×
20.05.2016
216.015.3e12

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО КОЛИЧЕСТВА СЕКЦИЙ СЕКЦИОНИРОВАННОГО ИЗОЛЯТОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике, а именно к изготовлению секционированных проходных изоляторов. В способе определения оптимального числа секций в проходном высоковольтном вакуумном изоляторе, выполненном в виде чередующихся кольцевых, дисковых или цилиндрических элементов из изоляционного материала и прокладок из проводящего материала заданной толщины b, предварительно снимают зависимость пробивного напряжения по поверхности элемента из изоляционного материала, помещенного в вакуум, от толщины d указанного элемента, строят график снятой зависимости, аппроксимируют построенный график степенной функцией вида U=kd, определяют коэффициенты k и α в упомянутой зависимости, используя экспериментальные данные, полученные при снятии зависимости пробивного напряжения по поверхности элемента из изоляционного материала от его толщины, затем рассчитывают оптимальную толщину и количество секций по определенным зависимостям. При заданном рабочем напряжении изолятора выбором оптимального количества его секций можно добиться сокращения габаритов и уменьшения стоимости изолятора. 4 ил., 2 табл.
Основные результаты: Способ определения оптимального количества секций в проходном высоковольтном вакуумном изоляторе, выполненном в виде чередующихся кольцевых, дисковых или цилиндрических элементов из изоляционного материала и прокладок из проводящего материала заданной толщины b, отличающийся тем, что предварительно снимают зависимость пробивного напряжения по поверхности элемента из изоляционного материала, помещенного в вакуум, от толщины d указанного элемента, строят график снятой зависимости, аппроксимируют построенный график степенной функцией вида U=kd, определяют коэффициенты k и α в упомянутой зависимости, используя экспериментальные данные, полученные при снятии зависимости пробивного напряжения по поверхности элемента из изоляционного материала от его толщины, затем рассчитывают оптимальную толщину изоляционного элемента d одной секции изолятора по формуле , после чего определяют оптимальное количество секций n в изоляторе, по формуле где К - коэффициент запаса изолятора по электрической прочности, U - рабочее напряжение.

Изобретение относится к электротехнической технике, а именно к изготовлению секционированных проходных изоляторов.

Известно, что пробивная напряженность поверхности диэлектрика в вакууме возрастает с уменьшением толщины испытуемого на электрическую прочность образца. Указанное положение находит свое отражение в конструкциях высоковольтных изоляторов, применяемых в высоковольтных трансформаторах, ускорительной технике и т.д. [1].

С целью повышения электрической прочности изоляторов последние делят на множество секций проводящими градиентными кольцами. При этом применяют цилиндрическую или дисковую форму элементов секций. Высоту секций в этих конструкциях изоляторов определяют, как правило, исходя из большого объема экспериментальных исследований, что связано со значительным расходом времени и материалов, идущих на изготовление испытуемых образцов изоляторных секций. Кроме того, полученный при исследованиях результат не гарантирует создания конструкции секционированного изолятора с оптимальными габаритами.

Известен способ выбора высоты диэлектрического кольца в секционированном изоляторе по графику зависимости поверхностного пробивного напряжения изоляционного материала от толщины испытуемого образца [2]. Этот способ заключается в том, что набор образцов из одинакового изоляционного материала разной толщины подвергают испытанию на электрическую прочность поверхности в какой-либо среде, строят зависимость пробивного напряжения от толщины образца, определяют на этой зависимости точку изменения наклона кривой и толщину изоляционного кольца секционированного изолятора выбирают такой, чтобы она не превышала толщины образца, при которой снятая зависимость меняет свой наклон.

Известный способ не позволяет выбрать для проходного изолятора конкретную толщину диэлектрического кольца в секции, которая обеспечила бы получение максимальных пробивных градиентов при заданной высоте изолятора.

Оптимальная толщина диэлектрика в секционированных изоляторах зависит от толщины градиентных прокладок, материала диэлектрика и конструктивных особенностей изолятора. Поэтому для каждой конкретной конструкции проходного изолятора должна быть определена конкретная оптимальная толщина секционного кольца, а следовательно, и количество колец в конструкции.

Наиболее близким к заявляемому способу является способ определения оптимального числа секций секционированного изолятора [3].

