×
27.04.2016
216.015.37e4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ТОНКОСЛОЙНЫХ ЗАРЯДОВ ВЗРЫВЧАТЫХ ВЕЩЕСТВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения зарядов взрывчатых веществ и может быть использовано для получения тонкослойных зарядов из ВВ для различных целей: систем передачи детонации, устройств взрывной логики и др. Способ получения тонкослойных зарядов взрывчатых веществ включает перекристаллизацию порошкообразного ВВ из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па при температурах 80-180°C, путем предварительного растворения в органическом растворителе, преимущественно в ацетоне, при температурах в диапазоне 50-55°C с последующим охлаждением до комнатной температуры, упариванием раствора, фильтрацией выпавших кристаллов ВВ и их высушиванием. Перекристаллизованное ВВ подвергают возгонке (сублимации) в вакууме с последующим осаждением на подложку, химически инертную по отношению к парам данного ВВ, с использованием трафарета, ограничивающего контур заряда ВВ. Изобретение обеспечивает снижение критических размеров детонации заряда и миниатюризации систем передачи детонации, а также снижение влияния величин дисперсности и удельной поверхности порошкообразного ВВ на критические размеры детонации. 1 табл., 4 ил., 7 пр.
Основные результаты: Способ получения тонкослойных зарядов взрывчатых веществ, включающий предварительную подготовку ВВ и формирование заряда, отличающийся тем, что в качестве исходного материала берут порошкообразное ВВ из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па при температурах 80-180°C, которое затем перекристаллизовывают путем предварительного растворения в органическом растворителе, преимущественно в ацетоне, при температурах в диапазоне 50-55°C с последующим охлаждением до комнатной температуры, частичным упариванием раствора и фильтрацией выпавших кристаллов ВВ и их высушиванием и затем подвергают возгонке (сублимации) в вакууме при остаточном давлении 10-10 Па из термического испарителя, имеющего температуру 80-180°C, с последующим осаждением на подложку, химически инертную по отношению к парам данного ВВ, с использованием трафарета, ограничивающего контур заряда ВВ.

Предлагаемое изобретение относится к области взрывчатых веществ и может быть использовано для получения тонкослойных зарядов из ВВ для различных целей: систем передачи детонации, устройств взрывной логики и др.

Актуальность решаемой проблемы обусловлена следующими факторами. В ряде областей техники требуется применение зарядов ВВ в виде тонких слоев, имеющих толщину менее 1 мм (1-2 мм и менее). Критическая толщина детонации слоя ВВ для большинства вторичных ВВ превышают эти значения. Кроме того, детонационная способность ВВ в тонких слоях зависит от дисперсности частиц ВВ (размера частиц ВВ). Минимальный размер частиц вторичных ВВ, который может быть достигнут методами осаждения, перекристаллизации, механического диспергирования (размола), составляет 3-4 мкм. Критическая толщина детонирующего слоя зарядов, получаемых из высокодисперсных ВВ, в несколько раз меньше, чем из грубодисперсных ВВ

Из предшествующего уровня техники известен способ получения зарядов ВВ в виде тонких пленок (патент РФ №2383518, МПК С06В 25/34, БИ №7/2010, 10.03.2010 г.), в котором сначала готовят смесь из компонентов, в числе которых содержится бризантное ВВ и полимерное связующее (высокомолекулярный полиизобутилен), растворенных в хлороформе, к которым добавляют бензотрифуроксан, смесь перемешивают, выдерживают до отверждения, гранулируют, затем перерабатывают в тонкослойные заряды. При этом получают ВВ с критической толщиной детонирующего слоя менее 0,3 мм.

Однако известный способ достаточно трудоемок, требует дополнительных операций по приготовлению смеси, ее отверждению и формованию.

Известен в качестве прототипа заявляемого способ получения тонкослойных зарядов ВВ в устройстве для формирования взрывной волны (патент РФ №2135935, МПК F42B 3/10, 27.08.1999 г.), согласно которому при изготовлении заряда ВВ первоначально формируют на подложке ВВ в виде тонкой пленки методом осаждения.

