×
10.05.2016
216.015.3aff

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ МАТРИЦЫ МЮЛЛЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптических измерений и может быть использовано для полного определения состояния поляризации света, отраженного от поверхности исследуемого образца. Для определения матрицы Мюллера, исследуемый образец освещают поляризованным световым пучком и измеряют изменение поляризации при отражении, используя разделение отраженного луча на р- и s- компоненты с разложением по амплитуде и фазе, получая на выходе четыре световых пучка с интенсивностями I, I, I, I, при этом азимутальные углы оптических элементов принимают фиксированные значения в определенных комбинациях, поляризатор фиксируют в положениях Р=0°, -45°, +45°, анализатор в амплитудном канале А=0°, 45°, фазовом канале А=45°, ромб Френеля R=0 и проводят измерения, соответствующие следующим конфигурациям: A: P45SR0W45W45; B: P45SR0W0W45; F: P0SR0W45W45; E: P0SR0W0W45. Изменяют состояние поляризации падающего на образец света с линейной на круговую, устанавливая в оптический тракт перед образцом фазовую пластинку в положении D=0° и проводят измерения, соответствующие конфигурациям: С: P-45D0SR0W0WΔ45; D: P-45D0SR0W45W45, а компоненты матрицы Мюллера S определяют, решая систему линейных уравнений. Изобретение обеспечивает возможность полного определения состояния поляризации света, отраженного от поверхности исследуемого образца, для нахождения всех компонент матрицы Мюллера. 1 ил.
Основные результаты: Способ определения матрицы Мюллера, заключающийся в том, что исследуемый образец освещают поляризованным световым пучком и измеряют изменение поляризации при отражении, используя разделение отраженного луча на р- и s-компоненты с разложением по амплитуде и фазе, получая на выходе четыре световых пучка с интенсивностями I, I, I, I, при этом азимутальные углы оптических элементов принимают фиксированные значения в определенных комбинациях, поляризатор фиксируют в положениях Р=0°, -45°, +45°, анализатор в амплитудном канале А=0°, 45°, фазовом канале А=45°, ромб Френеля R=0 и проводят измерения, соответствующие следующим конфигурациям:A: P45SR0W45W45В: P45SR0W0W45F: P0SR0W45W45Е: P0SR0W0W45, где S - исследуемый образец, W и W - призмы Волластона в амплитудном и фазовом измерительных каналах соответственно,отличающийся тем, что изменяют состояние поляризации падающего на образец света с линейной на круговую, устанавливая в оптический тракт перед образцом фазовую пластинку в положении D=0° и проводят измерения, соответствующие конфигурациям:С: P-45D0SR0W0W45D: P-45D0SR0W45W45, а компоненты матрицы Мюллера S определяют, решая следующую систему линейных уравнений: где - интенсивности р- и s-компонент в амплитудном измерительном канале плеча анализатора, - в фазовом измерительном канале для различных конфигураций оптических элементов.

Изобретение относится к области оптических измерений и может быть использовано для полного определения состояния поляризации света, отраженного от поверхности исследуемого образца. Способ допускает использование стандартных приборов, измеряющих состояние поляризации, серийно выпускаемых эллипсометров, построенных на базе четырехканальной фотометрической схемы. Для реализации изобретения необходимо внести незначительные изменения в оптический тракт прибора. Более того, возможность приведения оптической схемы к первоначальному виду является неотъемлемой частью заявляемого способа, что позволяет использовать эллипсометр в штатном режиме для измерения эллипсометрических углов Ψ и Δ в любой момент физического эксперимента.

Известен Стокс-эллипсометр [KR 20030049473 (A), МПК G01J 4/00, опубл. 25.06. 2003], состоящий из немонохроматического источника света, коллиматоров, поляризационного генератора, анализирующего блока на основе ПЗС-матриц и позволяющий измерять компоненты матрицы Мюллера исследуемого образца.

Недостатками данного прибора являются невысокая разрешающая способность по спектру, а также сложность юстировки в случае использования в режиме in situ, например в качестве диагностического инструмента на высоковакуумной камере.

В изобретении [US 5757494 A, МПК G01 21/21, опубл. 26.05.1998] также существует возможность измерять матрицу Мюллера, однако присутствие вращающихся элементов существенно увеличивает время измерения, что является серьезным недостатком при исследовании динамических процессов.

