×
27.04.2016
216.015.3891

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПРОФИЛЯ СТАЦИОНАРНЫХ МЕГАВАТТНЫХ ПУЧКОВ ИОНОВ И АТОМОВ В ИНЖЕКТОРАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах путем измерения относительной плотности тока по сечению пучка, направленного на калориметр, выполненный из двух параллельно расположенных слоев водоохлаждаемых трубок, которые в каждом слое расположены относительно друг друга с зазором, меньшим диаметра трубки, а трубки второго слоя смещены относительно трубок первого слоя на величину, равную половине расстояния между осями трубок, при этом относительную плотность тока по сечению пучка определяют по измерению коллекторами тока ионно-эмиссионных электронов, образующихся в результате бомбардировки пучком ионов и атомов трубок калориметра, при этом коллекторы, расположенные между трубками калориметра второго слоя, устанавливают так, что трубки калориметра первого слоя перекрывают падающий на них пучок. Технический результат - измерение полного профиля стационарных пучков ионов и атомов, плотность мощности которых составляет десятки МВт/м. 6 ил.
Основные результаты: Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах путем измерения относительной плотности тока по сечению пучка, направленного на калориметр, выполненный из двух параллельно расположенных слоев водоохлаждаемых трубок, которые в каждом слое расположены относительно друг друга с зазором, меньшим диаметра трубки, а трубки второго слоя смещены относительно трубок первого слоя на величину, равную половине расстояния между осями трубок, отличающийся тем, что относительную плотность тока по сечению пучка определяют по измерению коллекторами тока ионно-эмиссионных электронов, образующихся в результате бомбардировки пучком ионов и атомов трубок калориметра, при этом коллекторы, расположенные между трубками калориметра второго слоя, устанавливают так, что трубки калориметра первого слоя перекрывают падающий на них пучок.

Изобретение относится к диагностике профилей пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Знание профиля пучка (т.е. распределения плотности тока по сечению пучка) необходимо для определения таких его важных параметров, как угол расходимости и точность настройки оси пучка ионов и атомов на входное окно токамака, т.е. работоспособности установки.

Измерение профиля (распределения плотности тока по сечению пучка) квазистационарного мегаваттного пучка является проблемной задачей вследствие очень высокой плотности мощности (ПМ) в пучке, составляющей десятки МВт/м2. При таких ПМ традиционное использование вольфрамовых зондов для измерения тока пучка, вводимых непосредственно в пучок, ограничено их «временем жизни» на уровне сотен миллисекунд.

Известен способ определения параметров круговой развертки пучка заряженных частиц ускорителя (а.с. СССР №1807776, G01T 1/29), основанный на регистрации электрического сигнала с коллектора с последующей обработкой результатов, в котором измеряют падение напряжения на участке протекания по коллектору тока заряженных частиц пучка. Коллекторы выполнены в виде проволочек из нихрома толщиной 0,02 см и размещены в одной плоскости радиально через угловые интервалы в 90°.

Этим способом нельзя измерить профиль квазистационарных мегаваттных пучков.

В разрабатываемом инжекторе ИТЭР с длительностью импульса инжекции до 1 часа (1. L.R. Grisham, P. Agostinetti, G. Barrera е.а. "Recent improvements to the ITER neutral beam system design". Fusion Engineering and Design, 2012 - прототип. 2. ITER Final Design Report, Design Description Document (DDD5.3) "Neutral Beam Heating and Current Drive (NBH&CD) System", July 2001) для настройки оси пучка измеряют только сдвиг оси пучка и усредненное по одной из координат распределение плотности мощности пучка. При этом профиль стационарных мегаваттных пучков ионов и атомов в инжекторах определяют путем измерения плотности тока по сечению пучка, с помощью устройства, представляющего собой установленный на пути следования пучка раздвижной приемник-калориметр, выполненный из охлаждаемых водой трубок. Приемник-калориметр имеет V-образную конструкцию, что обеспечивает прием пучка мощностью 18 МВт.