Способ-прототип заключается в том, что известным способом определяют среднюю пробивную напряженность Ei изоляционного слоя высотой H и среднюю пробивную напряженность En набора из n произвольных, но равных по толщине изоляционных слоев, разделенных градиентными прокладками толщиной b, причем высота набора должна равняться Н, после чего определяют оптимальное количество секций по формуле

где N - оптимальное количество секций в изоляторе;

H - высота изолятора; b - толщина градиентной прокладки;

Ei - средняя пробивная напряженность не секционированного слоя высотой H;

En - средняя пробивная напряженность произвольно секционированного слоя высотой H;

n - количество изоляционных слоев, произвольных и равных по толщине в наборе высотой H.

Следует отметить, что выбор толщины градиентного кольца диктуется условиями эксплуатации всего изолятора, технологией его сборки. В частности, при определении b учитывают электрическую прочность среды, окружающей изолятор, требования к механической прочности кольца.

Недостатки способа-прототипа следующие.

Во-первых, при конструировании изолятора задают, как правило, не его высоту H, а рабочее напряжение U, исходя из величины которого определяют его габариты. В способе-прототипе, наоборот, задают высоту изолятора H, исходя из которой определяют оптимальное количество N секций в изоляторе, величину же рабочего напряжения U изолятора, являющегося одной из его наиболее важных характеристик, непосредственно по способу-прототипу определить невозможно.

Во-вторых, способ-прототип имеет низкую точность определения оптимального числа секций в изоляторе, что не позволяет при заданной высоте изолятора H и заданной толщине градиентной прокладки b получить максимально возможное пробивное напряжение для указанных габаритов изолятора.

В-третьих, способ-прототип достаточно сложен и требует для своего воплощения, особенно для изоляторов с большими габаритами, изготовления испытательного стенда со сверхвысоким источником напряжения, что не всегда возможно воплотить в жизнь.

Техническая задача, поставленная в рамках настоящего изобретения, заключается в том, чтобы упростить способ и повысить точность определения оптимального количества секций в изоляторе, позволяющего получить минимальные габариты изолятора, рассчитанного на заданное рабочее напряжение U.

Поставленная задача решается тем, что в способе определения оптимального числа секций в проходном высоковольтном вакуумном изоляторе, выполненном в виде чередующихся кольцевых, дисковых или цилиндрических элементов из изоляционного материала и прокладок из проводящего материала заданной толщины b, предварительно снимают зависимость пробивного напряжения по поверхности элемента из изоляционного материала, помещенного в вакуум, от толщины d указанного элемента, строят график снятой зависимости, аппроксимируют построенный график степенной функцией вида U=kdα, определяют коэффициенты k и α в упомянутой зависимости, используя экспериментальные данные, полученные при снятии зависимости пробивного напряжения по поверхности элемента из изоляционного материала от его толщины, затем рассчитывают оптимальную толщину изоляционного элемента dопт одной секции изолятора по формуле после

чего определяют оптимальное количество секций nопт в изоляторе, по формуле

где Kз - коэффициент запаса изолятора по электрической прочности, Upaб - рабочее напряжение, кВ.

На фиг. 1 представлена зависимость пробивного напряжения поверхности пирексовых колец от их толщины.

Сущность изобретения заключается в следующем. Пробивное напряжение поверхности любого диэлектрика в любой среде и, в частности, в вакууме достаточно точно можно описать в виде степенной функции, имеющей вид

Пробивное напряжение для секционированного изолятора, имеющего n секций можно переписать в виде:

где U1 - пробивное напряжение поверхности изоляционного элемента одной секции толщиной d1;

Для определения оптимального числа секций в секционированном изоляторе найдем максимум значения Uпр. Для этого продифференцируем выражение 2 и приравняем значение производной к 0.

Преобразовав выражение (3), получим:

Из уравнения (4) после преобразования получим:

Из выражения (5) следует:

Коэффициенты к и α в выражении (1) для каждого конкретного случая можно рассчитать методом наименьших квадратов, используя экспериментальные значения, полученные при снятии зависимости пробивного напряжения U от толщины диэлектрика d.

