×
27.04.2016
216.015.3a29

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТОВ НА ОСНОВЕ НАНОЧАСТИЦ ЗОЛОТА, ПОКРЫТЫХ ОБОЛОЧКОЙ ИЗ ОКСИДА КРЕМНИЯ, И КВАНТОВЫХ ТОЧЕК

Вид РИД

Изобретение

№ охранного документа
0002583022
Дата охранного документа
27.04.2016
Аннотация: Изобретение относится к нанотехнологии и может быть использовано при изготовлении спазеров, плазмонных нанолазеров, при флуоресцентном анализе нуклеиновых кислот, высокочувствительном обнаружении ДНК, фотометрическом определении метиламина. Сначала приготавливают первый раствор, содержащий наночастицы золота с оболочкой из оксида кремния. Затем приготавливают второй раствор, включающий квантовые точки, покрытые лигандами, содержащими различные функциональные группы. Смешивают указанные растворы для получения результирующего раствора, содержащего наночастицы золота с оболочкой из оксида кремния, покрытой квантовыми точками. Количество квантовых точек определяют отношением диаметра оболочки к диаметру квантовой точки. Для получения требуемого количества квантовых точек на поверхности оболочки её толщину увеличивают после смешивания первого и второго растворов путём смешивания результирующего водного раствора с этанолом и добавления аммония и тетраэтоксисилана. Изобретение позволяет управлять количеством квантовых точек на поверхности оболочки. 11 з.п. ф-лы, 1 ил.

Область техники, к которой относится изобретение

Настоящее изобретение относится в целом к системам «покрытые оболочкой наночастицы - квантовые точки» и, в частности, к способу получения нанокомпозитов на основе наночастиц золота, покрытых оболочкой из оксида кремния, и квантовых точек.

Уровень техники

Из уровня техники известны разные методики получения систем «покрытые оболочкой наночастицы - квантовые точки».

Например, авторы работы [1] (см. Journal of Applied Physics, Vol. 109, Issue 12, p. 124310, 2011) сообщают о способе получения нанокомпозитов «квантовые точки CdSe(ядро)/ZnS(оболочка) - наночастица золота» в водном растворе. Первый этап этого способа состоит в формировании наночастиц золота с помощью цитратного метода в водном растворе. Далее выполняется стандартная очистка полученного раствора от лишних исходных реагентов. После этого водный раствор квантовых точек CdSe(ядро)/ZnS(оболочка) с разной концентрацией добавляется в готовый раствор наночастиц золота в деионизованной воде. В работе [1] определяются оптические характеристики получающихся систем. Недостатки вышеописанного способа включают в себя непосредственный контакт флуорофора с наночастицами золота, тем самым вызывая тушение люминесценции. Кроме того, полученные нанокомпозиты на основе наночастиц золота и квантовых точек не демонстрируют устойчивость во времени. Слипание наночастиц во время изготовления планарных образцов может привести к их неоднородному распределению по поверхности образца и, следовательно, неоднородностям интенсивности люминесценции.

Авторы работы [2] (см. Nano Letters, Vol. 2, No. 12, pp. 1449-1452, 2002) используют осаждение слоев коллоидного золота и квантовых точек, разделенных полимером разной толщины. Наночастицы золота получаются с использованием цитратного метода, а пленки коллоидного золота изготавливаются с применением электростатического метода. Далее слой полимера различной толщины осаждается на этих покрытиях. Затем квантовые точки CdSe(ядро)/ZnS(оболочка) осаждаются на полученных структурах. В работе [2] определяются оптические характеристики полученных систем и демонстрируется влияние толщины полимера на интенсивность люминесценции квантовых точек в присутствии золота. Недостатки этого способа включают в себя его многоэтапный характер и низкую размерность системы (2D). Поскольку в работе [2] используются пленки золота, поверхностная концентрация квантовых точек в основном ограничена. Возможность увеличения концентрации основана на создании многослойных разделенных структур, что сделает технологию оптических структур намного сложнее.

