 до 12 МПа до однофазного жидкого состояния.
СПОСОБ ПОДГОТОВКИ К ТРАНСПОРТИРОВАНИЮ СМЕСИ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ПО МАГИСТРАЛЬНЫМ ТРУБОПРОВОДАМ В ОХЛАЖДЕННОМ СОСТОЯНИИ
СПОСОБ ПОДГОТОВКИ К ТРАНСПОРТИРОВАНИЮ СМЕСИ СЖИЖЕННЫХ УГЛЕВОДОРОДОВ ПО МАГИСТРАЛЬНЫМ ТРУБОПРОВОДАМ В ОХЛАЖДЕННОМ СОСТОЯНИИ
Источник поступления информации: Роспатент

Showing 121-130 of 161 items.
20.08.2015
№216.013.70ab

Способ глубокого обескремнивания алюминатных растворов

Изобретение относится к производству глинозема, в частности к обескремниванию алюминатных растворов в производстве глинозема из высококремнистого алюминиевого сырья. Способ глубокого обескремнивания алюминатных растворов заключается в обработке извести алюминатно-щелочным раствором с получением...
Тип: Изобретение
Номер охранного документа: 0002560413
Дата охранного документа: 20.08.2015
27.10.2015
№216.013.8973

Способ извлечения солей празеодима (iii)

Изобретение может быть использовано при получении редкоземельных металлов (РЗМ) из бедного или техногенного сырья с помощью ионной флотации. Способ извлечения солей празеодима (III) из нитратных растворов включает введение в раствор собирателя - додецилсульфата натрия. Додецилсульфат натрия...
Тип: Изобретение
Номер охранного документа: 0002566790
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.899d

Устройство для подъема груженых автомобилей-самосвалов на борт карьера и спуска порожних автомобилей-самосвалов в карьер

Изобретение относится к карьерному транспорту. Устройство для подъема груженых автомобилей-самосвалов на борт карьера и спуска порожних автомобилей-самосвалов в карьер содержит два наклонных рельсовых пути с размещенными на них тележками, связанными друг с другом замкнутым на приводном блоке...
Тип: Изобретение
Номер охранного документа: 0002566832
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.89d0

Способ гидравлической обработки угольного пласта

Предложенное изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов. Техническим результатом изобретения является обеспечение создания равномерной сети трещин для повышения эффективности газоотдачи пласта. Предложен способ гидравлической обработки...
Тип: Изобретение
Номер охранного документа: 0002566883
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8ab1

Система генерирования электрической энергии

Изобретение относится к электротехнике и электроэнергетике, а именно к системам получения электрической энергии для электроснабжения машин и комплексов объектов нефтедобычи с использованием попутного нефтяного газа в качестве энергоносителя для обеспечения собственных нужд предприятий...
Тип: Изобретение
Номер охранного документа: 0002567112
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8c81

Способ разработки мощных пологих калийных пластов

Изобретение относится к горному делу. Способ разработки мощных пологих калийных пластов включает оконтуривание выемочного блока подготовительными выработками, отработку запасов блока камерами с оставлением междукамерных податливых целиков. Перед отработкой каждой камеры проходят из...
Тип: Изобретение
Номер охранного документа: 0002567576
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8cbb

Способ извлечения тербия (iii) из водно-солевых растворов

Изобретение относится к способу извлечения тербия (III) из бедного или техногенного сырья с помощью метода флотоэкстракции. В процессе флотоэкстракции катионов тербия (III) используют в качестве органической фазы изооктиловый спирт, а в качестве собирателя ПАВ анионного типа - додецилсульфат...
Тип: Изобретение
Номер охранного документа: 0002567634
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.930b

Способ магнитно-абразивного полирования метчика

Изобретение относится к машиностроению и может быть использовано при магнитно-абразивной обработке сложнопрофильных инструментов, в частности метчиков. Осуществляют магнитно-абразивное полирование метчика, включающее обработку заборной, калибрующей и ведущей рабочих частей метчика при его...
Тип: Изобретение
Номер охранного документа: 0002569261
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.9843

Способ получения поверхностно-наноструктурированного металлического материала

Изобретение относится к технологии получения металлических материалов с модифицированной поверхностью. Способ получения поверхностно-наноструктурированного металлического материала включает восстановление металла из исходного металлсодержащего твердого материала путем обработки парами...
Тип: Изобретение
Номер охранного документа: 0002570599
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9873