Приемник-калориметр состоит из двух раздвижных панелей, каждая из которых образована набором ориентированных в горизонтальной плоскости охлаждаемых трубок, расположенных в два слоя: передний и задний относительно направленного пучка ионов и атомов. Трубки в каждом слое расположены относительно друг друга с зазором а, меньшим диаметра трубки d. Трубки второго слоя смещены относительно трубок первого слоя на величину, равную половине расстояния между осями трубок Н. При такой конфигурации расположения трубок пучок ионов полностью попадает на панель приемника калориметра. В такой конструкции в качестве средства диагностики используются термопары, установленные на концах трубок панелей калориметра.

Измеряя разность температур ΔТ=Т2-Т1 на концах трубки и расход воды Q в ней, можно рассчитать мощность, выделяемую пучком на каждой из трубок. Зная энергию ионов Е, можно оценить среднюю плотность тока пучка, попадающего на трубку.

, где

Q - расход воды (кг/с),

L - длина трубки калориметра (м),

d - диаметр трубки калориметра (м),

ср - теплоемкость воды (Дж/(град*кг)).

е - заряд иона (Кл),

j(x) - распределение плотности тока пучка (А/м2),

ΔT - разность температуры (град),

Е - энергия ионов (Дж).

Такой способ позволяет измерять только усредненный по горизонтали вертикальный профиль пучка. Основной недостаток описанной выше методики заключается в том, что невозможно определить горизонтальный профиль пучка. То есть, не удается определить угол расходимости пучка по горизонтали, возможна только грубая настройка оси пучка по данным энерговыделения пучка на каждой панели. Кроме того, возможны неточности и в измерении вертикального профиля, поскольку нет гарантии, что во всех трубках достигается одинаковый расход воды.

В настоящее время не существует способа, который позволяет измерять полный профиль пучка с плотностью мощности десятки МВт/м2.

Техническим результатом, на которое направлено изобретение, является разработка способа измерения полного профиля стационарных пучков ионов и атомов, плотность мощности которых составляет десятки МВт/м2.

Для этого предложен способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах путем измерения относительной плотности тока по сечению пучка, направленного на калориметр, выполненный из двух параллельно расположенных слоев водоохлаждаемых трубок, которые в каждом слое расположены относительно друг друга с зазором а, меньшим диаметра трубки d, а трубки второго слоя смещены относительно трубок первого слоя на величину, равную половине расстояния между осями трубок Н, при этом относительную плотность тока по сечению пучка определяют по измерению коллекторами тока ионно-эмиссионных электронов, образующихся в результате бомбардировки пучком ионов и атомов трубок калориметра, при этом коллекторы, расположенные между трубками калориметра второго слоя, устанавливают так, что трубки калориметра первого слоя перекрывают падающий на них пучок.

На фиг. 1 дана схема устройства для измерения профиля пучка, где

1 - передний слой трубок панели калориметра,

2 - задний слой трубок панели калориметра,

3 - коллектор ионно-электронной эмиссии,

4 - зонд из вольфрамовой проволоки,

5 - измерительная аппаратура,

6 - источник постоянного напряжения,

7 - измерительное сопротивление,

8 - измерительная аппаратура ионного тока.

На фиг. 2 показано распределение относительной плотности тока пучка А/Амах по вертикальной оси пучка, где

9 - ромбами обозначены значения относительной плотности тока пучка, полученные из измерений коллекторами тока ионно-электронной эмиссии,

10 - кружками обозначены значения относительной плотности тока пучка, полученные из измерения зондами тока ионов пучка,

11 - профиль пучка.

На фиг. 3 показана схема приемника-калориметра с раздвижными панелями 12.

На фиг. 4. изображена панель 12 приемника-калориметра, представляющая собой собранные в два слоя 1 и 2 охлаждаемые трубки панелей калориметра.