Как следует из работы [3] (см. NNIN REU Research Accomplishments, pp. 100-101, 2008), системы «квантовые точки CdSe(ядро)/ZnS(оболочка) - наночастица золота» получаются посредством послойного осаждения: подложка - квантовые точки - слой SiO2 - наночастицы золота. Сначала квантовые точки CdSe(ядро)/ZnS(оболочка) осаждаются на стеклянной подложке посредством метода центрифугирования, затем слой оксида кремния толщиной 10 нм наносится посредством физического осаждения. После этого раствор наночастиц золота в этаноле осаждается на сформированную структуру и быстро нагревается под действием микроволнового излучения. В результате, на поверхности оксида кремния образуются наночастицы золота размером 50 нм. Недостатки этого способа включают в себя, помимо его многоэтапного характера и низкой размерности (2D), также использование способов осаждения слоев, отличающихся друг от друга по физической природе. Поскольку в работе [3] используется однослойный массив наночастиц, поверхностная концентрация квантовых точек в основном ограничена. Возможность увеличения концентрации основана на создании многослойных разделенных структур, что сделает технологию оптических структур намного сложнее.

Раскрытие изобретения

Задача настоящего изобретения заключается в устранении вышеупомянутых недостатков, присущих решениям, известным из уровня техники.

Для этого предложен способ получения нанокомпозитов на основе наночастиц золота, покрытых оболочкой из оксида кремния, и квантовых точек. Способ содержит этапы, на которых: приготавливают первый раствор наночастиц золота, инкапсулированных в оболочку из оксида кремния; приготавливают второй раствор квантовых точек, покрытых лигандами, содержащими различные функциональные группы; и смешивают первый и второй растворы для получения результирующего раствора, в котором поверхность оболочек из оксида кремния у наночастиц золота покрыта квантовыми точками. Количество квантовых точек на поверхности оболочки из оксида кремния у наночастицы золота определяется как отношение диаметра оболочки из оксида кремния к диаметру квантовой точки. Диаметр оболочки из оксида кремния изменяется за счет изменения толщины оболочки из оксида кремния до упомянутого этапа смешивания первого и второго растворов, чтобы получить требуемое количество квантовых точек на поверхности оболочки из оксида кремния после упомянутого этапа смешивания первого и второго растворов.

Квантовые точки могут представлять собой квантовые точки CdSxSex-1/ZnS, покрытые лигандами, содержащими различные функциональные группы. Функциональными группами лигандов могут быть карбоксилаты, или гидроксилы, или амины.

Предпочтительно, чтобы упомянутый этап приготовления первого раствора содержал этапы, на которых: синтезируют наночастицы золота в водном растворе, используя цитратный метод; формируют оболочку из оксида кремния на поверхности наночастиц золота за счет добавления силанового связывающего агента и затем силиката натрия в водный раствор; и увеличивают толщину сформированной оболочки из оксида кремния за счет смешивания водного раствора с этанолом и затем добавления аммония и тетраэтоксисилана (TEOS) в него. Средний размер наночастиц золота, получаемых с помощью такого метода, составляет 15 нм, и среднее отклонение по размеру не превышает 10%. Силановый связывающий агент может представлять собой (3-аминопропил)триметоксисилан (APS). Толщина утолщенной оболочки из оксида кремния составляет 25-35 нм.

Предпочтительно, чтобы отношение концентраций наночастиц золота, покрытых оболочкой из оксида кремния, и квантовых точек находилось в диапазоне от 1:400 до 1:700 при условии изменения толщины оболочки из оксида кремния от 25 до 35 нм.

Толщина оболочки из оксида кремния может изменяться за счет изменения количества аммония и TEOS.

Квантовые точки могут образовать непрерывный слой на поверхности оболочек из оксида кремния у наночастиц золота, или квантовые точки могут частично покрывать поверхность оболочек из оксида кремния у наночастиц золота.

Предложенный способ позволяет формировать нанокомпозиты на основе наночастиц золота, покрытых оболочкой из оксида кремния, и квантовых точек, при этом управляя количеством квантовых точек на поверхности оболочки из оксида кремния у наночастицы золота.

Краткое описание чертежей

Фиг. 1 представляет собой микрофотографию наночастиц золота внутри оболочек из оксида кремния, покрытых квантовыми точками.

