×
20.04.2016
216.015.3742

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЯ ИЗ ОКСИДА ЦИРКОНИЯ НА ПОВЕРХНОСТЬ ИЗДЕЛИЯ ИЗ НИКЕЛЕВОГО СПЛАВА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области материаловедения, в частности к напылению теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих достаточно высокое значение адгезии и когезии. Способ нанесения покрытия из оксида циркония на поверхность изделия из никелевого сплава включает формирование на поверхности изделия из никелевого сплава композитного градиентного слоя со структурой металл-оксид и напыление пленки оксида циркония до достижения ею требуемой толщины. Формирование упомянутого градиентного слоя со структурой металл-оксид осуществляют путем осаждения градиентного переходного слоя, содержащего металлическую фазу на основе никелевого сплава, соответствующего составу упомянутой поверхности изделия, и диэлектрическую фазу, содержащую оксиды циркония разной стехиометрии, при этом используют магнетронную систему с двумя магнетронами. С помощью первого магнетрона распыляют первую мишень из никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующих элементов. Градиентный переходный слой формируют путем совместного распыления указанных мишеней. Сначала распыление мишеней осуществляют в атмосфере аргона с обеспечением превышения интенсивности атомного потока, сформированного от упомянутой первой мишени, над интенсивностью атомного потока от упомянутой второй мишени с формированием сплошного металлического слоя, затем осуществляют распыление в присутствии кислорода с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве. При напылении парциальное давление кислорода плавно увеличивают до давления 1,5*10 Па, а мощность первого магнетрона, распыляющего мишень из никелевого сплава, уменьшают вплоть до его полного отключения. Обеспечивается плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера.
Основные результаты: Способ нанесения покрытия из оксида циркония на поверхность изделия из никелевого сплава, включающий формирование на поверхности изделия из никелевого сплава композитного градиентного слоя со структурой металл-оксид и напыление пленки оксида циркония до достижения ею требуемой толщины, отличающийся тем, что формирование упомянутого градиентного слоя со структурой металл-оксид осуществляют путем осаждения градиентного переходного слоя, содержащего металлическую фазу на основе никелевого сплава, соответствующего составу упомянутой поверхности изделия, и диэлектрическую фазу, содержащую оксиды циркония разной стехиометрии, при этом используют магнетронную систему с двумя магнетронами, причем с помощью первого магнетрона распыляют первую мишень из никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующих элементов, а градиентный переходный слой формируют путем совместного распыления указанных мишеней, причем сначала распыление мишеней осуществляют в атмосфере аргона с обеспечением превышения интенсивности атомного потока, сформированного от упомянутой первой мишени, над интенсивностью атомного потока от упомянутой второй мишени с формированием сплошного металлического слоя, затем осуществляют распыление в присутствии кислорода с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве, при этом при напылении парциальное давление кислорода плавно увеличивают до давления 1,5*10 Па, а мощность первого магнетрона, распыляющего мишень из никелевого сплава, уменьшают вплоть до его полного отключения.

Изобретение относится к области материаловедения, в частности к способам напыления теплозащитных покрытий, и может найти применение в авиастроении и других областях машиностроения при производстве деталей турбинных двигателей и установок, которые требуют формирования на рабочих поверхностях покрытий, имеющих достаточно высокое значение адгезии и когезии.

В настоящее время, при создании покрытия с заданными свойствами методом послойного напыления, образуются межфазные макроскопические границы в плоскостях, параллельных обрабатываемой поверхности, и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.

Известен способ нанесения покрытия из оксида циркония на поверхность изделия из никелевого сплава композитного градиентного слоя со структурой металл-оксид и напыления пленки оксида циркония до достижения им требуемой толщины (BY 13516 С1, МПК: С23С 4/04, 30.08.2010 - прототип).

Недостатком способа является возможность получения сквозной пористости, приводящей к коррозии подложки и к разрушению покрытия. Кроме этого, в процессе послойного напыления образуются межфазные границы в плоскостях, параллельных поверхности, и при циклических термонагрузках разница в значениях коэффициентов термического расширения может привести к расслоению покрытия и его разрушению.

