×
27.04.2016
216.015.37c2

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СВЯЗУЮЩЕГО ДЛЯ ИЗГОТОВЛЕНИЯ УГЛЕРОДНЫХ МАТЕРИАЛОВ И ИЗДЕЛИЙ ИЗ НИХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, в частности к способам получения и подготовки электродного пека, предназначенного для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов, и может найти применение в коксохимической или нефтеперерабатывающей промышленности. Способ получения связующего для изготовления углеродных материалов и изделий из них включает смешение каменноугольной смолы и жидкого продукта нефтепереработки, обладающего плотностью при 20°C не менее 1,02 г/см; вязкостью при 100°C не более 20 сСт; коксуемостью не менее 5%; отгоном фракции, выкипающей до 300°C, не более 5%, в соотношении от 85:15 до 50:50 мас.%, термообработку полученной смеси при 410-430°C в жидкой фазе с отделением дистиллятных фракций и неперегоняемого остатка дистилляции и окисление воздухом неперегоняемого остатка дистилляции при 325-360°C и при подаче воздуха из расчета 20-54 л/кг пека. Предлагаемый способ позволяет получать связующий пек, пригодный для изготовления анодной массы. 5 табл., 12 пр.
Основные результаты: Способ получения связующего для изготовления углеродных материалов и изделий из них, включающий смешение каменноугольной смолы и жидкого продукта нефтепереработки, обладающего плотностью при 20°C не менее 1,02 г/см, вязкостью при 100°C не более 20 сСт; коксуемостью не менее 5%; отгоном фракции, выкипающей до 300°C, не более 5%, в соотношении от 85:15 до 50:50 мас.%, термообработку полученной смеси при 410-430°C в жидкой фазе с отделением дистиллятных фракций и неперегоняемого остатка дистилляции и окисление воздухом неперегоняемого остатка дистилляции при 325-360°C и при подаче воздуха из расчета 20-54 л/кг пека.

Изобретение относится к области металлургии, в частности к способам получения и подготовки электродного пека, предназначенного для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов, и может найти применение в коксохимической или нефтеперерабатывающей промышленности.

Основным видом связующего для производства анодной массы является каменноугольный пек - неперегоняемый остаток дистилляции каменноугольной смолы.

Наибольшее распространение в промышленности для получения анодной массы получил каменноугольный электродный пек марки В по ГОСТ 10200-83, показатели качества которого приведены в таблице 1.

Каменноугольная смола является побочным продуктом процесса получения металлургического кокса из углей, поэтому масштабы ее производства и качественные характеристики определяются потребностью в металлургическом коксе и существующим состоянием технологии коксования углей.

В настоящее время в связи со снижением производства металлургического кокса, используемого, в основном, для получения чугуна, производство каменноугольной смолы и связанное с ним производство каменноугольного пека падает. Это заставляет искать новые пути для увеличения ресурсов связующего для анодной массы. Использование нефтяных пеков для снижения дефицита каменноугольного пека не нашло широкого использования. Нефтяные пеки, получаемые на основе тяжелых фракций и остатков нефтепереработки, имеют низкий коксовый остаток и не позволяют получить качественную анодную массу. Допустимым способом вовлечения нефтяного пека в производство анодов является получение комбинированного связующего из каменноугольного и нефтяного пеков [McHenry E.R. Coal-tar/petro industrial pitches. Light Metals. 1997. P. 543-548; Wombles R.H., Kiser M.D. Developing coal tar/petroleum pitches. Light Metals. 2000. P. 537-541].

Второй причиной желательного снижения использования каменноугольного пека для производства анодной массы является высокое содержание в нем полициклических ароматических углеводородов (ПАУ), часть из которых является канцерогенной. На практике в качестве индикатора содержания ПАУ используется концентрация бенз(а)пирена в связующем пеке или в выбросах при его коксовании. Каменноугольный пек является основным источником эмиссии ПАУ на алюминиевых предприятиях с самообжигающимися анодами Содерберга. Показано, что использование нефтекаменноугольных пеков с пониженным содержанием ПАУ, по сравнению с каменноугольным пеком, позволяет существенно снизить эмиссию ПАУ из промышленных электролизеров Содерберга [Boenigk W. et al. Production of low PAH pitch for use in Soederberg smelters. Light Metals. 2002. P. 519-524].