Осуществление изобретения

Различные варианты осуществления настоящего изобретения описаны далее более подробно. Однако настоящее изобретение может быть реализовано во многих других формах и не должно пониматься как ограниченное любой конкретной структурой или функцией, представленной в нижеследующем описании. Напротив, эти варианты осуществления предоставлены для того, чтобы сделать настоящее описание подробным и полным. Исходя из настоящего описания, специалисту в данной области техники будет очевидно, что объем настоящего изобретения охватывает любой вариант осуществления настоящего изобретения, который раскрыт в данном документе, вне зависимости от того, реализован ли этот вариант осуществления независимо или совместно с любым другим вариантом осуществления настоящего изобретения. Например, способ, раскрытый в данном документе, может быть реализован на практике посредством использования любого числа вариантов осуществления, обеспеченных в данном документе. Кроме того, должно быть понятно, что любой вариант осуществления настоящего изобретения может быть реализован с использованием одного или более элементов, представленных в приложенной формуле изобретения.

Используемый в данном документе термин «наночастица» означает микроскопическую частицу с по меньшей мере одним размером менее 100 нм. Наночастицы могут иметь разные формы, например, сферические и несферические. Примеры несферических наночастиц включают в себя (без ограничения) кубические наночастицы, наностержни. Любая из таких наночастиц находится в пределах объема настоящего изобретения. Кроме того, наночастицы могут быть выполнены из разных материалов. Предпочтительно, если наночастицы выполнены из золота.

Используемый в данном документе термин «квантовая точка» относится к нанокристаллу, изготовленному из полупроводниковых материалов. Аналогично наночастицам, квантовые точки могут иметь разные формы и могут быть выполнены из разных полупроводниковых материалов. Предпочтительно, если квантовые точки представляют собой квантовые точки CdSxSex-1/ZnS, покрытые лигандами, содержащими различные функциональные группы. Функциональными группами могут быть карбоксилаты, или гидроксилы, или амины.

Настоящее изобретение относится к способу получения нанокомпозитов на основе наночастиц золота, покрытых оболочкой из оксида кремния, и квантовых точек. Этапы способа описываются в целом ниже, и любые оптимальные количественные характеристики приводятся в разделе «Пример». Следует отметить, что, если потребуется, порядок этапов, упомянутых ниже, может быть изменен, как должно быть очевидно специалистам в данной области техники.

Сначала приготавливают первый раствор наночастиц золота, инкапсулированных в оболочку из оксида кремния. Для этого наночастицы золота в водном растворе получают с использованием стандартного цитратного метода. Затем формируют оболочку из оксида кремния на поверхности каждой наночастицы золота с помощью добавления силанового связывающего агента и силиката натрия в водный раствор наночастиц золота. В одном варианте осуществления силановый связывающий агент представляет собой (3-аминопропил)триметоксисилан (APS). В общем, процедура инкапсулирования наночастицы золота в оболочку из оксида кремния известна, например, из работы [4] (см. Liz-Marzan L. M., Giersig M., Mulvaney P. Synthesis of Nanosized Gold-Silica Core-Shell Particles//Langmuir 1996, 12, 4329-4335).

После этого увеличивают толщину сформированной оболочки из оксида кремния за счет смешивания водного раствора наночастиц золота, покрытых оболочкой из оксида кремния, с этанолом и добавления аммония и тетраэтоксисилана (TEOS) в водный раствор наночастиц золота, покрытых оболочкой из оксида кремния.

Далее приготавливают второй раствор квантовых точек, покрытых лигандами, содержащими различные функциональные группы. Квантовыми точками с лигандами на их поверхности могут быть: квантовые точки CdSxSex-1/ZnS, покрытые функциональными лигандами ОН, квантовые точки CdSxSex-1/ZnS, покрытые функциональными лигандами NH2, квантовые точки CdSe/ZnS, покрытые функциональными лигандами олеиновой кислоты, квантовые точки CdSSe/ZnS, покрытые функциональными лигандами COOH, квантовые точки CdSSe/ZnS, покрытые положительно заряженным монослоем полидиаллилдиметиламмония (PDDA). Приготовление таких квантовых точек известно из уровня техники. Выбор типов лигандов с разными функциональными группами определяется возможностью обеспечения заряженного состояния на поверхности оболочки из оксида кремния и их коммерческой доступностью.

После того, как приготовлены первый и второй растворы, они смешиваются для получения результирующего раствора, в котором поверхность оболочек из оксида кремния у наночастиц золота покрыта квантовыми точками.