Известен способ измерения состояния поляризации эллипсометром [п.м. РФ №16314, МПК G01N 21/21, опубл. 20.12.2000], сконструированным по фотометрической схеме, заключающийся в расщеплении отраженного от поверхности исследуемого образца светового пучка на две составляющие, которые измеряют соответственно амплитудные и фазовые изменения света при отражении для р- и s-поляризаций.

Недостатки этого способа заключаются в невысокой точности измерений и узком спектральном диапазоне проведения измерений, а также в невозможности измерить полное состояние поляризации (вектор Стокса) света, отраженного от исследуемого образца.

Наиболее близким техническим решением к заявляемому является способ измерения состояния поляризации эллипсометром [патент РФ №2302623, МПК: 6 G01N 21/21, опубл. 10.07.2007 (прототип)], заключающийся в том, что в конструкции также используется фотометрическая четырехканальная схема, позволяющая минимизировать количество оптических конфигураций для измерения матрицы Мюллера, что ускорит время одного эксперимента.

Технический результат заключается в возможности полного определения состояния поляризации света, отраженного от поверхности исследуемого образца (вектора Стокса) для нахождения всех компонент матрицы Мюллера.

Технический результат достигается тем, что в способе определения матрицы Мюллера, заключающемся в том, что исследуемый образец освещают поляризованным световым пучком и измеряют изменение поляризации при отражении, используя разделение отраженного луча на р- и s-компоненты с разложением по амплитуде и фазе, получая на выходе четыре световых пучка с интенсивностями IΨ1, IΨ2, IΔ1, IΔ2, при этом азимутальные углы оптических элементов принимают фиксированные значения в определенных комбинациях, поляризатор фиксируют в положениях Р=0°, -45°, +45°, анализатор в амплитудном канале AΨ=0°, 45°, фазовом канале AΔ=45°, ромб Френеля R=0 и проводят измерения, соответствующие следующим конфигурациям:

A: P45SR0WΨ45WΔ45

В: P45SR0WΨ0WΔ45

F: P0SR0WΨ45WΔ45

Е: P0SR0WΨ0WΔ45,

новым является то, что изменяют состояние поляризации падающего на образец света с линейной на круговую, устанавливая в оптический тракт перед образцом фазовую пластинку в положении D=0°, и проводят измерения, соответствующие конфигурациям:

С: P-45D0SR0WΨ0WΔ45

D: P-45D0SR0WΨ45WΔ45,

а компоненты матрицы Мюллера Sij определяют, решая следующую систему линейных уравнений:

где - интенсивности р- и s-компонент в амплитудном измерительном канале Ψ плеча анализатора, - в фазовом измерительном канале Δ для различных конфигураций оптических элементов.

Отличия заявляемого способа от наиболее близкого аналога заключаются в том, что во время проведения измерений в оптический тракт устанавливают фазовую пластинку, а также в используемом математическом аппарате при вычислении значений компонент матрицы Мюллера. Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данной и смежной областей техники и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

На фиг. 1 представлена схема стокс-эллипсометра.

Устройство для измерения матрицы Мюллера (см. фиг. 1) состоит из источника света 1 (HeNe лазер), поляризатора 2, составляющих плечо поляризатора, модуля изменения фазы 3, представляющего собой фазовую пластинку в четверть волны с возможностью выведения из оптического тракта, исследуемого образца 4. Плечо анализатора Стокс-эллипсометра состоит из ромба Френеля 5, призм Волластона 6, 7, двухплощадных фотоприемников 8, 9.

Измерение матрицы Мюллера происходит следующим образом.

Световой поток 10, испускаемый осветителем 1, линейно поляризуется поляризатором 2, проходит через модуль изменения фазы 3, и для конфигураций C, D меняет состояние поляризации с линейной на круговую, для конфигураций A, B, E, F состояние поляризации остается без изменений, затем падает на поверхность исследуемого образца 4. Падающий, линейно поляризованный (или поляризованный по кругу) световой пучок отражается от поверхности образца с изменением состояния поляризации и становится, в общем случае, эллиптически поляризованным и в таком состоянии поступает в плечо анализатора, а именно на ромб Френеля 5, который одновременно играет роль пространственного расщепителя светового пучка и фазовой пластинки, расщепляющий отраженный исследуемым образцом световой пучок на две световые компоненты, одна из которых попадает в амплитудный измерительный канал, где призма Волластона 6 разделяет входной световой пучок на р- и s-компоненты, интенсивности которых затем регистрируются двухплощадным фотоприемником 9. Другая часть светового пучка, претерпев фазовый сдвиг, попадает в фазовый измерительный канал Δ, где, проходя также через призму Волластона 7, также регистрируется фотоприемниками 8.