На фиг. 5 показано условное расположение матрицы коллекторов между трубок калориметра.

На фиг. 6 представлена осциллограмма потенциала V коллектора ионно-электронной эмиссии при длительности импульса ~ 1.0 с.

Схема такого способа измерения представлена на фиг. 1. Каждый коллектор 3 размещается между трубками заднего слоя 2 в тени трубок переднего слоя 1, т.е. не попадает под прямое облучение пучком. Коллекторы 3 предназначены для сбора ионно-эмиссионных электронов, образующихся в результате бомбардировки пучком (состоящим из ионов и атомов), трубок калориметра 1 и 2. Набор таких коллекторов дает возможность измерения, как горизонтальных, так и вертикальных профилей по всему сечению пучка. Коллекторы могут быть выполнены, например, в виде пластин из нержавеющей стали.

На каждый коллектор 3 с помощью постоянного источника напряжения 6 подается положительное напряжение Uк относительно трубок калориметра, которые заземлены. В этом случае электроны, которые образуются на поверхности трубок, выполненные, например, из меди или сплава меди, за счет бомбардировки ионами и атомами пучка, поступают на этот коллектор. Ток J, который появляется при этом в измерительной цепи, определяется по величине падения напряжения V на измерительном сопротивлении R 7 J=V/R. Величина напряжения Uк подбирается такой, чтобы ее дальнейшее увеличение не приводило к изменению собираемого эмиссионного тока электронов. С помощью измерительной аппаратуры 5 значения V со всех коллекторов выводится на монитор персонального компьютера (не показан).

Поскольку величина тока эмиссии пропорциональна плотности тока пучка, величина падения напряжения V будет также пропорциональна плотности пучка в области расположения коллектора.

Расстояние между коллекторами h, расположенными между трубками, зависит от расстояния между осями трубок H и составляет величину, кратную Н, тогда h=Н*n, где n=1, 2. Для диаметра трубок d=(1-2) см H=1.6-3.6 см, расстояние между коллекторами вдоль трубок определяется профилем пучка и может составлять также несколько сантиметров. Очевидно, общее количество коллекторов будет зависеть от размеров пучка. Для установки Т-15 размер пучка составляет по вертикали 0.6 м по горизонтали 0.14 м, для установки ИТЭР эти размеры составляют соответственно 1.2 м и 0.6 м. Тогда для H=1.6-3.6 см общее количество коллекторов может превышать 100 шт.

Данный способ был экспериментально проверен на инжекторном тест-стенде ИРЕК, приемник-калориметр которого соответствует приемнику-калориметру установки ИТЭР. Измерения проводились с использованием пучка положительных ионов и атомов водорода мощностью 1.2 МВт при энергии частиц 35 кэВ и плотности мощности на оси пучка в районе калориметра около 16 МВт/м2. Для того чтобы проверить работоспособность предложенного способа измерения, калориметр был дополнительно оснащен вертикальным набором зондов из вольфрамовой проволоки 4, введенных непосредственно в пучок для прямого измерения тока ионов пучка, находящихся в тени трубок переднего слоя. Схема измерения ионного тока 8 аналогична схеме измерения ионно-электронной эмиссии, отличие только в полярности напряжения, подаваемого на зонд. Для того чтобы убедиться в достоверности измерений плотности тока пучка, предложенной методикой, проводилось одновременное измерение профиля пучка зондами и коллекторами при коротких 0.1 с импульсах пучка. Эти измерения показали хорошее совпадение профилей, полученных обоими методами (фиг. 2, кривая 11).