Получение новых для промышленности нефтекаменноугольных пеков в выше цитированных работах проводилось смешением каменноугольных и нефтяных пеков.

В патенте [US 5746906 McHenry et al. Coal tar pitch blend having low polycyclic aromatic hydrocarbon content and method of making thereof. 1998] предложен способ получения гибридного нефтекаменноугольного пека с температурой размягчения в интервале 107-114°С и пониженным содержанием ПАУ путем смешения каменноугольного пека с повышенной температурой размягчения и нефтяного пека с пониженной температурой размягчения в соотношении 60:40.

В патенте РФ [Лазарев В.Д. и др., патент РФ №2080418, С25С 3/12, 27.05.97. Способ производства анодной массы алюминиевых электролизеров] предложено в производстве анодной массы в качестве углеродсодержащего связующего использовать гомогенную смесь, полученную путем смешивания каменноугольного пека с нефтяным пеком при соотношении 19:1-2:1. Смешивание каменноугольного пека с нефтяным выполняют перекачиванием смеси из нижней зоны емкости в верхнюю зону из расчета 1-3-кратного обмена общим потоком в турбулентном режиме.

Недостатком способов получения нефтекаменноугольного пека, использующих смешение нефтяного и каменноугольного, является необходимость наличия промышленного производства нефтяного пека. Кроме того, проведение стадии смешения каменноугольного и нефтяного пеков требует капитальных и энергетических затрат, связанных с созданием установки, включающей обогреваемые емкости для пеков и аппаратуру для перемешивания.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ получения связующего для изготовления углеродных материалов и изделий из них [Крюков В.В. и др., патент РФ №2013416 С1, С04 35/52, 30.05.94. Способ получения связующего для изготовления углеродных материалов и изделий из них]. Согласно этому патенту связующее получают на основе каменноугольного пека путем термической обработки каменноугольной смолы. В каменноугольную смолу перед термической обработкой добавляют тяжелую смолу пиролиза нефтепродуктов или дистиллятный крекинг-остаток в количестве 10-35 масс. %. Способ позволяет уменьшить количество бенз(а)пирена в связующем и расширить сырьевую базу для его получения. Дистиллятный крекинг-остаток, или тяжелый газойль каталитического крекинга, представляет собой кубовый продукт термического крекинга нефтепродуктов, образующихся в каталитических процессах нефтепереработки при 350-480°С, предназначенных для получения моторных топлив.

Недостатком известного способа является низкое качество получаемого пека и высокое содержание бенз(а)пирена в нем. По этому способу получают пек с содержанием бенз(а)пирена от 1,32 до 1,84%, содержанием α-фракции до 25% и температурой размягчения не выше 81°C, что не отвечает современным требованиям к пекам для использования в качестве связующего для анодной массы, приведенным в таблице 1.

1Нефтекаменноугольный пек, данные из работы [Wombles R.H., Melvin D.K. Developing coal tar/petroleum pitches // Light metals. 2000] получен no запатентованному процессу [US 5746906 McHenry et al. Coal tar pitch blend having low polycyclic aromatic hydrocarbon content and method of making thereof. 1998].

2Нефтекаменноугольный пек, данные из работы [Cutshall Е., Maillet L. Vertical stud Soderberg emissions using a petroleum pitch blend // Light metals. 2006].

3Нефтекаменноугольный пек, данные по прототипу [Крюков В.В. и др., патент РФ №2013416, C1 С 04 35/52, 30.05.94. Способ получения связующего для изготовления углеродных материалов и изделий из них].

Задачей настоящего изобретения является расширение сырьевой базы для получения связующего пека, улучшение его качественных характеристик и снижение содержания бенз(а)пирена.

Поставленная задача достигается тем, что в качестве сырья используют каменноугольную смолу и жидкие продукты нефтепереработки, имеющие ароматичную структуру, поскольку предельные и непредельные углеводороды и нафтены не смешиваются с каменноугольной смолой. К таким продуктам относятся тяжелые смолы пиролиза углеводородов и тяжелые газойли каталитического или термического крекинга. Причем, жидкий продукт нефтепереработки должен удовлетворять условиям:

Плотность при 20°C, не менее 1020 кг/м3;

Вязкость при 100°C, не более 20 сСт;

Коксуемость, не менее 5%;

Отгон фракции, выкипающей до 300°C, не более 5%.