В итоге имеем четыре значения интенсивности IΨ1, IΨ2, IΔ1, IΔ2, из которых вычисляют значения компонент матрицы Мюллера. При проведении таких измерений оптические поляризационные элементы принимают следующие фиксированные азимутальные положения:

A: P45SR0WΨ45WΔ45

В: P45SR0WΨ0WΔ45

С: P-45D0SR0WΨ0WΔ45

D: P-45D0SR0WΨ45WΔ45

Е: P0SR0WΨ0WΔ45

F: P0SR0WΨ45WΔ45,

где введены следующие обозначения: Р - поляризатор, D - перестраиваемая фазовая пластинка, S - исследуемый образец, R - ромб Френеля, WΨ и WΔ - призмы Волластона в амплитудном и фазовом измерительных каналах соответственно.

Для того чтобы получить значение компонент матрицы Мюллера исследуемого образца, необходимо провести имитационное моделирование заявляемого Стокс-эллипсометра. Для этого записывают матрицы Мюллера оптических элементов прибора для всех приведенных конфигураций (A-F). Такие матрицы подробно описаны в монографии [У. Шерклифф. Поляризованный свет // Пер. с англ. М.: Мир, 1965]. Рассмотрим, например, конфигурацию С и составим последовательность матриц Мюллера для фазового измерительного канала и s-компоненты:

Здесь:

I. Вектор Стокса падающего неполяризованного света единичной интенсивности;

II. Матрица Мюллера для линейного поляризатора с азимутом -45°;

III. Матрица Мюллера для фазовой пластинки с азимутом 0°;

IV. Матрица Мюллера исследуемого образца (неизвестна);

V. Матрица Мюллера для ромба Френеля с азимутом 0°;

VI. Матрица для s-компоненты призмы Волластона с азимутом 45°;

Произведя последовательное (справа налево) умножение матриц, получим значение интенсивности для конфигурации С на данном канале

Аналогично получаем оставшиеся пятнадцать уравнений, составляющих систему:

решая которую, получаем компоненты матрицы Мюллера.

Преимущество заявляемого способа определения матрицы Мюллера заключается прежде всего в расширении возможностей стандартного эллипсометра для исследования образцов с оптической анизотропией. Данная оптическая схема упрощает процесс юстировки и тем самым позволяет установить прибор на сверхвысоковакуумную камеру для in situ измерений.

Способ определения матрицы Мюллера, заключающийся в том, что исследуемый образец освещают поляризованным световым пучком и измеряют изменение поляризации при отражении, используя разделение отраженного луча на р- и s-компоненты с разложением по амплитуде и фазе, получая на выходе четыре световых пучка с интенсивностями I, I, I, I, при этом азимутальные углы оптических элементов принимают фиксированные значения в определенных комбинациях, поляризатор фиксируют в положениях Р=0°, -45°, +45°, анализатор в амплитудном канале А=0°, 45°, фазовом канале А=45°, ромб Френеля R=0 и проводят измерения, соответствующие следующим конфигурациям:A: P45SR0W45W45В: P45SR0W0W45F: P0SR0W45W45Е: P0SR0W0W45, где S - исследуемый образец, W и W - призмы Волластона в амплитудном и фазовом измерительных каналах соответственно,отличающийся тем, что изменяют состояние поляризации падающего на образец света с линейной на круговую, устанавливая в оптический тракт перед образцом фазовую пластинку в положении D=0° и проводят измерения, соответствующие конфигурациям:С: P-45D0SR0W0W45D: P-45D0SR0W45W45, а компоненты матрицы Мюллера S определяют, решая следующую систему линейных уравнений: где - интенсивности р- и s-компонент в амплитудном измерительном канале плеча анализатора, - в фазовом измерительном канале для различных конфигураций оптических элементов.
СПОСОБ ОПРЕДЕЛЕНИЯ МАТРИЦЫ МЮЛЛЕРА
СПОСОБ ОПРЕДЕЛЕНИЯ МАТРИЦЫ МЮЛЛЕРА
СПОСОБ ОПРЕДЕЛЕНИЯ МАТРИЦЫ МЮЛЛЕРА
СПОСОБ ОПРЕДЕЛЕНИЯ МАТРИЦЫ МЮЛЛЕРА
Источник поступления информации: Роспатент