Оптимальную толщину dопт изоляционного элемента одной секции проходного изолятора можно определить по выражению

Подставив в выражение (7) выражение (6), получим

Оптимальное количество секций nопт в проходном изоляторе, рассчитанном на рабочее напряжение Upaб, можно определить из следующих соображений. Допустим, что проектируемый изолятор должен надежно работать при некотором напряжении Upaб. Для надежной работы изолятора в любых установках значение рабочего напряжения Upaб должно быть существенно меньше пробивного Uпр. Отношение называется коэффициентом запаса электрической прочности изоляции. Коэффициент запаса электрической прочности изолятора задают исходя из условий, в которых должен работать изолятора. Обычно Kз≥1,2.

Оптимальное количество секций nопт с учетом выражений (1), (2), (6) (8) и (9) можно определить по выражению

Пример конкретного выполнения

По заявляемому способу определяли оптимальное количество секций nопт проходного изолятора ускорителя заряженных частиц на рабочее напряжение Upaб = 1 МВ = 1000 кВ. Толщина проводящей прокладки (градиентного кольца) изолятора b была выбрана равной 3 мм.

Предварительно экспериментально снимали зависимость пробивных напряжений в вакууме U поверхности пирексовых колец от их толщины d. Экспериментальные значения пробивных напряжений U пирексовых колец в вакууме от их толщины d приведены в таблице 1 и отображены на фиг. 1 кружками.

График снятой зависимости изображен на фиг. 1. Зависимость пробивного напряжения U, от толщины пирексового кольца, отображенную графиком на фиг. 1 аппроксимировали степенной функцией вида

Коэффициенты k и α в выражении (12) определяли следующим образом. Для упрощения нахождения коэффициентов k и α в формуле (12) линеаризуем уравнение, для чего прологарифмируем указанное выражение и получим

Введем обозначения y=lnU, bo=In k, x=lnd. С учетом введенных обозначений уравнение (13) можно записать в виде:

Коэффициенты b0 и α в уравнении (14) с использованием метода наименьших квадратов могут быть определены по выражениям (15) и (16), взятых из работы [4].

Для расчета численных значений коэффициентов b0 и α используем таблицу 2.

Подставив численные значения в формулы (9) и (10), получим

Проведя потенцирование, получим:

k=7,648

Окончательный вид уравнения (12) после подстановки в него численных значений k=7,648 и α=0,4187 примет вид:

На фиг. 1 черными квадратиками обозначены расчетные значения напряжения из пирексовых колец, определяемого по выражению (17). Как следует из рисунка на фиг. 1, расчетные значения пробивного напряжения от толщины изолятора по формуле (17) практически полностью совпадают с экспериментальными значениями, т.е. адекватно описывают эксперимент.

Оптимальную толщину dопт изоляционного элемента одной секции проходного изолятора можно определить по выражению (8)

Для того чтобы проходной изолятор надежно выдерживал Upaб, необходимо, чтобы пробивное напряжение Uпр>Upaб (19). Положив Kз=1,2, определим оптимальное количество секций nопт по выражению (11)

Общая высота изолятора, изготовленного по заявляемому способу Hз, будет равна

Сравним полученное значение nопт, определенное по заявляемому способу, со значением оптимального количества секций nопт.прот, определенное по способу-прототипу для изолятора, рассчитанного на рабочее напряжение Upaб = 1 МВ = 1000 кВ. Толщина проводящей прокладки (градиентного кольца) изолятора b была выбрана равной 3 мм. Для сравнения возьмем цифры из примера конкретного выполнения, приведенные в [3].

На фиг. 1 способа-прототипа [3] изображен слой изолятора высотой H (например, H=300 мм); на фиг. 2 способа-прототипа [3] - набор произвольных и равных по толщине изоляционных слоев количеством n (например, n=12), общей толщиной H, толщина разделяющих градиентных прокладок равна b (например, b=3 мм); на фиг. 3 способа-прототипа [3] - секционированный изолятор высотой Н (например, H=300 мм).