Предложенный способ включает смешивание каменноугольной смолы и продукта нефтепереработки в соотношении от 85:15 до 50:50 масс. %, термообработку полученной смеси при температуре жидкой фазы 410-430°C с отделением дистиллятных фракций и неперегоняемого остатка дистилляции, далее полученный остаток дистилляции дополнительно окисляют кислородом воздуха в интервале температур 325-360°C и расходом воздуха 20-54 л/кг пека с получением нефтекаменноугольного пека, пригодного для получения анодной массы.

Предлагаемый способ позволяет получить нефтекаменноугольный пек с показателями качества, близкими к таковым для каменноугольного электродного пека, и более высокими, чем для нефтекаменноугольных пеков, полученных методом смешения, и по прототипу, см. таблицу 1.

Исследование термообработки смеси каменноугольной смолы и продукта нефтепереработки показало, что при дистилляции смесей каменноугольной смолы и продукта нефтепереработки при соотношении от 85:15 до 50:50 масс. % в обычных температурных условиях дистилляции каменноугольной смолы нельзя получить остаток дистилляции (пек) с необходимой температурой размягчения (не менее 85°C для марки В по ГОСТ 10200-83, или в пределах 80-90°C для нефтекаменноугольных пеков, полученных методом смешения) и другими показателями качества, удовлетворяющими требованиям к пекам для производства анодной массы. Это обстоятельство препятствует осуществлению совместной переработки смеси каменноугольной смолы и продукта нефтепереработки при соотношении каменноугольная смола:продукт нефтепереработки от 85:15 до 50:50 масс. % на действующих установках фракционирования каменноугольной смолы. Для получения пеков с температурой размягчения выше 80°C и необходимыми значениями показателей «массовая доля веществ, не растворимых в толуоле» (α-фракция) и «выход летучих веществ» требуется повышение температуры жидкой фазы (кубового остатка) и увеличение длительности термообработки. Это приводит к резкому снижению выхода готового пека на 15-20 отн. %.

Для улучшения характеристик низкотемпературного нефтекаменноугольного пека после стадии совместной дистилляции смеси каменноугольной смолы и продукта нефтепереработки предлагается подвергнуть полученный низкотемпературный нефтекаменноугольный пек (температура размягчения в пределах 46-70°C) окислению воздухом в интервале температур 325-360°C.

На основании экспериментальных результатов выбраны следующие технологические параметры для получения нефтекаменноугольных пеков, пригодных для получения анодной массы. На первой стадии осуществляется дистилляция смесей каменноугольной смолы и продукта нефтепереработки при массовом соотношении от 85:15 до 50:50 масс. % в температурных условиях, позволяющих получить низкотемпературный пек с температурой размягчении в пределах 46-70°C. Температура жидкой фазы при дистилляции смеси не должна превышать 430°C. Ведение процесса при температурах выше 430°C снижает выход мягкого пека и вызывает нежелательное образование частиц мезофазы (вторичной α1-фракции).

Условия осуществления второй стадии, окисления воздухом, выбираются таким образом, чтобы получить пек с необходимой температурой размягчения, обычно в пределах 80-90°C по методу «Кольцо и стержень» или 103-123°C по Меттлеру. Температура окисления поддерживается в интервале 325-360°C, расход воздуха и время окисления являются связанными параметрами, которые определяют расход окислительного агента, кислорода воздуха, на единицу массы или объема пека. Конкретные значения технологических параметров зависят от характеристик используемой каменноугольной смолы, состава смеси, поступающей на дистилляцию, температуры размягчения остатка дистилляции после первой стадии и требуемых показателей нефтекаменноугольного пека. Для получения пеков с температурой размягчения в пределах 80-90°C по методу «Кольцо и стержень» на использованных при разработке патента сырьевых материалах и соотношении каменноугольная смола:продукт нефтепереработки от 85:15 до 50:50 масс. % расход воздуха составляет 20-54 л/кг пека. Подача воздуха на окисление менее 20 л/кг пека потребует более длительного времени для достижения пеком требуемых показателей. Подача воздуха в количестве более 54 л/кг пека является излишней, поскольку скорость протекания реакций окисления в пеке лимитирована скоростью диффузии пузырьков воздуха в вязком пеке.