Задачей предложенного технического решения является устранение указанных недостатков и создание способа нанесения покрытия из оксида

циркония на поверхность изделия из никелевого сплава, применение которого позволит сформировать плавный переход от металлического материала к оксидному покрытию без межфазной границы макроскопического размера.

Решение указанной задачи достигается тем, что в предложенном способе нанесения покрытия из оксида циркония на поверхность изделия из никелевого сплава, включающем формирование на поверхности изделия из никелевого сплава композитного градиентного слоя со структурой металл-оксид и напыление пленки оксида циркония до достижения ею требуемой толщины, согласно изобретению формирование упомянутого градиентного слоя со структурой металл-оксид осуществляют путем осаждения градиентного переходного слоя, содержащего металлическую фазу на основе никелевого сплава, соответствующего составу упомянутой поверхности изделия, и диэлектрическую фазу, содержащую оксиды циркония разной стехиометрии, при этом используют магнетронную систему с двумя магнетронами, причем с помощью первого магнетрона распыляют первую мишень из никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующих элементов, а градиентный переходный слой формируют путем совместного распыления указанных мишеней, причем сначала распыление мишеней осуществляют в атмосфере аргона с обеспечением превышения интенсивности атомного потока, сформированного от упомянутой первой мишени, над интенсивностью атомного потока от упомянутой второй мишени с формированием сплошного металлического слоя, затем осуществляют распыление в присутствии кислорода с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве, при этом при напылении парциальное давление кислорода плавно увеличивают до давления 1,5*10-3 Па, а мощность первого магнетрона, распыляющего мишень из никелевого сплава, уменьшают вплоть до его полного отключения.

Предложенный способ реализуется следующим образом.

Для повышения адгезионной прочности покрытия из оксида циркония, стабилизированного иттрием, напыляемого на металлические сплавы, создают переходной слой из градиентного нанокомпозитного материала, содержащего две фазы: металлическую фазу с составом, соответствующим составу защищаемой поверхности, и диэлектрическую фазу, собственно оксид циркония различной стехиометрии. Соотношение фаз в переходном слое обеспечивают не постоянным, а изменяют с возрастанием доли оксидной фазы по мере увеличения толщины пленки. В результате создания такого градиентного слоя формируется плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера.

Для создания указанного градиентного переходного слоя используется магнетронная система с двумя магнетронами. Первый магнетрон распыляет мишень, состав которой соответствует составу металлического изделия, никелевый сплав ХН71МТЮБ, а второй магнетрон распыляет мишень из циркония с добавками стабилизирующих элементов, например иттрий. Первоначальное распыление мишеней осуществляется в атмосфере аргона, причем интенсивность атомного потока, сформированного от никелевой мишени, превышает интенсивность атомного потока от циркониевой мишени. После формирования первичного сплошного металлического слоя в рабочую камеру добавляется кислород, после чего процесс напыления приобретает характер реактивного - в напыляемой пленке начинает образовываться оксид. В силу различных значений энергий связи в оксиде никеля и оксиде циркония в формирующемся покрытии происходит образование оксида циркония, в то время как никель остается неокисленным.

Таким образом, в результате одновременного распыления никелевого сплава и циркония в смешанной кислородно-аргонной атмосфере происходит напыление композитного материала металл-оксид. В процессе напыления парциальное давление кислорода плавно

увеличивается до давления 1,5*10-3 Па, а мощность магнетрона, распыляющего металлический сплав, уменьшается вплоть до его полного отключения. После этого продолжается напыление чистого оксида циркония до достижения им требуемой толщины.

В этом случае формируемый градиентный слой является не только композитным, но и наноструктурированным, поскольку характерные размеры включений каждой фазы составляют от единиц до нескольких десятков нанометров, в зависимости от объемной доли фазы.

Полученная наноструктурированность не только повышает механическую прочность покрытия, но и приводит к изотропному распределению внутренних напряжений при циклических термонагрузках, что повышает жаропрочность и жаростойкость покрытия.

Использование предложенного технического решения позволит создать способ нанесения оксидного покрытия на металлическую поверхность, применение которого позволит сформировать плавный переход от металлического материала к оксиду без межфазной границы макроскопического размера, что, в конечном итоге, позволит повысить механическую прочность покрытия, и приведет к изотропному распределению внутренних напряжений при циклических термонагрузках, что позволит повысить жаропрочность и жаростойкость покрытия.