Способ-прототип осуществляют следующим образом. Определяют с помощью известных устройств (делителя напряжения, осциллографа или киловольтметра) среднюю пробивную напряженность изоляционного слоя 1 высотой H (например, Ei=1 кВ/см) (см. способ-прототип фиг. 1). Затем также измеряют среднюю пробивную напряженность набора произвольных и равных по толщине изоляционных слоев (см. способ-прототип фиг. 2), например, для набора высотой H=300 мм, состоящего из двенадцати пирексовых колец, разделенных градиентными прокладками 2 толщиной b=3 мм; Еn=3,8 кВ/см. Набор расположен между высоковольтными электродом 3 и заземленным фланцем 4. Измеренные Ei, Еn подставляют в формулу, по которой определяют оптимальное количество секций

Если подставить цифры, следующие из способа-прототипа: N=35;

Оптимальная толщина изоляционного элемента dпрот одной секции изолятора, выполненного по способу-прототипу, будет равна

Оценим по формуле (17), какое напряжение Uспр будет выдерживать одна секция изолятора, выполненного по способу-прототипу

Оптимальное количество секций nопт.прот в изоляторе на напряжение 1200 кВ, рассчитанное по способу-прототипу, будет равно

Общая высота изолятора Hпр, рассчитанного на напряжение 1200 кВ, будет равна

Как следует из выражений (20) и (21), высота изолятора, рассчитанного на напряжение 1200 кВ, по заявляемому способу Hз, меньше на 63,12 мм, чем высота изолятора, изготовленного по способу-прототипу Hпр, рассчитанного на то же самое напряжение 1200 кВ,

По сравнению с заявляемым способом способ-прототип имеет относительную погрешность, равную

Таким образом, заявляемый способ по сравнению со способом-прототипом имеет не менее чем на 33,3% высокую точность определения оптимального числа секций в изоляторе, что позволяет при заданной высоте изолятора H и заданной толщине градиентной прокладки b получить либо максимально возможное пробивное напряжение для указанных габаритов изолятора, либо для заданного рабочего напряжения изолятора получить минимальную высоту изолятора. Кроме того, заявляемый способ по сравнению со способом-прототипом достаточно прост, так как не требует для своего воплощения, особенно для изоляторов с большими габаритами, изготовления испытательного стенда со сверхвысоким источником напряжения, что не всегда возможно воплотить в жизнь. В частности, в рассмотренных авторами примерах для реализации заявляемого способа достаточно того, чтобы экспериментальная высоковольтная установка позволяла получать напряжение, не превышающее 30÷35 кВ, так как этого напряжения достаточно для снятия зависимости пробивного напряжения от толщины изоляционного элемента d, тогда как для реализации способа-прототипа необходимо, чтобы установка имела возможность работать при напряжениях 450÷500 кВ, что более чем на порядок выше напряжения, необходимого для реализации заявляемого способа.

Кроме того, при заданном рабочем напряжении изолятора выбором оптимального количества его секций по заявляемому способу можно добиться сокращения габаритов и уменьшения стоимости изолятора по сравнению со способом-прототипом.

Источники информации

1. Патент США №2082474, опубл. 1937.

2. Раховский В.Н. Физические основы электрического тока в вакууме. М.: Наука, 1970, с. 57.

3. А.с. 758266. Способ определения оптимального числа секций секционированного изолятора. / Смирнов Г.В., Кассиров Г.М., Планкин Ю.В. - Опубл. в БИ 23.08.80. №31 (прототип).

4. Смирнов Г.В., Смирнов Д.Г. Моделирование и оптимизация технологических процессов РЭС: Учебное пособие. - Томск: Издательство Томского государственного университета систем управления и радиоэлектроники, 2007. - С. 66-67.

Способ определения оптимального количества секций в проходном высоковольтном вакуумном изоляторе, выполненном в виде чередующихся кольцевых, дисковых или цилиндрических элементов из изоляционного материала и прокладок из проводящего материала заданной толщины b, отличающийся тем, что предварительно снимают зависимость пробивного напряжения по поверхности элемента из изоляционного материала, помещенного в вакуум, от толщины d указанного элемента, строят график снятой зависимости, аппроксимируют построенный график степенной функцией вида U=kd, определяют коэффициенты k и α в упомянутой зависимости, используя экспериментальные данные, полученные при снятии зависимости пробивного напряжения по поверхности элемента из изоляционного материала от его толщины, затем рассчитывают оптимальную толщину изоляционного элемента d одной секции изолятора по формуле , после чего определяют оптимальное количество секций n в изоляторе, по формуле где К - коэффициент запаса изолятора по электрической прочности, U - рабочее напряжение.
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО КОЛИЧЕСТВА СЕКЦИЙ СЕКЦИОНИРОВАННОГО ИЗОЛЯТОРА
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО КОЛИЧЕСТВА СЕКЦИЙ СЕКЦИОНИРОВАННОГО ИЗОЛЯТОРА
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО КОЛИЧЕСТВА СЕКЦИЙ СЕКЦИОНИРОВАННОГО ИЗОЛЯТОРА
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО КОЛИЧЕСТВА СЕКЦИЙ СЕКЦИОНИРОВАННОГО ИЗОЛЯТОРА
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО КОЛИЧЕСТВА СЕКЦИЙ СЕКЦИОНИРОВАННОГО ИЗОЛЯТОРА
Источник поступления информации: Роспатент