Предлагаемый способ может быть осуществлен как в периодическом, так и в непрерывном режиме на существующих установках переработки каменноугольной смолы и не требует наличия производства нефтяного пека и создания установки для смешения пеков.

Изобретение иллюстрируется следующими примерами.

Пример 1. Каменноугольная смола соответствует ТУ 2453-203-00190437-2005. «Смола каменноугольная для переработки», плотность при 20°C 1182-1202 кг/м3, содержание α-фракции 6.8-9.4%, α1-фракции 1,9-3,1%. Тяжелый газойль каталитического крекинга имеет плотность при 20°C 1078 кг/м3, коксуемость 6,8%, вязкость при 100°C 16 сСт; содержание α-фракции 0,8%, α1-фракция - отсутствует. Смесь каменноугольной смолы и тяжелого газойля каталитического крекинга в соотношении каменноугольная смола: тяжелый газойль 60:40 мас. % помещают в круглодонную стеклянную колбу вместимостью 1 л. Проводят дистилляцию 730 г смеси при конечной температуре жидкой фазы 410°C с выдержкой при этой температуре в течение 2 ч. Получают 404 г (55,4%) низкотемпературного пека.

Затем полученный низкотемпературный пек обрабатывают воздухом при 340°C в течение 5 часов, при расходе воздуха 22 л на кг пека. Выход окисленного нефтекаменноугольного пека составляет 97% на загрузку низкотемпературного пека.

Пример 2. Смешивают каменноугольную смолу и тяжелый газойль каталитического крекинга, как в примере 1, в соотношении 50:50 масс. %. Проводят дистилляцию 723 г смеси при конечной температуре жидкой фазы 420°C и выдержке в течение 2 ч, получают 419 г (58,0%) низкотемпературного пека.

Затем полученный низкотемпературный пек обрабатывают воздухом при 340°C в течение 5 ч, при расходе воздуха 50 л на кг пека. Выход окисленного нефтекаменноугольного пека составляет 99% на загрузку.

Пример 3. Смешивают каменноугольную смолу и тяжелый газойль каталитического крекинга, как в примере 1, в соотношении 70:30. Проводят дистилляцию 728 г смеси при конечной температуре жидкой фазы 410°C и выдержке в течение 2 ч, получают 433 г (59,5%) низкотемпературного пека.

Затем полученный пек обрабатывают воздухом при 325°C в течение 5 ч, при расходе воздуха 50 л на кг пека. Выход окисленного нефтекаменноугольного пека составил 95,3% на загрузку.

Пример 4. Смешивают каменноугольную смолу и тяжелый газойль каталитического крекинга, как в примере 1, в соотношении 60:40. Проводят дистилляцию 725 г смеси при конечной температуре жидкой фазы 425°C и выдержке в течение 2 ч, получают 377 г (52%) низкотемпературного пека.

Затем полученный пек обрабатывают воздухом при 350°C в течение 5 ч, при расходе воздуха 22 л на кг пека. Выход окисленного нефтекаменноугольного пека составил 94% на загрузку.

Пример 5. Смешивают каменноугольную смолу и тяжелый газойль каталитического крекинга, как в примере 1, в соотношении 50:50. Проводят дистилляцию 730 г смеси при конечной температуре жидкой фазы 436°C и выдержке в течение 1,5 ч, получают 356 г (48,8%) низкотемпературного пека.

Затем полученный пек обрабатывают воздухом при 340°C в течение 5 ч, при расходе воздуха 22 л на кг пека. Выход окисленного нефтекаменноугольного пека составил 99,8% на загрузку.

Пример 6. Смешивают каменноугольную смолу и тяжелый газойль каталитического крекинга, как в примере 1, в соотношении 50:50. Проводят дистилляцию 719 г смеси при конечной температуре жидкой фазы 436°C и выдержке в течение 3 ч, получают 351 г (48,9%) низкотемпературного пека.

Затем полученный пек обрабатывают воздухом при 340°C в течение 5 ч, при расходе воздуха 22 л на кг пека. Выход окисленного нефтекаменноугольного пека составил 99,7% на загрузку.

Пример 7. Смешивают каменноугольную смолу и тяжелый газойль каталитического крекинга, как в примере 1, в соотношении 65:35. Проводят дистилляцию 728 г смеси при конечной температуре жидкой фазы 425°C и выдержке в течение 2 ч, получают 400 г (55,0%) низкотемпературного пека.