Способ нанесения покрытия из оксида циркония на поверхность изделия из никелевого сплава, включающий формирование на поверхности изделия из никелевого сплава композитного градиентного слоя со структурой металл-оксид и напыление пленки оксида циркония до достижения ею требуемой толщины, отличающийся тем, что формирование упомянутого градиентного слоя со структурой металл-оксид осуществляют путем осаждения градиентного переходного слоя, содержащего металлическую фазу на основе никелевого сплава, соответствующего составу упомянутой поверхности изделия, и диэлектрическую фазу, содержащую оксиды циркония разной стехиометрии, при этом используют магнетронную систему с двумя магнетронами, причем с помощью первого магнетрона распыляют первую мишень из никелевого сплава, а с помощью второго магнетрона распыляют вторую мишень из циркония с добавками стабилизирующих элементов, а градиентный переходный слой формируют путем совместного распыления указанных мишеней, причем сначала распыление мишеней осуществляют в атмосфере аргона с обеспечением превышения интенсивности атомного потока, сформированного от упомянутой первой мишени, над интенсивностью атомного потока от упомянутой второй мишени с формированием сплошного металлического слоя, затем осуществляют распыление в присутствии кислорода с образованием в напыляемой пленке оксида циркония при неокисленном никелевом сплаве, при этом при напылении парциальное давление кислорода плавно увеличивают до давления 1,5*10 Па, а мощность первого магнетрона, распыляющего мишень из никелевого сплава, уменьшают вплоть до его полного отключения.

Источник поступления информации: Роспатент

Showing 81-90 of 738 items.
20.08.2013
№216.012.612a

Жидкостный ракетный двигатель

Изобретение относится к области энергетических установок, а именно - к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке жидкостных ракетных двигателей (ЖРД), особенно работающих на трехкомпонентном топливе. ЖРД содержит, как минимум,...
Тип: Изобретение
Номер охранного документа: 0002490506
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.612b

Жидкостный ракетный двигатель

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании трехкомпонентных жидкостных ракетных двигателей, работающих на криогенных компонентах, например, кислороде, водороде и керосине. Жидкостный ракетный двигатель содержит газогенератор, турбонасосный...
Тип: Изобретение
Номер охранного документа: 0002490507
Дата охранного документа: 20.08.2013
20.09.2013
№216.012.6c69

Способ подачи компонентов топлива в камеру трехкомпонентного жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к способам для перемешивания и распиливания компонентов топлива жидкостных ракетных двигателей (ЖРД). Способ кислородно-керосинового-водородного ЖРД заключается в подаче компонентов в камеру через коаксиальные соосно-струйные...
Тип: Изобретение
Номер охранного документа: 0002493404
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c6a

Камера жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке камер жидкостных ракетных двигателей (ЖРД), особенно работающих на трехкомпонентном топливе. Камера ЖРД содержит...
Тип: Изобретение
Номер охранного документа: 0002493405
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c6b

Жидкостный ракетный двигатель

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании трехкомпонентных жидкостных ракетных двигателей, работающих на криогенных компонентах, например кислороде, водороде и керосине. Жидкостный ракетный двигатель, характеризующийся тем, что он...
Тип: Изобретение
Номер охранного документа: 0002493406
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c6c

Смесительная головка камеры жрд

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Смесительная головка камеры ЖРД содержит корпус,...
Тип: Изобретение
Номер охранного документа: 0002493407
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c6d

Смесительная головка камеры жрд

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Смесительная головка камеры ЖРД содержит корпус,...
Тип: Изобретение
Номер охранного документа: 0002493408
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c6e

Камера жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке камер жидкостных ракетных двигателей (ЖРД), особенно работающих на трехкомпонентном топливе. Камера ЖРД содержит...
Тип: Изобретение
Номер охранного документа: 0002493409
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c6f

Жидкостный ракетный двигатель

Изобретение относится к области энергетических установок, а именно - к устройствам для перемешивания и распиливания компонентов топлива, и может быть использовано при разработке жидкостных ракетных двигателей (ЖРД), особенно работающих на трехкомпонентном топливе. ЖРД содержит, как минимум,...
Тип: Изобретение
Номер охранного документа: 0002493410
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6c70