Showing 41-50 of 71 items.
20.06.2016
№217.015.03da

Датчик для непрерывного контроля изоляции проводов

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Сущность: датчик содержит корпус, внутри которого расположен рабочий элемент из эластичного электропроводящего материала. Корпус выполнен в виде швеллера. Между...
Тип: Изобретение
Номер охранного документа: 0002587532
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.35ca

Способ определения оптимального числа секций секционированного изолятора

Изобретение относится к изготовлению секционированных проходных изоляторов. В способе определения оптимального числа секций N секционированного изолятора заданной высоты H, выполненного в виде чередующихся кольцевых, дисковых или цилиндрических элементов из изоляционного материала и прокладок...
Тип: Изобретение
Номер охранного документа: 0002581617
Дата охранного документа: 20.04.2016
10.08.2016
№216.015.53a3

Способ изготовления проходного вакуумного изолятора высокого напряжения

Изобретение относится к электрическим изоляторам, предназначенным для использования в конструкциях генераторов высокого напряжения, в ускорителях заряженных частиц и в других вакуумных высоковольтных установках. В способе изготовления проходных вакуумных изоляторов каждый изолятор собирают из...
Тип: Изобретение
Номер охранного документа: 0002593827
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.53bb

Способ трёхтактной струйно-капельной пропитки обмоток электрических машин

Изобретение относится к электротехнике, в частности к способам пропитки обмоток электрических машин. В способе трехтактной струйно-капельной пропитки обмоток электрических машин обмотку разогревают пропусканием через нее тока, вращают вокруг своей оси, на внутреннюю и внешнюю поверхности...
Тип: Изобретение
Номер охранного документа: 0002593826
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5414

Способ изолировки пазов магнитных сердечников якорей электродвигателей

Изобретение относится к электротехнике, в частности к способам изолировки пазов якорей электродвигателей. Способ изолировки пазов магнитных сердечников якорей микродвигателей заключается в том, что в электрофоретический состав дополнительно вводят 4÷6 об.% белых нанотрубок из нитрида бора....
Тип: Изобретение
Номер охранного документа: 0002593825
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5594

Способ изолировки пазов магнитных сердечников статоров электродвигателей

Изобретение относится к электротехнике, в частности к способам изолировки пазов статоров электрических машин. В способе изолировки наносят слой эмаль-изоляции, используя электрофоретический состав, предварительно осуществляют приготовление указанного электрофоретического состава в лаковарочном...
Тип: Изобретение
Номер охранного документа: 0002593601
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5620

Способ изолировки пазов магнитных сердечников статоров электродвигателей

Изобретение относится к электротехнике, в частности к способам изолировки пазов статоров электрических машин. Способ изолировки пазов магнитных сердечников статоров микродвигателей включает ввод в электрофоретический состав 4÷6 об.% белых нанотрубок из нитрида бора, после чего состав...
Тип: Изобретение
Номер охранного документа: 0002593600
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.6b6a

Проходной секционированный изолятор

Изобретение относится к электротехнике, в частности к высоковольтной импульсной технике, и может быть использовано при проектировании высоковольтных секционированных изоляторов для вакуумных камер. Новым является то, что в проходной секционированный изолятор, содержащий два плоских электрода,...
Тип: Изобретение
Номер охранного документа: 0002592870
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.73b6

Способ изолировки пазов магнитных сердечников якорей электродвигателей

Изобретение относится к электротехнике, в частности к способам изолировки пазов якорей электродвигателей. В заявляемом способе изолировки пазов магнитных сердечников якорей микродвигателей электрофоретический состав дополнительно содержит белые нанотрубки из нитрида бора. После введения в...
Тип: Изобретение
Номер охранного документа: 0002597891
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.746e