Затем полученный пек обрабатывают воздухом при 340°C в течение 5 ч, при расходе воздуха 22 л на кг пека. Выход окисленного нефтекаменноугольного пека составил 99,0% на загрузку.

Характеристики низкотемпературного пека (первая стадия) и пека связующего (вторая стадия), полученных по примерам 1-7, приведены в таблице 2.

Пример 8. Образец нефтекаменноугольного пека, полученный в условиях примера 1 на укрупненной лабораторной установке, массой 5 кг был испытан при получении анодной массы. Характеристики пека связующего, полученного по примеру 8, приведены в таблице 3. Характеристики анодной массы, произведенной на пеке по примеру 8, приведены в таблице 4.

Пример 9. Смесь каменноугольной смолы и тяжелого газойля каталитического крекинга, как в примере 1, в соотношении 60:40, подвергалась дистилляции в непрерывном режиме на промышленной установке дистилляции смолы. Условия дистилляции: температура однократного испарения смеси 415-420°C, скорость подачи смеси 10 т/ч, выход пека со стадии дистилляции 47,1% с температурой размягчения 52°C. Полученный со стадии дистилляции пек обрабатывали воздухом при 350-360°C в течение 10 часов при расходе воздуха 40-50 м3 на тонну пека. Переработано 664 т смеси каменноугольной смолы и тяжелого газойля каталитического крекинга, получено 300 т нефтекаменноугольного пека со следующими характеристиками: температура размягчения по методу «Кольцо и стержень» 87°C, содержание веществ, не растворимых в толуоле, 29% масс., содержание веществ, не растворимых в хинолине, 5% масс., выход летучих веществ 57% масс., коксовый остаток 54% масс.

Пример 10. Смешивают каменноугольную смолу и тяжелую смолу пиролиза в соотношении 85:15. Каменноугольная смола имеет плотность 1,18 г/см3. Тяжелая смола пиролиза имеет плотность при 20°C 1046 кг/м3, вязкость при 100°C 19 сСт; коксуемость 9,1%, отгон фракции, выкипающей до 300°C, не более 5%. Проводят дистилляцию смеси при температуре 410°C в жидкой фазе. Получают мягкий пек с температурой размягчения 65°C. Полученный мягкий пек обрабатывают воздухом при температуре 275°C в течение 4-х часов при расходе воздуха 26,4 л/кг пека.

Пример 11. Смешивают каменноугольную смолу и тяжелую смолу пиролиза, как в примере 10, в соотношении 50:50. Проводят дистилляцию смеси и обрабатывают мягкий пек, как в примере 10.

Пример 12. Смешивают каменноугольную смолу и тяжелую смолу пиролиза, как в примере 10, в соотношении 60:40. Проводят дистилляцию смеси и обрабатывают мягкий пек, как в примере 10.

Характеристики полученных связующих пеков по примерам 9-12 приведены в таблице 5.

Полученные результаты свидетельствуют о соответствии полученного по предлагаемому способу связующего требованиям ГОСТ 10200 к качеству пека марки В. При этом качество связующего пека выше, чем качество пека, получаемого по прототипу. В частности, температура размягчения пека, полученного по предлагаемому способу, составляет от 83 до 129°C (максимально 81°C по прототипу), содержание веществ, не растворимых в толуоле, от 25,7 до 40,9% (максимально 25% по прототипу), содержание бенз(а)пирена от 0,27 до 0,71% (минимально 1,32% по прототипу). Результаты испытаний анодной массы на основе связующего, полученного по предлагаемому способу, соответствуют качеству обычной анодной массы на каменноугольном пеке марки В, при этом реакционная способность в углекислом газе и в воздухе ниже, что положительно скажется на расходе анодной массы при ее загрузке в действующий электролизер. Таким образом, предлагаемый способ позволяет получать связующий пек, пригодный для изготовления анодной массы.