К недостаткам прототипа относится отсутствие условий, способствующих снижению критических размеров детонации заряда, и исключения влияния величин дисперсности и удельной поверхности порошкообразного ВВ на критические размеры детонации.

Задачей авторов изобретения является разработка способа получения тонкослойных зарядов взрывчатых веществ, обеспечивающего снижение критических размеров детонации заряда и миниатюризации систем передачи детонации, в котором снижено влияние величин дисперсности и удельной поверхности порошкообразного ВВ на критические размеры детонации.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа получения тонкослойных зарядов взрывчатых веществ, заключается в обеспечении снижения критических размеров детонации заряда и миниатюризации систем передачи детонации, в котором снижено влияние величин дисперсности и удельной поверхности порошкообразного ВВ на критические размеры детонации.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа получения тонкослойных зарядов взрывчатых веществ, включающего предварительную подготовку ВВ и формирование заряда, согласно предлагаемому способу в качестве исходного материала берут порошкообразное ВВ из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10-5 Па при температурах 80-180°C, которое затем перекристаллизовывают путем предварительного растворения в органическом растворителе, преимущественно в ацетоне, при температурах в диапазоне 50-55°C с последующим охлаждением до комнатной температуры, частичным упариванием раствора и фильтрацией выпавших кристаллов ВВ и их высушиванием и затем подвергают возгонке (сублимации) в вакууме при остаточном давлении 10-2-10-5 Па из термического испарителя, имеющего температуру 80-180°C, с последующим осаждением на подложку, химически инертную по отношению к парам данного ВВ, с использованием трафарета, ограничивающего контур заряда ВВ.

Предлагаемый способ поясняется следующим образом.

Применение высокодисперсных ВВ для изготовления тонкослойных зарядов имеет недостатки. Во-первых, при переработке ВВ в высокодисперсное состояние трудно обеспечить постоянную, воспроизводимую дисперсность ВВ, в результате чего различные партии ВВ могут отличаться по свойствам. Во-вторых, получение тонкослойных зарядов прессованием высокодисперсных ВВ технологически неудобно. Добавление к ВВ связующих и пластификаторов облегчает получение заряда, но при этом, за счет разбавления ВВ инертными компонентами, ухудшаются детонационные свойства ВВ и увеличиваются критические размеры заряда.

В предлагаемом способе предусмотрен метод возгонки ВВ как наиболее с точки зрения достижения минимальной критической толщины детонирующего слоя при одновременном снижении влияния дисперсности исходного ВВ на детонационные свойства.

Первоначально проводят подготовку ВВ, для чего берут в качестве исходного материала порошкообразное ВВ из группы индивидуальных азотсодержащих органических ВВ (например, тэн, гексоген), имеющих упругость паров не ниже 10-5 Па при температурах 80-180°C. Такой выбор продиктован требованиями достаточной величины летучести ВВ при сохранении приемлемой термической стабильности, что критично для последующего этапа возгонки ВВ и формирования тонкослойного заряда.

Выбранное ВВ подвергают перекристаллизации путем предварительного растворения в органическом растворителе, преимущественно в ацетоне, при температурах в диапазоне 50-55°C с последующим охлаждением до комнатной температуры, частичным упариванием раствора и фильтрацией выпавших кристаллов ВВ и их высушиванием.

Полученное перекристаллизованное ВВ подвергают возгонке (сублимации) в вакууме при остаточном давлении 10-2-10-5 Па из термического испарителя, имеющего температуру 80-180°C, с последующим осаждением на подложку. Подложку выбирают из группы химически инертных материалов (например, фторопласт) по отношению к парам данного ВВ, что исключает загрязнение целевого продукта.