Изменяя толщину оболочки из оксида кремния перед упомянутым этапом смешивания, можно (чисто геометрически) изменить количество квантовых точек на ее поверхности. Это количество можно оценить как отношение диаметра оболочки из оксида кремния к диаметру максимальной квантовой точки. Кроме того, снижая концентрацию квантовых точек во втором растворе ниже определенного предела, при этом фиксируя толщину оболочки из оксида кремния, можно управлять числом квантовых точек от 0 до предела, соответствующего ее непрерывному покрытию. Из этого ясно, что квантовые точки могут полностью или частично покрывать оболочку из оксида кремния у наночастицы золота.

Пример

Далее будет приведен конкретный пример приготовления нанокомпозитов на основе наночастиц золота, покрытых оболочкой из оксида кремния, и квантовых точек.

Для получения наночастиц золота используется восстановление золотохлористоводородной кислоты (HCAA) цитратом натрия. Согласно стандартной процедуре, наночастицы золота получаются следующим образом: 30 мг HCAA (99,999% Aldrich) добавляют в 150 мл дважды дистиллированной воды. Результирующий раствор доводят до кипения в двугорлой колбе с обратным охладителем. Во время кипения и интенсивного перемешивания в этот раствор добавляют раствор цитрата натрия (99% AlfaAesar) (83 мг в 50 мл дважды дистиллированной воды). Смесь доводится до кипения и выпаривается еще в течение 30 мин. В результате реакции в растворе формируются наночастицы золота, стабилизированные цитратом натрия; их средний размер составляет 15 нм. Согласно данным сканирующей электронной микроскопии, среднее отклонение по размеру не превышает 10%. В течение восстановления HCAA цитратом натрия цвет раствора изменяется с черно-фиолетового на ярко-красный, что соответствует поглощению в зеленой области спектра (~520 нм). Полученный раствор является очень устойчивым и может использоваться много времени спустя.

Процедура инкапсулирования наночастицы золота в оболочку из оксида кремния выполняется следующим образом: 1 мл водного раствора (3-аминопропил)триметоксисилан (APS) (97% AlfaAesar) с концентрацией 1 ммоль/л добавляют в 200 мл раствора наночастиц золота. Раствор смешивают в течение 10 минут для обеспечения связывания аминогрупп с поверхностью золота. Результирующий раствор является устойчивым в течение нескольких недель; тем не менее, темный осадок образуется на дне емкости при хранении в течение длительного времени.

Во время смешивания в раствор добавляют 8 мл 0,54% водного раствора силиката натрия (27% Aldrich) с pH 9-10. Затем результирующий раствор поддерживается при комнатной температуре в течение 24 часов для формирования зародышевого слоя SiO2 на поверхности наночастиц золота. В результате, учитывая, что вышеуказанные условия выполнены, на этом этапе получаются наночастицы золота, покрытые оболочкой SiO2 толщиной 2-6 нм. Срок хранения этих растворов является очень большим.

Чтобы увеличить толщину слоя SiO2 на поверхности наночастиц золота, 30 мл раствора наночастиц золота, покрытых оболочкой из оксида кремния, смешивают со 120 мл этанола. Затем в эту смесь добавляют 0,6 мл аммония (28-30% Aldrich) и 90 мкл тетраэтоксисилана (TEOS) (99% Aldrich). Смесь взбалтывают с помощью магнитной мешалки в течение 12-24 часов. В результате, получается суспензия наночастиц золота, покрытых оболочкой из оксида кремния толщиной 25-35 нм. Изменяя количество аммония и TEOS, можно изменять толщину оболочку из оксида кремния.

Для осаждения квантовых точек на поверхность оболочки из оксида кремния у наночастиц золота 200 мкл (8,4*1011 частиц/мл) раствора наночастиц золота, покрытых оболочкой из оксида кремния, добавляют в раствор квантовых точек в воде, 200 мкл (8*1013 частиц/мл). Затем осуществляют перемешивание в течение 10 минут. В результате, получаются нанокомпозиты, состоящие из наночастиц золота, покрытых оболочкой из оксида кремния и непрерывным слоем квантовых точек. Полученные нанокомпозиты показаны на Фиг. 1. Оптимальными квантовыми точками с лигандами на их поверхности являются квантовые точки CdSxSex-1/ZnS, покрытые функциональными лигандами NH2. Оптимальное отношение концентраций наночастиц золота, покрытых оболочкой из оксида кремния, и квантовых точек находится в диапазоне от 1:400 до 1:700 при условии изменения толщины оболочки из оксида кремния от 25 до 35 нм.