Способ получения связующего для изготовления углеродных материалов и изделий из них, включающий смешение каменноугольной смолы и жидкого продукта нефтепереработки, обладающего плотностью при 20°C не менее 1,02 г/см, вязкостью при 100°C не более 20 сСт; коксуемостью не менее 5%; отгоном фракции, выкипающей до 300°C, не более 5%, в соотношении от 85:15 до 50:50 мас.%, термообработку полученной смеси при 410-430°C в жидкой фазе с отделением дистиллятных фракций и неперегоняемого остатка дистилляции и окисление воздухом неперегоняемого остатка дистилляции при 325-360°C и при подаче воздуха из расчета 20-54 л/кг пека.
Источник поступления информации: Роспатент

Showing 171-180 of 235 items.
02.02.2019
№219.016.b5c9

Ошиновка модульная для серий алюминиевых электролизеров

Изобретение относится к производству алюминия. Ошиновка поперечно расположенных в сериях алюминиевых электролизеров состоит из анодной части, выполненной с возможностью соединения анодов в серии электролизеров посредством анодных штанг, катодной части, состоящей из катодных стержней с гибкими...
Тип: Изобретение
Номер охранного документа: 0002678624
Дата охранного документа: 30.01.2019
02.02.2019
№219.016.b5fd

Способ подготовки шихтовой заготовки для получения изделий методом литья

Изобретение относится к металлургическому производству, в частности к шихтовой заготовке, которую используют для получения бронзовых заготовок методом литья. В качестве исходной шихты используют отработанный в процессе электролитического получения алюминия инертный анод, имеющий состав,...
Тип: Изобретение
Номер охранного документа: 0002678628
Дата охранного документа: 30.01.2019
02.02.2019
№219.016.b617

Установка для нагрева подовых блоков алюминиевых электролизеров

Изобретение относится к установке для нагрева подовых блоков при монтаже подины алюминиевого электролизера. Установка содержит печь с футерованными стенками и сводом, закрепленную на своде систему нагрева блоков и устройство для загрузки- выгрузки блоков. Печь выполнена из нескольких секций,...
Тип: Изобретение
Номер охранного документа: 0002678626
Дата охранного документа: 30.01.2019
20.02.2019
№219.016.c244

Контактный зажим электролизера с обожженными анодами

Изобретение относится к области цветной металлургии, в частности к получению алюминия электролизом в криолит-глиноземных расплавах, а конкретно к конструктивным элементам электролизеров с обожженными анодами для получения алюминия. Контактный зажим электролизера с обожженными анодами,...
Тип: Изобретение
Номер охранного документа: 0002458187
Дата охранного документа: 10.08.2012
20.02.2019
№219.016.c24d

Анодное устройство алюминиевого электролизера

Изобретение относится к конструкции анодного устройства алюминиевого электролизера с механизмом перемещения анодной ошиновки. Анодное устройство включает металлоконструкцию с установленным на ней механизмом перемещения анодной ошиновки с винтовым домкратом. Винтовой домкрат состоит из гайки и...
Тип: Изобретение
Номер охранного документа: 0002458186
Дата охранного документа: 10.08.2012
20.03.2019
№219.016.e7d0

Способ электролитического получения металлов при одновременном осаждении примесей

Изобретение относится к способу электролитического получения металлов. В электролизере, содержащем катод, анод и коллекторы растворенных в электролите примесей, выполненные в виде электродов, потенциал которых поддерживают положительнее потенциала восстановления металла и отрицательнее...
Тип: Изобретение
Номер охранного документа: 0002425177
Дата охранного документа: 27.07.2011
29.03.2019
№219.016.ee26

Способ получения силуминов

Изобретение относится к металлургии цветных металлов, а именно к получению силуминов с использованием в качестве источника кремния аморфного микрокремнезема. Способ получения силуминов включает введение кремнийсодержащего оксидного сырья в алюминиевый расплав, перемешивание расплава и разливку...
Тип: Изобретение
Номер охранного документа: 0002683176
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.f527

Способ управления алюминиевым электролизером

Способ относится к цветной металлургии, в частности к электролитическому получению алюминия на электролизерах с предварительно обожженным анодом, и может быть применен для управления пневматическим цилиндром пробойника системы автоматической подачи глинозема в расплавленный электролит. Способ...
Тип: Изобретение
Номер охранного документа: 0002425180
Дата охранного документа: 27.07.2011
30.03.2019
№219.016.f9c7

Сплав на основе алюминия

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано для получения изделий, в том числе сварных конструкций, работающих в коррозионных средах под действием высоких нагрузок, в том числе при повышенных и криогенных температурах....
Тип: Изобретение
Номер охранного документа: 0002683399
Дата охранного документа: 28.03.2019
30.03.2019
№219.016.f9de