Способ получения судового маловязкого топлива

Изобретение относится к способу получения судового маловязкого топлива, включающему перегонку нефти с выделением дизельной фракции и каталитическую гидроочистку. Причем при перегонке нефти выделяют фракции, 95% которых выкипают в пределах от 180 до 220°C и от 220 до 360°C, эти фракции смешивают...
Тип: Изобретение
Номер охранного документа: 0002570647
Дата охранного документа: 10.12.2015
Showing 121-130 of 198 items.
10.02.2015
№216.013.2427

Анкер для крепления горных выработок

Изобретение относится к горной промышленности, в частности к креплению горных выработок. Техническим результатом являются повышение надежности анкерного крепления мерзлых горных пород и исключение зависимости несущей способности анкерной крепи от температурного режима горной выработки....
Тип: Изобретение
Номер охранного документа: 0002540708
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2428

Способ ударно-волнового разрушения угольного пласта через скважины пробуренные из горных выработок

Изобретение относится к горной промышленности и может быть использовано для дегазации угольных пластов. Техническим результатом изобретения является развитие равномерной сети трещин и разрушение массива угольного пласта по длине дегазационных скважин за малое время и при использовании...
Тип: Изобретение
Номер охранного документа: 0002540709
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2972

Податливая анкерная крепь

Изобретение относится к горному делу и может быть использовано при проходке выработок в породном массиве, склонном к повышенным смещениям контура. Техническим результатом изобретения является обеспечение податливости анкерной крепи с относительно постоянным сопротивлением. Податливая анкерная...
Тип: Изобретение
Номер охранного документа: 0002542067
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2973

Способ определения границ защищенных зон в лавах угольных пластов

Изобретение относится к горному делу, а именно к повышению безопасности ведения горных работ. Технический результат достигается тем, что измерение относительного изменения радиационной температуры поверхности забоя пласта осуществляют дистанционно с расстояния 1,0-1,5 м через 3-5 м по длине...
Тип: Изобретение
Номер охранного документа: 0002542068
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2977

Способ повышения контрастности поверхностных свойств сульфидных минералов золотосодержащих руд

Изобретение относится к области обогащения руд флотацией, в частности к флотации золотосодержащих руд, и может быть использовано в горно-обогатительной промышленности. Способ повышения контрастности поверхностных свойств сульфидных минералов золотосодержащих руд включает предварительное...
Тип: Изобретение
Номер охранного документа: 0002542072
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.29c1

Способ наращивания хвостохранилищ

Изобретение предназначено для использования в гидротехническом строительстве, в частности для создания дамб хвостохранилищ в районах со значительной техногенной нагрузкой на водные объекты. Способ включает подготовку основания под дамбу и укладку грунтового материала в тело дамбы. В качестве...
Тип: Изобретение
Номер охранного документа: 0002542146
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2cbd

Система тревожного оповещения и определения местоположения

Изобретение относится преимущественно к системам сигнализации и может быть использовано для оперативного оповещения заинтересованных лиц и специализированных служб о возникающих угрозах безопасности для абонентов при их перемещении по подземным горным выработкам. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002542921
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2d57

Способ снижения влияния высших гармоник на электрооборудование

Использование: в области электротехники и электроэнергетики. Технический результат - снижение коэффициента несинусоидальности напряжения сети и уменьшение влияния высших гармоник тока при наличии переменной нелинейной нагрузки. Способ заключается в том, что при возникновении высших гармоник...
Тип: Изобретение
Номер охранного документа: 0002543075
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.3133

Устройство для перемещения поезда метрополитена после его аварийной остановки до ближайшей станции метрополитена

Устройство состоит из последовательно размещенных друг относительно друга вдоль рельсового пути замкнутых на приводном (1) и натяжном (2) блоках с отклоняющими блоками (3, 4) стальных проволочных канатов (5), обе ветви которых расположены на шпалах (6) рельсового пути между рельсами (7)....
Тип: Изобретение
Номер охранного документа: 0002544063
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3ffc

Способ разработки нефтяной залежи с глиносодержащим коллектором

Изобретение относится к нефтедобывающей промышленности и, в частности, к внутриконтурному заводнению пластов и поддержанию пластового давления при разработке нефтяных залежей с глиносодержащим коллектором. Технический результат - повышение нефтеотдачи пластов за счет увеличения их охвата....
Тип: Изобретение
Номер охранного документа: 0002547868
Дата охранного документа: 10.04.2015
+ добавить свой РИД