Выбор квантовых точек CdSxSex-1/ZnS объясняется тем фактом, что максимум их люминесценции почти совпадает с плазмонным пиком наночастиц золота. Результирующие структуры содержат число квантовых точек, которое преимущественно подходит для создания спазеров и плазмонных нанолазеров. Кроме того, эти структуры с улучшенной флуоресценцией обладают возможностью применения при флуоресцентном анализе нуклеиновых кислот, высокочувствительном обнаружении ДНК и для флуориметрического определения метиламина.

Хотя в данном документе были раскрыты примерные варианты осуществления настоящего изобретения, следует отметить, что в этих вариантах осуществления настоящего изобретения могут быть выполнены любые изменения и модификации без отступления от объема правовой охраны, который определяется приложенной формулой изобретения. В приложенной формуле изобретения упоминание элементов в единственном числе не исключает наличие множества таких элементов, если в явном виде не указано иное.


СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТОВ НА ОСНОВЕ НАНОЧАСТИЦ ЗОЛОТА, ПОКРЫТЫХ ОБОЛОЧКОЙ ИЗ ОКСИДА КРЕМНИЯ, И КВАНТОВЫХ ТОЧЕК
Источник поступления информации: Роспатент

Showing 921-930 of 1,295 items.
29.03.2019
№219.016.f038

Устройство и способ назначения кода расширения для сообщения обратного общего канала в системе связи множественного доступа с кодовым разделением каналов

Заявлены устройство и способ передачи сообщения общего канала в системе связи множественного доступа с кодовым разделением каналов. В базовой станции заявленного устройства генератор управляющего сообщения формирует сообщение, содержащее информацию о коде расширения для расширения сообщения...
Тип: Изобретение
Номер охранного документа: 02233031
Дата охранного документа: 20.07.2004
29.03.2019
№219.016.f03c

Устройство мобильной связи с множеством передающих и приемных антенн и соответствующий способ мобильной связи

В устройстве мобильной связи базовая станция по меньшей мере с одной передающей антенной из принятого от мобильной станции сигнала обратной связи восстанавливает долгосрочную информацию, краткосрочную информацию, отношение уровня сигнала к совокупному уровню взаимных помех и шумов (ОСВПШ);...
Тип: Изобретение
Номер охранного документа: 02238611
Дата охранного документа: 20.10.2004
29.03.2019
№219.016.f045

Способ управления мощностью во время гибкого переключения каналов связи в системе мобильной связи

Изобретение относится к системам мобильной связи, поддерживающей мультимедийный сервис, и касается способа управления мощностью во время гибкого переключения каналов связи в системе мобильной связи. Мобильная станция, находящаяся на связи с множеством базовых станций при гибком переключении...
Тип: Изобретение
Номер охранного документа: 02237975
Дата охранного документа: 10.10.2004
29.03.2019
№219.016.f0af

Способ перемежения/обращенного перемежения для системы связи и устройство для его осуществления

Устройство для создания L адресов, количество которых меньше 2хN виртуальных адресов для считывания данных из памяти перемежителя, в которой запоминается L бит данных, причем устройство содержит N ПШ генераторов, каждый из которых содержит m устройств памяти; генератор адресов для добавления...
Тип: Изобретение
Номер охранного документа: 02210186
Дата охранного документа: 10.08.2003
29.03.2019
№219.016.f0b1

Устройство и способ регулирования мощности для управления общим каналом обратной линии связи в системе связи мдкр

Изобретение относится к системе связи множественного доступа с кодовым разделением каналов (МДКР). Устройство передачи по общему каналу регулирования мощности для базовой станции в системе связи МДКР содержит контроллер временных интервалов, селектор для мультиплексирования принятой команды...
Тип: Изобретение
Номер охранного документа: 02210864
Дата охранного документа: 20.08.2003
29.03.2019
№219.016.f0bc