Способ переработки огнеупорной части отработанной футеровки алюминиевого электролизера

Изобретение относится к способу переработки огнеупорной части отработанной футеровки алюминиевых электролизеров. Способ включает измельчение футеровки в водной среде, выщелачивание, разделение жидкой и твердой фаз пульпы, обработку раствора с выделением фтористого продукта, пульпу обрабатывают...
Тип: Изобретение
Номер охранного документа: 0002683400
Дата охранного документа: 28.03.2019
Showing 161-168 of 168 items.
19.06.2019
№219.017.85d3

Способ получения холоднонабивной подовой массы

Изобретение относится к области цветной металлургии, в частности к производству углеродных материалов, применяемых для футеровки подины электролизера. Способ включает приготовление углеродной шихты, смешивание углеродной шихты со специальной добавкой, пластификатором и связующим. Углеродную...
Тип: Изобретение
Номер охранного документа: 0002347856
Дата охранного документа: 27.02.2009
19.06.2019
№219.017.867f

Гидроударно-кавитационный диспергатор для приготовления углерод-углеродных композиций

Изобретение относится к углеродной промышленности и предназначено для приготовления углерод-углеродных композиций на основе твердого углеродного наполнителя и жидкого углеродного компонента. Гидроударно-кавитационный диспергатор содержит корпус с входным и выходным патрубками, внутренний ротор...
Тип: Изобретение
Номер охранного документа: 0002317849
Дата охранного документа: 27.02.2008
19.06.2019
№219.017.868b

Способ приготовления мелкодисперсной углерод-углеродной композиции

Изобретение относится к углеродной промышленности и предназначено для изготовления анодных масс. Предварительно дробленый кокс до крупности менее 0,3 мм дозированно подают, смешивая с пеком. Полученную смесь обрабатывают в гидроударно-кавитационном диспергаторе, генерирующем последовательно...
Тип: Изобретение
Номер охранного документа: 0002315711
Дата охранного документа: 27.01.2008
19.06.2019
№219.017.8b24

Устройство для сбора и удаления газов из алюминиевого электролизера содерберга

Изобретение относится к цветной металлургии, в частности к оборудованию для электролитического получения алюминия, а конкретно к устройствам для улавливания и удаления отходящих газов алюминиевых электролизеров Содерберга. Устройство для сбора и удаления газов содержит газосборный колокол,...
Тип: Изобретение
Номер охранного документа: 0002443804
Дата охранного документа: 27.02.2012
28.06.2019
№219.017.997c

Способ и устройство разрушения корки электролита плазменной разделительной резкой

Изобретение относится к способу и устройству для разрушения корки электролита в электролизерах для производства алюминия всех типов. Способ включает разрушение корки электролита плазменной разделительной резкой путем термического плавления материала корки высокоскоростным высокотемпературным...
Тип: Изобретение
Номер охранного документа: 0002692710
Дата охранного документа: 26.06.2019
10.07.2019
№219.017.aee7

Способ герметизации прианодного пространства электролизера содерберга (варианты)

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к способам герметизации прианодного пространства алюминиевого электролизера. В способе по первому варианту после технологической обработки электролизера на электролитную корку засыпают...
Тип: Изобретение
Номер охранного документа: 0002328554
Дата охранного документа: 10.07.2008
24.07.2020
№220.018.35ed

Способ рециклинга футеровочного материала катодного устройства электролизера и устройство для его осуществления

Изобретение относится к способу рециклинга отработанного футеровочного материала электролизера для производства первичного алюминия для футеровки катодных устройств электролизеров. Способ включает вырезание технологического окна в нижней части торцевой стенки кожуха катодного устройства...
Тип: Изобретение
Номер охранного документа: 0002727377
Дата охранного документа: 21.07.2020
24.04.2023
№223.018.5246

Способ получения связующего пека

Настоящее изобретение относится к способу получения нефтекаменноугольного связующего пека с пониженным содержанием бенз[а]пирена для получения анодной массы алюминиевых электролизеров, нефтекаменноугольному связующему пеку, анодной массе и продукту металлургической или электродной...
Тип: Изобретение
Номер охранного документа: 0002744579
Дата охранного документа: 11.03.2021
+ добавить свой РИД