Возгонка может производиться при помощи вакуумных установок различной конструкции, обеспечивающих указанные выше параметры давления и температуры. При возгонке ВВ на подложку, расположенную неподвижно относительно испарителя, получают на подложке заряды "клиновидной" формы, с переменной толщиной напыленного слоя. При возгонке ВВ на вращающуюся подложку, в зависимости от ее расположения по отношению к испарителю, можно получать заряды с различным профилем толщин напыленного слоя, в том числе заряды с малой разнотолщинностью на уровне ±10-15% от среднего значения. Помещая перед возгонкой на подложку трафарет, имеющий прорези заданной формы, можно получить на подложке заряд соответствующей конфигурации. Возгонку ведут с использованием трафарета, ограничивающего заданный контур заряда ВВ.

Полученные таким образом образцы подвергают контрольным газодинамическим испытаниям для определения критической толщины детонирующего слоя. Результаты экспериментов для различных ВВ приведены в таблице 1 (где приведены толщины детонирующего слоя в зарядах индивидуальных бризантных ВВ, полученных различными способами).

Возможность промышленного применения предлагаемого изобретения подтверждается следующими примерами.

Пример 1.

В лабораторных условиях предлагаемый способ опробован на установке для вакуумной возгонки с использованием в качестве исходного ВВ из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10-5 Па при температурах 80-180°C, например, тэн.

Первоначально берут навеску ВВ тэн (пентаэритриттетранитрат) из партии тэна, дисперсность которой по методу Товарова (ГОСТ В9405-76) составляет 600-700 см2/г, и растворяют в ацетоне до насыщения при температуре 50°C. При данной температуре растворимость тэна в ацетоне составляет 58 г на 100 г растворителя. Раствор охлаждают до комнатной температуры и упаривают в токе воздуха до 1/2 от первоначального объема, при остаточном давлении в диапазоне от 103 Па до атмосферного.

После упаривания наблюдается выпадение кристаллов перекристаллизованного тэна, в количестве ≈80% от массы исходного тэна (размер кристаллов преимущественно от 0,5-1,0 мм в поперечнике). Их отфильтровывают на воронке или вакуум-фильтре, подсушивают 6-12 ч при комнатной температуре и затем сушат 1 ч при 75°C.

Подготовленный таким образом тэн используют затем для возгонки (сублимации).

Навеску тэна массой 1,2 г помещают в испаритель вакуумной установки ВУП-4. Над испарителем на расстоянии 35 мм от верхнего края испарителя размещается, при помощи держателя, подложка в виде плоского диска из органического стекла (полиметилметакрилата), толщиной 2 мм и диаметром 80 мм. На лицевую сторону подложки, обращенную к испарителю, помещается, также при помощи держателя, трафарет из алюминия, толщиной 0,7 мм. Трафарет имеет прорезь длиной 45 мм, шириной 1,5 мм.

Установку вакуумируют до остаточного давления 2*10-3 Па, затем включают нагрев испарителя. Процесс возгонки тэна и его осаждения на подложку начинается при температуре 80°C, в дальнейшем температура поддерживается на уровне 95-100°C путем регулирования мощности нагрева.

Возгонка завершается за время 40-50 минут. После испарения из испарителя всего загруженного в него вещества (ВВ), вакуумную камеру охлаждают до комнатной температуры, напускают воздух, открывают камеру и вынимают изготовленный заряд. Заряд представляет собой, в соответствии с конфигурацией использованного трафарета, одну детонационную линию шириной 1,5 мм. Толщина осажденного слоя тэна в центральной части 250±5 мкм, на краях 120±5 мкм. Далее полученный заряд ВВ подвергали газодинамическому контролю.

При испытаниях заряда, подрыв проводили на краю детонационной линии с помощью капсюля-детонатора. Скорость детонации контролировали при помощи скоростной фоторегистрации и электроконтактного метода. Заряд сработал полностью, скорость детонации стабильна по всей длине детонационной линии (в пределах погрешности измерения ±50 м/с).

Контрольная фотохронограмма опыта приведена на фиг. 1.

Пример 2.