Showing 1-10 of 28 items.
20.12.2013
№216.012.8d6d

Способ получения аморфных магнитных пленок со-р

Изобретение относится к области химического осаждения аморфных магнитных пленок Co-P, например, на полированное стекло и может быть использовано в вычислительной технике. Способ включает очистку стеклянной подложки, двойную сенсибилизацию в растворе хлористого олова с промежуточной обработкой в...
Тип: Изобретение
Номер охранного документа: 0002501888
Дата охранного документа: 20.12.2013
20.01.2014
№216.012.9903

Микрополосковый широкополосный полосно-пропускающий фильтр

Изобретение относятся к технике сверхвысоких частот и предназначено для частотной селекции сигналов. Технический результат заключается в расширении высокочастотной полосы заграждения полосно-пропускающего микрополоскового фильтра и уменьшении его размеров. Микрополосковый фильтр содержит...
Тип: Изобретение
Номер охранного документа: 0002504870
Дата охранного документа: 20.01.2014
10.05.2014
№216.012.c09e

Сквид-магнитометр для фотомагнитных исследований

Изобретение относится к измерительной технике, представляет собой СКВИД-магнитометр для фотомагнитных исследований и может быть использовано для измерения переменных магнитных величин при проведении магнитных измерений при изучении физики магнитных явлений, фотоиндуцированного магнетизма,...
Тип: Изобретение
Номер охранного документа: 0002515059
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c28f

Управляемый фазовращатель

Управляемый фазовращатель относится к технике высоких и сверхвысоких частот и может использоваться для управления фазой сигналов в антенных решетках и системах передачи информации. Достигаемый технический результат - упрощение конструкции. Управляемый фазовращатель содержит...
Тип: Изобретение
Номер охранного документа: 0002515556
Дата охранного документа: 10.05.2014
20.08.2014
№216.012.eb76

Спин-стекольный магнитный материал

Изобретение относится к разработке новых магнитных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти. Спин-стекольный магнитный материал...
Тип: Изобретение
Номер охранного документа: 0002526086
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f2b9

Способ получения порошков гидрида магния в плазме высокочастотной дуги

Изобретение относится к неорганической химии и может быть использовано при гидрировании металла, в частности магния. Способ получения порошков гидрида магния в плазме высокочастотной дуги заключается в диспергировании порошка Mg в присутствии катализатора Ni в потоке гелия и водорода в плазме...
Тип: Изобретение
Номер охранного документа: 0002527959
Дата охранного документа: 10.09.2014
10.10.2014
№216.012.fc69

Способ измерения магнитного момента образцов на сквид-магнитометре

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений в следующих областях: физика магнитных явлений, палеомагнетизм, биомагнетизм. В способе измерения магнитного момента образцов на СКВИД-магнитометре,...
Тип: Изобретение
Номер охранного документа: 0002530463
Дата охранного документа: 10.10.2014
20.12.2014
№216.013.1081

Устройство для измерения поглощающей и излучающей способностей тонкопленочного образца

Изобретение относится к области теплометрии и может быть использовано для измерения поглощающей и излучающей способностей тонкопленочных образцов, например образцов теплозащитных экранов, используемых в космической промышленности. Устройство для измерения поглощающей и излучающей способностей...
Тип: Изобретение
Номер охранного документа: 0002535648
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1234

Датчик слабых высокочастотных магнитных полей

Изобретение относится к измерительной технике, представляет собой датчик слабых высокочастотных магнитных полей и может применяться в первую очередь в магнитометрии. Датчик содержит диэлектрическую подложку, на верхней стороне которой нанесены полосковые проводники двух микрополосковых...
Тип: Изобретение
Номер охранного документа: 0002536083
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.19fa

Оптический многослойный полосно-пропускающий фильтр

Фильтр может быть использован в оптических устройствах связи и спектрометрах комбинационного рассеяния света. Фильтр содержит симметричную конструкцию из чередующихся диэлектрических слоев с высоким и низким показателем преломления, образующую систему однослойных резонаторов, разделенных один...
Тип: Изобретение
Номер охранного документа: 0002538078
Дата охранного документа: 10.01.2015
Showing 1-10 of 30 items.
20.12.2013
№216.012.8d6d