На фиг. 6 представлена осциллограмма потенциала V коллектора ионно-электронной эмиссии при длительности импульса ~ 1.0 с. Видно, что в пределах длительности импульса пучка величина V, а следовательно, и ток ионно-электронной эмиссии J=V/R не меняется. Модуляция тока, которая наблюдается на осциллограмме, вызвана модуляцией самого тока пучка. Следует отметить, диагностика пучка с использованием термопар не дает возможность получения информации о быстрых изменениях параметра пучка во времени по сравнению с предлагаемой методикой измерения. Кроме того, было показано, что ток электронов вторичной плазмы, образующейся в районе калориметра, не искажает профиль пучка, полученный из измерений ионно-электронной эмиссии.

Таким образом, с помощью матрицы коллекторов, которые располагаются в тени трубок приемника-калориметра (т.е. вне зоны прямого попадания пучка), измеряется распределение тока ионно-электронной эмиссии, величина которой пропорциональна распределению плотности тока ионов и атомов, поступающих на приемник-калориметр. Это соответственно позволяет определить профиль пучка, что необходимо для работ, проводимых на установках токамак.

Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах путем измерения относительной плотности тока по сечению пучка, направленного на калориметр, выполненный из двух параллельно расположенных слоев водоохлаждаемых трубок, которые в каждом слое расположены относительно друг друга с зазором, меньшим диаметра трубки, а трубки второго слоя смещены относительно трубок первого слоя на величину, равную половине расстояния между осями трубок, отличающийся тем, что относительную плотность тока по сечению пучка определяют по измерению коллекторами тока ионно-эмиссионных электронов, образующихся в результате бомбардировки пучком ионов и атомов трубок калориметра, при этом коллекторы, расположенные между трубками калориметра второго слоя, устанавливают так, что трубки калориметра первого слоя перекрывают падающий на них пучок.
СПОСОБ ИЗМЕРЕНИЯ ПРОФИЛЯ СТАЦИОНАРНЫХ МЕГАВАТТНЫХ ПУЧКОВ ИОНОВ И АТОМОВ В ИНЖЕКТОРАХ
СПОСОБ ИЗМЕРЕНИЯ ПРОФИЛЯ СТАЦИОНАРНЫХ МЕГАВАТТНЫХ ПУЧКОВ ИОНОВ И АТОМОВ В ИНЖЕКТОРАХ
СПОСОБ ИЗМЕРЕНИЯ ПРОФИЛЯ СТАЦИОНАРНЫХ МЕГАВАТТНЫХ ПУЧКОВ ИОНОВ И АТОМОВ В ИНЖЕКТОРАХ
СПОСОБ ИЗМЕРЕНИЯ ПРОФИЛЯ СТАЦИОНАРНЫХ МЕГАВАТТНЫХ ПУЧКОВ ИОНОВ И АТОМОВ В ИНЖЕКТОРАХ
СПОСОБ ИЗМЕРЕНИЯ ПРОФИЛЯ СТАЦИОНАРНЫХ МЕГАВАТТНЫХ ПУЧКОВ ИОНОВ И АТОМОВ В ИНЖЕКТОРАХ
СПОСОБ ИЗМЕРЕНИЯ ПРОФИЛЯ СТАЦИОНАРНЫХ МЕГАВАТТНЫХ ПУЧКОВ ИОНОВ И АТОМОВ В ИНЖЕКТОРАХ
СПОСОБ ИЗМЕРЕНИЯ ПРОФИЛЯ СТАЦИОНАРНЫХ МЕГАВАТТНЫХ ПУЧКОВ ИОНОВ И АТОМОВ В ИНЖЕКТОРАХ
Источник поступления информации: Роспатент

Showing 111-120 of 810 items.
27.02.2014
№216.012.a73d

Способ оценки состояния контролируемого объекта

Изобретение относится к способам оценки состояния контролируемого объекта, а именно к проектированию систем диагностики опасных объектов (ОО), подвергающихся аварийным воздействиям в процессе эксплуатации. Достигаемым техническим результатом является оперативное и достоверное определение...
Тип: Изобретение
Номер охранного документа: 0002508528
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a772