Датчик для непрерывного контроля изоляции проводов

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Датчик для непрерывного контроля изоляции проводов содержит корпус, внутри которого закреплена диэлектрическая основа для размещения элементов датчика. Датчик также...
Тип: Изобретение
Номер охранного документа: 0002597938
Дата охранного документа: 20.09.2016
Showing 41-50 of 101 items.
20.06.2016
№217.015.03da

Датчик для непрерывного контроля изоляции проводов

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Сущность: датчик содержит корпус, внутри которого расположен рабочий элемент из эластичного электропроводящего материала. Корпус выполнен в виде швеллера. Между...
Тип: Изобретение
Номер охранного документа: 0002587532
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.35ca

Способ определения оптимального числа секций секционированного изолятора

Изобретение относится к изготовлению секционированных проходных изоляторов. В способе определения оптимального числа секций N секционированного изолятора заданной высоты H, выполненного в виде чередующихся кольцевых, дисковых или цилиндрических элементов из изоляционного материала и прокладок...
Тип: Изобретение
Номер охранного документа: 0002581617
Дата охранного документа: 20.04.2016
10.08.2016
№216.015.53a3

Способ изготовления проходного вакуумного изолятора высокого напряжения

Изобретение относится к электрическим изоляторам, предназначенным для использования в конструкциях генераторов высокого напряжения, в ускорителях заряженных частиц и в других вакуумных высоковольтных установках. В способе изготовления проходных вакуумных изоляторов каждый изолятор собирают из...
Тип: Изобретение
Номер охранного документа: 0002593827
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.53bb

Способ трёхтактной струйно-капельной пропитки обмоток электрических машин

Изобретение относится к электротехнике, в частности к способам пропитки обмоток электрических машин. В способе трехтактной струйно-капельной пропитки обмоток электрических машин обмотку разогревают пропусканием через нее тока, вращают вокруг своей оси, на внутреннюю и внешнюю поверхности...
Тип: Изобретение
Номер охранного документа: 0002593826
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5414

Способ изолировки пазов магнитных сердечников якорей электродвигателей

Изобретение относится к электротехнике, в частности к способам изолировки пазов якорей электродвигателей. Способ изолировки пазов магнитных сердечников якорей микродвигателей заключается в том, что в электрофоретический состав дополнительно вводят 4÷6 об.% белых нанотрубок из нитрида бора....
Тип: Изобретение
Номер охранного документа: 0002593825
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5594

Способ изолировки пазов магнитных сердечников статоров электродвигателей

Изобретение относится к электротехнике, в частности к способам изолировки пазов статоров электрических машин. В способе изолировки наносят слой эмаль-изоляции, используя электрофоретический состав, предварительно осуществляют приготовление указанного электрофоретического состава в лаковарочном...
Тип: Изобретение
Номер охранного документа: 0002593601
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.5620

Способ изолировки пазов магнитных сердечников статоров электродвигателей

Изобретение относится к электротехнике, в частности к способам изолировки пазов статоров электрических машин. Способ изолировки пазов магнитных сердечников статоров микродвигателей включает ввод в электрофоретический состав 4÷6 об.% белых нанотрубок из нитрида бора, после чего состав...
Тип: Изобретение
Номер охранного документа: 0002593600
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.6b6a

Проходной секционированный изолятор

Изобретение относится к электротехнике, в частности к высоковольтной импульсной технике, и может быть использовано при проектировании высоковольтных секционированных изоляторов для вакуумных камер. Новым является то, что в проходной секционированный изолятор, содержащий два плоских электрода,...
Тип: Изобретение
Номер охранного документа: 0002592870
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.73b6

Способ изолировки пазов магнитных сердечников якорей электродвигателей

Изобретение относится к электротехнике, в частности к способам изолировки пазов якорей электродвигателей. В заявляемом способе изолировки пазов магнитных сердечников якорей микродвигателей электрофоретический состав дополнительно содержит белые нанотрубки из нитрида бора. После введения в...
Тип: Изобретение
Номер охранного документа: 0002597891
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.746e

Датчик для непрерывного контроля изоляции проводов

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Датчик для непрерывного контроля изоляции проводов содержит корпус, внутри которого закреплена диэлектрическая основа для размещения элементов датчика. Датчик также...
Тип: Изобретение
Номер охранного документа: 0002597938
Дата охранного документа: 20.09.2016
+ добавить свой РИД