Предлагаемый способ реализован в условиях примера 1 с тем отличием, что для возгонки взята навеска тэна 0,4 г. Получен заряд, имеющий в центральной части толщину осажденного слоя ВВ 80±5 мкм и на краях 30±5 мкм. При испытаниях заряда край детонационной линии не ициируется, т.е. толщина слоя 30±5 мкм меньше критической.

В повторном опыте полученный заряд инициировали в центральной части детонационной линии. Детонация распространилась от центра с затуханием на краях линии. Из проведенных измерений толщины слоя в месте затухания детонации (3 опыта), следует, что величина критической толщины детонирующего слоя осажденного тэна на подложке составила 50±5 мкм.

Пример 3.

В условиях примера 1 с тем отличием, что первоначально для опыта взят образец тэна с дисперсностью по методу Товарова 4000-4200 см2/г. Результаты опыта аналогичны описанным в примере 1.

Пример 4

В условиях примера 2 с тем отличием, что первоначально для опыта взят образец тэна с дисперсностью по методу Товарова 4000-4200 см2/г. Результаты опыта аналогичны описанным в примере 2. Критическая толщина детонации осажденного тэна составляет 50±5 мкм.

Таким образом, сопоставление данных, приведенных в примерах 1-4, показывает, что использование метода возгонки с предварительной перекристаллизацией позволяет получать заряды вторичных ВВ с малой критической толщиной детонации, не зависящей от дисперсности и формы кристаллов исходного ВВ.

Пример 5

Перекристаллизацию тэна проводят аналогично описанному в примере 1. Затем навеску перекристаллизованного тэна (8 г) загружают в испаритель вакуумной установки ВУ-700. Подложка представляла собой тонкую стальную пластину толщиной 0,5 мм, диаметром 120 мм. Подложка размещена на расстоянии 50 мм от верхнего края испарителя с возможностью вращения вокруг своей оси. Ось вращения подложки смещена на 45 мм относительно оси испарителя. (Приемы вращения и смещения подложки используются для уменьшения разнотолщинности осажденного слоя ВВ, обеспечения лучшей равномерности).

Температурные режимы возгонки тэна аналогичны описанным выше в примере 1. Осаждение тэна на поверхность подложки проводили через алюминиевый трафарет толщиной 0,8 мм, конфигурация которого имитировала детонационную разводку боеприпаса. После опыта по возгонке и осаждению тэна получен на подложке тонкослойный заряд с конфигурацией, соответствующей конфигурации трафарета (см. фиг. 2). Толщина осажденного слоя тэна составляла 300±30 мкм.

После подрыва заряда зафиксирован бризантный эффект точно по контуру заряда (см. фиг. 3).

Пример 6. В данном примере в качестве исходного ВВ используют бензотрифуроксан (БТФ).

Навеску ВВ БТФ (бензотрифуроксан) растворяют до насыщения в горячем ацетоне или этиловом спирте. После охлаждения и частичного упаривания в соответствии с условиями примера 1 выпадает перекристаллизованный крупнокристаллический БТФ в количестве около 75% от первоначально взятого. После сушки его используют для возгонки.

Перекристаллизованное ВВ БТФ в количестве 8 г загружают в испаритель вакуумной установки ВУ-700. Подложка в виде диска из поликарбоната, толщиной 2,5 мм и диаметром 120 мм, размещена на расстоянии 50 мм от верхнего края испарителя и может вращаться вокруг своей оси. Ось вращения подложки смещена на 45 мм относительно оси испарителя.

Трафарет для напыления представляет собой алюминиевый диск толщиной 0,8 мм с 4 прорезями шириной 1,2 мм, длиной 90 мм.

Возгонка БТФ осуществляется при температуре 140-150°C. Полученный заряд осажденного БТФ на подложке представляет собой 4 детонационнные линии, толщина осажденного слоя в которых составляет 250±30 мкм.