Жидкостный ракетный двигатель

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании трехкомпонентных жидкостных ракетных двигателей, работающих на криогенных компонентах, например кислороде, водороде и керосине. Жидкостный ракетный двигатель содержит, как минимум, один...
Тип: Изобретение
Номер охранного документа: 0002493411
Дата охранного документа: 20.09.2013
Showing 81-90 of 818 items.
20.09.2013
№216.012.6d16

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов

Изобретение относится к машиностроению, а именно, к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат - ускорение процесса синтеза, повышение надежности работы мехатронно-модульных роботов. Предложен способ многоальтернативной оптимизации...
Тип: Изобретение
Номер охранного документа: 0002493577
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6fcf

Жидкостный ракетный двигатель

Изобретение относится к области ракетного двигателестроения и может быть использовано при создании трехкомпонентных жидкостных ракетных двигателей, работающих на криогенных компонентах, например, кислороде, водороде и керосине. Жидкостный ракетный двигатель содержит, как минимум, один...
Тип: Изобретение
Номер охранного документа: 0002494274
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6ff3

Устройство горелочное для сжигания промышленных стоков

Устройство горелочное для сжигания промышленных стоков содержит обечайку с профилированным входом и выходом, запальную и дежурную горелки и форсунку для распыливания жидкого компонента, преимущественно, промышленных стоков. Обечайка установлена на раме. Горелки расположены в выходной части...
Тип: Изобретение
Номер охранного документа: 0002494310
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6ff4

Способ сжигания промышленных стоков

Способ сжигания промышленных стоков заключается в подаче промышленных стоков в смесь горючего, преимущественно газа, с воздухом, и последующем сжигании образовавшейся смеси в газовой горелке устройства для сжигания промышленных стоков; характеризующийся тем, что газовую горелку выполняют с...
Тип: Изобретение
Номер охранного документа: 0002494311
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.73ae

Способ подачи компонентов топлива в камеру трехкомпонентного жидкостного ракетного двигателя

Изобретение относится к области энергетических установок, а именно - к способам и устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Способ подачи компонентов топлива в...
Тип: Изобретение
Номер охранного документа: 0002495271
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.73af

Способ подачи компонентов топлива в камеру трехкомпонентного жидкостного ракетного двигателя

Изобретение относится к области энергетических установок и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Способ подачи компонентов топлива в камеру трехкомпонентного жидкостного ракетного двигателя, преимущественно...
Тип: Изобретение
Номер охранного документа: 0002495272
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.7699

Жидкостный ракетный двигатель

Изобретение относится к жидкостным ракетным двигателям (ЖРД). Жидкостный ракетный двигатель содержит газогенератор, турбонасосный агрегат, агрегаты питания и регулирования, камеру со смесительной головкой, включающей корпус, блок подачи окислителя, преимущественно кислорода, блок подачи...
Тип: Изобретение
Номер охранного документа: 0002496021
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.769a

Смесительная головка камеры жрд

Изобретение относится к области энергетических установок, а именно смесительным головкам жидкостных ракетных двигателей (ЖРД). Смесительная головка камеры ЖРД содержит корпус, блок подачи окислителя, преимущественно кислорода, блок подачи основного горючего, блок подачи дополнительного горючего...
Тип: Изобретение
Номер охранного документа: 0002496022
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7a72

Способ подачи компонентов топлива в камеру трехкомпонентного жидкостного ракетного двигателя

Изобретение относится к области энергетических установок и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Способ заключается в подаче компонентов в камеру через коаксиальные соосно-струйные форсунки, содержащие полый наконечник,...
Тип: Изобретение
Номер охранного документа: 0002497008
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7a73

Соосно-струйная форсунка

Изобретение относится к области энергетических установок, а именно к устройствам для перемешивания и распыливания компонентов топлива, и может быть использовано при разработке форсунок и смесительных головок жидкостных ракетных двигателей (ЖРД). Соосно-струйная форсунка содержит корпус с полым...
Тип: Изобретение
Номер охранного документа: 0002497009
Дата охранного документа: 27.10.2013
+ добавить свой РИД