Электрический соединитель

Изобретение относится к защитным устройствам электрических соединителей и может быть использовано для подсоединения к электросети радиотехнических и электрических аппаратов и приборов. Электрический соединитель состоит из вилки с корпусом и контактами и розетки, содержащей корпус и контакты,...
Тип: Изобретение
Номер охранного документа: 0002508581
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9af

Рекомбинантная плазмида phistevtsib0821, трансформированный ею штамм escherichia coli rosetta(de3)/phistevtsib0821 и способ получения рекомбинантной пролидазы tsib_0821

Изобретение относится к области биотехнологии и генной инженерии и представляет собой рекомбинантную плазмиду pHisTevTSIB0821 для экспрессии в клетках Escherichia coli пролидазы TSIB_0821 из археи Thermococcus sibiricus. Заявленная плазмида включает NdeI/SalI-фрагмент плазмиды pET-22b(+)...
Тип: Изобретение
Номер охранного документа: 0002509154
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa38

Устройство для контроля сигналов

Изобретение относится к области измерительной техники и может быть использовано в качестве контрольно-сигнального устройства для контроля квазистатических и низкочастотных параметров состояния машин в процессе эксплуатации. Технический результат заключается в расширении функциональных...
Тип: Изобретение
Номер охранного документа: 0002509291
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa51

Способ определения поляризационных характеристик антенн

Изобретение относится к антенным измерениям и может быть использовано для определения поляризационных характеристик антенн (коэффициент эллиптичности, угол наклона большой оси эллипса, направление вращения вектора напряженности электрического поля). Исследуемую антенну возбуждают...
Тип: Изобретение
Номер охранного документа: 0002509316
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa9b

Устройство для нанесения фоторезиста методом центрифугирования

Изобретение относится к оборудованию для электронной промышленности, а именно к оборудованию для нанесения фоторезиста на подложки методом центрифугирования. Технический результат - уменьшение времени изготовления и увеличение выхода годных изделий - достигается тем, что устройство для...
Тип: Изобретение
Номер охранного документа: 0002509390
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aab3

Формирователь кольцевого кода

Изобретение относится к кодирующим устройствам помехоустойчивого кода, обеспечивающим восстановление передаваемой по каналу связи информации после ее искажений под действием помех. Технический результат - формирование на выходе устройства систематического кода, в котором информационные элементы...
Тип: Изобретение
Номер охранного документа: 0002509414
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ab68

Способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей (варианты)

Изобретение относится к области химии и биотехнологии. Способ непрерывного выделения и концентрирования водорода из биосингаза, состоящего из пяти и более компонентов, включающий подачу биосингаза из реактора (пиролизного реактора или биореактора) с помощью компрессора в мембранный модуль для...
Тип: Изобретение
Номер охранного документа: 0002509595
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad28

Способ определения дальности до поверхности земли

Изобретение относится к области радиолокационной техники. Способ заключается в проведении трехэтапных измерений: на первом этапе вычисляют грубое (предварительное) значение дальности до поверхности земли, на втором этапе вычисляют точное (окончательное) значение дальности до поверхности земли,...
Тип: Изобретение
Номер охранного документа: 0002510043
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad2c

Способ обнаружения и выделения горячих частиц

Изобретение относится к области контроля окружающей среды, а именно к способам обнаружения и выделения горячих частиц (ГЧ) с различных поверхностей и из воздушной среды, загрязненных радиоактивными веществами. Технический результат - повышение скорости (по времени более 7 раз) и эффективности...
Тип: Изобретение
Номер охранного документа: 0002510047
Дата охранного документа: 20.03.2014
Showing 111-120 of 564 items.
27.02.2014
№216.012.a5e0

Способ получения коллоидов металлов

Изобретение относится к получению коллоидов металлов электроконденсационным методом. Может использоваться для создания каталитических систем, модификации волокнистых и пленочных материалов, например, для изготовления экранов защиты от электромагнитного излучения. В жидкую фазу вводят по меньшей...
Тип: Изобретение
Номер охранного документа: 0002508179
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a73d