Способ получения аморфных магнитных пленок со-р

Изобретение относится к области химического осаждения аморфных магнитных пленок Co-P, например, на полированное стекло и может быть использовано в вычислительной технике. Способ включает очистку стеклянной подложки, двойную сенсибилизацию в растворе хлористого олова с промежуточной обработкой в...
Тип: Изобретение
Номер охранного документа: 0002501888
Дата охранного документа: 20.12.2013
20.01.2014
№216.012.9903

Микрополосковый широкополосный полосно-пропускающий фильтр

Изобретение относятся к технике сверхвысоких частот и предназначено для частотной селекции сигналов. Технический результат заключается в расширении высокочастотной полосы заграждения полосно-пропускающего микрополоскового фильтра и уменьшении его размеров. Микрополосковый фильтр содержит...
Тип: Изобретение
Номер охранного документа: 0002504870
Дата охранного документа: 20.01.2014
10.05.2014
№216.012.c09e

Сквид-магнитометр для фотомагнитных исследований

Изобретение относится к измерительной технике, представляет собой СКВИД-магнитометр для фотомагнитных исследований и может быть использовано для измерения переменных магнитных величин при проведении магнитных измерений при изучении физики магнитных явлений, фотоиндуцированного магнетизма,...
Тип: Изобретение
Номер охранного документа: 0002515059
Дата охранного документа: 10.05.2014
10.05.2014
№216.012.c28f

Управляемый фазовращатель

Управляемый фазовращатель относится к технике высоких и сверхвысоких частот и может использоваться для управления фазой сигналов в антенных решетках и системах передачи информации. Достигаемый технический результат - упрощение конструкции. Управляемый фазовращатель содержит...
Тип: Изобретение
Номер охранного документа: 0002515556
Дата охранного документа: 10.05.2014
20.08.2014
№216.012.eb76

Спин-стекольный магнитный материал

Изобретение относится к разработке новых магнитных материалов с магнитным состоянием спинового стекла и может найти применение в химической промышленности и электронной технике, в частности, для разработки моделей новых типов устройств магнитной памяти. Спин-стекольный магнитный материал...
Тип: Изобретение
Номер охранного документа: 0002526086
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f2b9

Способ получения порошков гидрида магния в плазме высокочастотной дуги

Изобретение относится к неорганической химии и может быть использовано при гидрировании металла, в частности магния. Способ получения порошков гидрида магния в плазме высокочастотной дуги заключается в диспергировании порошка Mg в присутствии катализатора Ni в потоке гелия и водорода в плазме...
Тип: Изобретение
Номер охранного документа: 0002527959
Дата охранного документа: 10.09.2014
10.10.2014
№216.012.fc69

Способ измерения магнитного момента образцов на сквид-магнитометре

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений в следующих областях: физика магнитных явлений, палеомагнетизм, биомагнетизм. В способе измерения магнитного момента образцов на СКВИД-магнитометре,...
Тип: Изобретение
Номер охранного документа: 0002530463
Дата охранного документа: 10.10.2014
20.12.2014
№216.013.1081

Устройство для измерения поглощающей и излучающей способностей тонкопленочного образца

Изобретение относится к области теплометрии и может быть использовано для измерения поглощающей и излучающей способностей тонкопленочных образцов, например образцов теплозащитных экранов, используемых в космической промышленности. Устройство для измерения поглощающей и излучающей способностей...
Тип: Изобретение
Номер охранного документа: 0002535648
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1234

Датчик слабых высокочастотных магнитных полей

Изобретение относится к измерительной технике, представляет собой датчик слабых высокочастотных магнитных полей и может применяться в первую очередь в магнитометрии. Датчик содержит диэлектрическую подложку, на верхней стороне которой нанесены полосковые проводники двух микрополосковых...
Тип: Изобретение
Номер охранного документа: 0002536083
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.19fa

Оптический многослойный полосно-пропускающий фильтр

Фильтр может быть использован в оптических устройствах связи и спектрометрах комбинационного рассеяния света. Фильтр содержит симметричную конструкцию из чередующихся диэлектрических слоев с высоким и низким показателем преломления, образующую систему однослойных резонаторов, разделенных один...
Тип: Изобретение
Номер охранного документа: 0002538078
Дата охранного документа: 10.01.2015
+ добавить свой РИД