При взрывных испытаниях образца, инициирование осуществлялось в концевой части линий. Скорость детонации контролировали при помощи скоростной фоторегистрации и электроконтактного метода. Заряд сработал полностью, скорость детонации стабильна по всей длине детонационной линии (в пределах погрешности измерения ±50 м/с). Результат испытаний приведен на фиг. 4.

Пример 7

Перекристаллизацию ВВ БТФ осуществляют аналогично примеру 6.

Навеску БТФ массой 0,2 г помещают в испаритель вакуумной установки ВУП-4. Над испарителем на расстоянии 35 мм от верхнего края испарителя размещается, при помощи держателя, подложка в виде плоского диска из органического стекла (полиметилметакрилата), толщиной 2 мм и диаметром 80 мм. На лицевую сторону подложки, обращенную к испарителю, помещается, также при помощи держателя, трафарет из алюминия толщиной 0,7 мм. Трафарет имеет прорезь длиной 45 мм, шириной 1,5 мм.

Установку вакуумируют до остаточного давления 2*10-3 Па, затем включают нагрев испарителя. Процесс возгонки БТФ и его осаждения на подложку начинается при температуре 120°C, в дальнейшем температура поддерживается на уровне 140-150°C путем регулирования мощности нагрева.

Возгонка завершается за время 20-25 минут. После испарения из испарителя всего загруженного в него вещества (ВВ), вакуумную камеру охлаждают до комнатной температуры, напускают воздух, открывают камеру и вынимают изготовленный заряд. Заряд представляет собой, в соответствии с конфигурацией использованного трафарета, одну детонационную линию шириной 1,5 мм. Толщина осажденного слоя тэна в центральной части 60±5 мкм, на краях 20±5 мкм.

При испытаниях полученный заряд инициировали в центральной части детонационной линии. Детонация распространилась от центра с затуханием на краях линии, в повторном опыте детонация прошла по всей линии. Из проведенных измерений толщины слоя в месте затухания детонации (3 опыта) величина критической толщины детонирующего слоя осажденного БТФ на подложке составила 20±5 мкм.

Как это показали экспериментальные исследования, предлагаемый способ получения тонкослойных зарядов взрывчатых веществ обеспечивает более высокий технический результат по сравнению с прототипом, заключающийся в снижении критических размеров детонации заряда и миниатюризации систем передачи детонации, а также исключении зависимости критических размеров детонации от величин дисперсности и удельной поверхности порошкообразного ВВ.

Способ получения тонкослойных зарядов взрывчатых веществ, включающий предварительную подготовку ВВ и формирование заряда, отличающийся тем, что в качестве исходного материала берут порошкообразное ВВ из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па при температурах 80-180°C, которое затем перекристаллизовывают путем предварительного растворения в органическом растворителе, преимущественно в ацетоне, при температурах в диапазоне 50-55°C с последующим охлаждением до комнатной температуры, частичным упариванием раствора и фильтрацией выпавших кристаллов ВВ и их высушиванием и затем подвергают возгонке (сублимации) в вакууме при остаточном давлении 10-10 Па из термического испарителя, имеющего температуру 80-180°C, с последующим осаждением на подложку, химически инертную по отношению к парам данного ВВ, с использованием трафарета, ограничивающего контур заряда ВВ.
СПОСОБ ПОЛУЧЕНИЯ ТОНКОСЛОЙНЫХ ЗАРЯДОВ ВЗРЫВЧАТЫХ ВЕЩЕСТВ
СПОСОБ ПОЛУЧЕНИЯ ТОНКОСЛОЙНЫХ ЗАРЯДОВ ВЗРЫВЧАТЫХ ВЕЩЕСТВ
СПОСОБ ПОЛУЧЕНИЯ ТОНКОСЛОЙНЫХ ЗАРЯДОВ ВЗРЫВЧАТЫХ ВЕЩЕСТВ
СПОСОБ ПОЛУЧЕНИЯ ТОНКОСЛОЙНЫХ ЗАРЯДОВ ВЗРЫВЧАТЫХ ВЕЩЕСТВ
Источник поступления информации: Роспатент