Стиральная машина и способ управления ею

Стиральная машина способна стирать белье с использованием пены. Способ управления такой машиной включает в себя формирование жидкого концентрата моющего средства, необходимого для образования пены, подачу жидкого концентрата моющего средства и воды в бак для воды, образование пены из воды с...
Тип: Изобретение
Номер охранного документа: 0002340715
Дата охранного документа: 10.12.2008
29.03.2019
№219.016.f0c4

Устройство и способ для кодирования/декодирования кода разреженного контроля четности с переменной длиной блока

Изобретение относится к системе мобильной связи и, в частности, к устройству и способу для кодирования/декодирования блочного кода разреженного контроля четности (LDPC), обладающего переменной длиной. Устройство и способ включают в себя прием информационного слова и кодирование информационного...
Тип: Изобретение
Номер охранного документа: 0002341894
Дата охранного документа: 20.12.2008
29.03.2019
№219.016.f0ea

Стиральная машина

Стиральная машина способна предотвращать накопление накипи на поверхности нагревательного устройства. Нагревательное устройство содержит проволочный нагревательный элемент, установленный в центре нагревательного устройства, и антипригарный слой, расположенный на наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002349691
Дата охранного документа: 20.03.2009
29.03.2019
№219.016.f0eb

Способ и устройство для контроля дефектов в носителях записи и носитель записи с контролем дефектов, полученный с использованием этого способа

Предложены способ, устройство и машиночитаемый носитель для контроля дефектов носителя записи и носитель записи с контролем дефектов. Носитель записи включает в себя резервную область, в которой сформирована область замещения. В область замещения вместе с замещаемыми данными записываются...
Тип: Изобретение
Номер охранного документа: 0002349972
Дата охранного документа: 20.03.2009
29.03.2019
№219.016.f114

Информационный носитель данных и способ записи данных на него

Информационный носитель данных включаем в себя несколько слоев записи. Каждый из них имеет область данных пользователя, на которую данные могут быть записаны головкой записи/считывания. Данные записывают в порядке слоев записи от самого ближнего до самого дальнего от головки записи/считывания....
Тип: Изобретение
Номер охранного документа: 0002343568
Дата охранного документа: 10.01.2009
Showing 661-665 of 665 items.
04.04.2018
№218.016.35cd

Способ и устройство для рендеринга звукового сигнала и компьютерно-читаемый носитель информации

Настоящее изобретение относится к способу и устройству для рендеринга аудиосигнала и, более конкретно, к способу рендеринга и устройству для понижающего микширования (микширования с понижением числа каналов) многоканального сигнала в соответствии с типом рендеринга. Технический результат –...
Тип: Изобретение
Номер охранного документа: 0002646320
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.362a

Способ и устройство для рендеринга акустического сигнала и машиночитаемый носитель записи

Изобретение относится к обработке аудиосигнала аудиоизображения. Технический результат – уменьшение искажения аудиоизображения, когда угол подъема входного канала отличается от стандартного угла подъема входного канала. Способ для рендеринга акустического сигнала содержит этапы: приема...
Тип: Изобретение
Номер охранного документа: 0002646337
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.369d

Способ и система представления приложений терминала мобильной связи

Изобретение относится к способу и системе представления приложений терминала мобильной связи. Технический результат заключается в расширении арсенала средств. Предлагаются способ и система представления приложений, причем способ и система включают в себя отображение карты на устройстве...
Тип: Изобретение
Номер охранного документа: 0002646359
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.36b1

Устройство и способ передачи и приема пакета с прямой коррекцией ошибок

Изобретение относится к области связи для широковещательной передачи данных. Технический результат заключается в повышении эффективности передачи пакета в системе мультимедийных услуг. Технический результат достигается за счет конфигурирования исходного пакета с коррекцией ошибок посредством...
Тип: Изобретение
Номер охранного документа: 0002646346
Дата охранного документа: 02.03.2018
04.04.2018
№218.016.3750

Микроволновая печь

Предложена микроволновая печь, имеющая усовершенствованную конструкцию, которая позволяет равномерно нагревать пищевые продукты. Микроволновая печь содержит: корпус, включающий в себя варочную камеру (20), имеющую нижнюю поверхность (21), по меньшей мере одну первую отражательную часть (110),...
Тип: Изобретение
Номер охранного документа: 0002646616
Дата охранного документа: 06.03.2018
+ добавить свой РИД