Способ оценки состояния контролируемого объекта

Изобретение относится к способам оценки состояния контролируемого объекта, а именно к проектированию систем диагностики опасных объектов (ОО), подвергающихся аварийным воздействиям в процессе эксплуатации. Достигаемым техническим результатом является оперативное и достоверное определение...
Тип: Изобретение
Номер охранного документа: 0002508528
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a772

Электрический соединитель

Изобретение относится к защитным устройствам электрических соединителей и может быть использовано для подсоединения к электросети радиотехнических и электрических аппаратов и приборов. Электрический соединитель состоит из вилки с корпусом и контактами и розетки, содержащей корпус и контакты,...
Тип: Изобретение
Номер охранного документа: 0002508581
Дата охранного документа: 27.02.2014
10.03.2014
№216.012.a9af

Рекомбинантная плазмида phistevtsib0821, трансформированный ею штамм escherichia coli rosetta(de3)/phistevtsib0821 и способ получения рекомбинантной пролидазы tsib_0821

Изобретение относится к области биотехнологии и генной инженерии и представляет собой рекомбинантную плазмиду pHisTevTSIB0821 для экспрессии в клетках Escherichia coli пролидазы TSIB_0821 из археи Thermococcus sibiricus. Заявленная плазмида включает NdeI/SalI-фрагмент плазмиды pET-22b(+)...
Тип: Изобретение
Номер охранного документа: 0002509154
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa38

Устройство для контроля сигналов

Изобретение относится к области измерительной техники и может быть использовано в качестве контрольно-сигнального устройства для контроля квазистатических и низкочастотных параметров состояния машин в процессе эксплуатации. Технический результат заключается в расширении функциональных...
Тип: Изобретение
Номер охранного документа: 0002509291
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa51

Способ определения поляризационных характеристик антенн

Изобретение относится к антенным измерениям и может быть использовано для определения поляризационных характеристик антенн (коэффициент эллиптичности, угол наклона большой оси эллипса, направление вращения вектора напряженности электрического поля). Исследуемую антенну возбуждают...
Тип: Изобретение
Номер охранного документа: 0002509316
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa9b

Устройство для нанесения фоторезиста методом центрифугирования

Изобретение относится к оборудованию для электронной промышленности, а именно к оборудованию для нанесения фоторезиста на подложки методом центрифугирования. Технический результат - уменьшение времени изготовления и увеличение выхода годных изделий - достигается тем, что устройство для...
Тип: Изобретение
Номер охранного документа: 0002509390
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aab3

Формирователь кольцевого кода

Изобретение относится к кодирующим устройствам помехоустойчивого кода, обеспечивающим восстановление передаваемой по каналу связи информации после ее искажений под действием помех. Технический результат - формирование на выходе устройства систематического кода, в котором информационные элементы...
Тип: Изобретение
Номер охранного документа: 0002509414
Дата охранного документа: 10.03.2014
20.03.2014
№216.012.ab68

Способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей (варианты)

Изобретение относится к области химии и биотехнологии. Способ непрерывного выделения и концентрирования водорода из биосингаза, состоящего из пяти и более компонентов, включающий подачу биосингаза из реактора (пиролизного реактора или биореактора) с помощью компрессора в мембранный модуль для...
Тип: Изобретение
Номер охранного документа: 0002509595
Дата охранного документа: 20.03.2014
20.03.2014
№216.012.ad28

Способ определения дальности до поверхности земли

Изобретение относится к области радиолокационной техники. Способ заключается в проведении трехэтапных измерений: на первом этапе вычисляют грубое (предварительное) значение дальности до поверхности земли, на втором этапе вычисляют точное (окончательное) значение дальности до поверхности земли,...
Тип: Изобретение
Номер охранного документа: 0002510043
Дата охранного документа: 20.03.2014
+ добавить свой РИД