Showing 241-250 of 278 items.
11.03.2019
№219.016.ddb3

Способ определения золота в отходах производства элементов электронной техники

Изобретение относится к способу определения золота в отходах производства элементов электронной техники методом атомно-абсорбционной спектрометрии (ААС). Способ включает приготовление и введение анализируемой пробы в виде раствора с помощью пневматической распылительной системы через гибкий...
Тип: Изобретение
Номер охранного документа: 0002464546
Дата охранного документа: 20.10.2012
10.04.2019
№219.017.0640

Измерительный преобразователь

Изобретение относится к измерительной технике и может быть использовано для преобразования сигнала в виде частоты импульсов. Согласно изобретению измерительный преобразователь содержит генератор опорной частоты, делитель частоты, дешифратор, первый мультиплексор, селектор, вход которого...
Тип: Изобретение
Номер охранного документа: 0002416071
Дата охранного документа: 10.04.2011
10.04.2019
№219.017.07da

Стенд для ударных испытаний

Изобретение относится к испытательной технике. Преимущественная область использования - исследования высокоскоростных ударных явлений. Технический результат заключается в обеспечении с высокой точностью требуемой взаимной ориентации ударника и мишени в момент их соударения, исключении...
Тип: Изобретение
Номер охранного документа: 0002402004
Дата охранного документа: 20.10.2010
10.04.2019
№219.017.081d

Способ определения концентрации бета-радиоактивных газов

Изобретение относится к области радиохимии и может быть использовано при проведении технологического контроля или научно-исследовательских работ, связанных с изучением кинетики взаимодействия бета-радиоактивных газов. Технический результат - проведение прямого определения концентрации...
Тип: Изобретение
Номер охранного документа: 0002400773
Дата охранного документа: 27.09.2010
10.04.2019
№219.017.083a

Ударный стенд

Изобретение относится к испытательной технике и может быть использовано для испытаний объектов на воздействие перегрузок. Технический результат - приближение условий испытаний к натурным. Ударный стенд содержит цилиндрическую взрывную камеру с установленным в нее зарядом ВВ, к которой...
Тип: Изобретение
Номер охранного документа: 0002438109
Дата охранного документа: 27.12.2011
10.04.2019
№219.017.0844

Ударный стенд

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие перегрузок. Устройство содержит камеру высокого давления, соединенную с полостью ствола, установленный в стволе контейнер в виде полого поршня, стол, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002438110
Дата охранного документа: 27.12.2011
10.04.2019
№219.017.0845

Устройство для заполнения емкости газом высокой чистоты

Изобретение относится к устройствам для заполнения емкостей газами высокой чистоты. Устройство для заполнения емкости газом высокой чистоты содержит систему напуска газа, снабженную заправочным трубопроводом с разъемом для емкости и коммутационной арматурой. Устройство характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002438946
Дата охранного документа: 10.01.2012
10.04.2019
№219.017.093c

Блок кодовый сменный

Изобретение относится к вычислительной технике. Технический результат заключается в исключении влияния помехи электрической природы и внешних электромагнитных полей. Блок кодовый сменный, содержащий соединитель, блок защиты цепей, блок сопряжения, блок управления и блок памяти, последовательно...
Тип: Изобретение
Номер охранного документа: 0002447502
Дата охранного документа: 10.04.2012
10.04.2019
№219.017.0985

Способ обращения к данным, хранимым в параллельной файловой системе, с иерархической организацией памяти

Изобретение относится к организации иерархической памяти компьютерных файлов данных. Техническим результатом является повышение производительности передачи данных, масштабируемость и обеспечение гибких механизмов управления потоками данных и политиками хранения, балансировки нагрузки. Способ...
Тип: Изобретение
Номер охранного документа: 0002469388
Дата охранного документа: 10.12.2012
10.04.2019
№219.017.09c5

Узел герметизации оболочки из упругоэластичного материала

Изобретение относится к области машиностроения и может быть использовано для герметизации различных упругоэластичных тонкостенных камер, оболочек и т.п., работающих под действием давления рабочей среды. Узел герметизации содержит установленную на внешней поверхности корпусного элемента оболочку...
Тип: Изобретение
Номер охранного документа: 0002465501
Дата охранного документа: 27.10.2012
Showing 241-247 of 247 items.
20.06.2019
№219.017.8d3a

Способ получения соединения антифрикционного сплава со сталью сваркой взрывом

Изобретение может найти применение при изготовлении многослойной конструкции подшипников скольжения, в частности, состоящих из стального основания и плакирующего слоя из антифрикционного сплава бронзы, содержащей свинец, например оловянно-свинцовой бронзы. Устанавливают пластину из...
Тип: Изобретение
Номер охранного документа: 0002692009
Дата охранного документа: 19.06.2019
31.07.2019
№219.017.ba52

Способ спектрометрического анализа газообразных продуктов разложения взрывчатых веществ

Данное изобретение относится к области методов анализа механизмов поведения взрывчатых веществ (ВВ) при термических воздействиях и может быть использовано для исследования продуктов терморазложения ВВ. Сущность изобретения заключается в том, что в отличие от известного способа анализа...
Тип: Изобретение
Номер охранного документа: 0002695954
Дата охранного документа: 29.07.2019
31.07.2019
№219.017.ba6a

Способ сварки взрывом металлических листов

Изобретение может быть использовано для получения крупнотолщинных биметаллических деталей сваркой взрывом. Листовую заготовку из бронзы толщиной не менее 30 мм разделяют по меньшей мере на два фрагмента вдоль площади их соприкосновения. Оуществляют сборку пакета из листовой заготовки из...
Тип: Изобретение
Номер охранного документа: 0002695855
Дата охранного документа: 29.07.2019
29.02.2020
№220.018.073e

Способ изготовления взрывчатого наноструктурированного материала

Способ изготовления наноструктурированного взрывчатого материала включает помещение навески порошкообразного взрывчатого вещества (ВВ) из группы индивидуальных азотсодержащих органических ВВ, имеющих упругость паров не ниже 10 Па, в тигель с крышкой, имеющей коническую внутреннюю полость, в...
Тип: Изобретение
Номер охранного документа: 0002715195
Дата охранного документа: 25.02.2020
31.07.2020
№220.018.3ace

Детонационная разводка, инициируемая лазерным излучением, и состав светочувствительного взрывчатого вещества для инициирования детонационной разводки

Использование: область взрывных работ, в частности конструкции взрывных устройств. Задача: разработка безопасной и простой детонационной разводки (ДР), в которой минимизированы факторы, снижающие ее безопасность и надежность срабатывания ДР. Сущность изобретения: в отличие от конструкции...
Тип: Изобретение
Номер охранного документа: 0002728085
Дата охранного документа: 28.07.2020
22.04.2023
№223.018.5117

Способ изготовления смесевого взрывчатого вещества

Изобретение относится к области технологии изготовления смесевых взрывчатых веществ. Для изготовления смесевого взрывчатого вещества осуществляют подготовку и смешение исходных компонентов, производят введение технологических добавок. Смешению подвергают сначала порошкообразный тэн и...
Тип: Изобретение
Номер охранного документа: 0002794210
Дата охранного документа: 12.04.2023
16.06.2023
№223.018.7bdb

Термопластичный взрывчатый состав и способ его изготовления

Группа изобретений относится к области технологий получения смесевых термопластичных взрывчатых материалов. Термопластичный взрывчатый состав в качестве взрывчатых компонентов содержит диаминодинитроэтилен, 3,4-бис-(4-нитрофуразан-3-ил)-фуразан, а в качестве инертной добавки -...
Тип: Изобретение
Номер охранного документа: 0002756081
Дата охранного документа: 27.09.2021
+ добавить свой РИД