×
20.04.2016
216.015.36c4

Результат интеллектуальной деятельности: ФОЛЬГОВЫЙ ЗАРЯДОВЫЙ СПЕКТРОГРАФ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области дозиметрии и спектрометрии импульсных ионизирующих излучений ускорителей, в частности импульсного электронного и тормозного излучений. Фольговый зарядовый спектрограф содержит пакет из N металлических фольг, общая толщина которых подбирается из условия равенства экстраполированному пробегу электронов d максимальной энергии электронов Ε<511 кэВ, при этом фольги расположены параллельно друг другу в вакуумной камере при значении давления Ρ=10÷10 Па, каждая фольга подсоединена к отдельной емкости, накапливающей поглощенный данной фольгой заряд, имеющей отдельный разъем для снятия зарядовых характеристик, и полностью покрыта диэлектрической пленкой толщиной не более 2 мкм. Технический результат - упрощение способа измерения распределения электронов по энергиям, повышение точности измерений. 2 ил.
Основные результаты: Фольговый зарядовый спектрограф, содержащий пакет из N металлических фольг, общая толщина которых подбирается из условия равенства экстраполированному пробегу электронов d максимальной энергии электронов Ε<511 кэВ, при этом фольги расположены параллельно друг другу в вакуумной камере при значении давления P=10÷10 Па, каждая фольга подсоединена к отдельной емкости, накапливающей поглощенный данной фольгой заряд, имеющей отдельный разъем для снятия зарядовых характеристик, и полностью покрыта диэлектрической пленкой толщиной не более 2 мкм.

Изобретение относится к области дозиметрии и спектрометрии импульсных ионизирующих излучений ускорителей, в частности импульсного электронного и тормозного излучений. Изобретение может быть использовано для определения спектрально-энергетических характеристик электронного излучения сильноточных импульсных ускорителей.

Известно устройство (патент РФ 2281532) для комплексного измерения спектрально-энергетических характеристик импульсного электронного и тормозного излучения ускорителя, содержащее магнитоиндукционный преобразователь тока пучка электронов, мишень-конвертер для преобразования электронного излучения в тормозное излучение, преобразователь мощности экспозиционной дозы тормозного излучения, при этом мишень выполнена в виде двух слоев, устройство дополнительно содержит цилиндрический корпус, в котором расположен магнитоиндукционный преобразователь тока пучка электронов, снабженный экраном с входным и выходным окнами для защиты пучка электронов от внешних электрических полей, входное окно экрана перекрыто первым слоем мишени, выполненным из легкоатомного металла, а его выходное окно перекрыто теплоизолированным от упомянутого экрана вторым слоем мишени, выполненным из тяжелоатомного металла со встроенным преобразователем поглощенной энергии терморезисторного или термопарного типа, причем слои мишени и экран электрически соединены между собой, при этом магнитоиндукционный преобразователь тока, преобразователь поглощенной энергии в мишени и преобразователь мощности экспозиционной дозы соединены посредством линий связи с соответствующими регистраторами и электронно-вычислительной машиной, положение первого слоя мишени, являющегося анодом, образует ускоряющий промежуток ускорителя, а преобразователь мощности экспозиционной дозы располагается в формируемой ускорителем изодозовой плоскости облучения образца в поле тормозного излучения.

Недостатком данного устройства является сложность и косвенный характер измерений.

Известен способ (патент РФ №884818), в котором измеряют распределение поглощенной дозы гамма-излучения у поверхности раздела двух сред с различными атомными номерами, а после математической обработки дозиметрической кривой определяют спектр вторичных электронов, который приравнивают к осредненному спектру гамма-излучения, при этом измеряют по крайней мере две дозиметрические кривые у границы раздела двух поглотителей, одним из которых являются металлические фольги с разными толщинами и атомными номерами, причем толщину первой из них выбирают равной экстраполированному пробегу электронов в фольге Rэ (Е, Zф) со средней энергией Е из всего спектра вторичных электронов, а последующих - в пределах (0-0,5) Rэ (Е, Zфi), где Zфi = (2-20) Zn - атомный номер i-той фольги и Zn - атомный номер поглотителя. Недостатком данного способа является косвенный характер измерений, кроме того, при поглощении часть заряженных частиц испытывает обратное отражение и переизлучение с поверхности фольг, что значительно снижает точность измерений.

Технической задачей настоящего изобретения является упрощение способа измерения распределения электронов по энергиям, повышение точности за счет реализации прямых измерений.

Указанный технический результат достигается тем, что предложен фольговый зарядовый спектрограф, содержащий пакет из N металлических фольг, общая толщина которых подбирается из условия равенства экстраполированному пробегу электронов d максимальной энергии электронов Е<511 кэВ, при этом фольги расположены параллельно друг другу в вакуумной камере при значении давления Р = 10-6÷10-7 Па, каждая фольга подсоединена к отдельной емкости, накапливающей поглощенный данной фольгой заряд, имеющей отдельный разъем для снятия зарядовых характеристик, и полностью покрыта диэлектрической пленкой толщиной не более 2 мкм.

Спектрограф работает следующим образом. После генерации пучок заряженных частиц (электронов) проходит последовательно через каждую фольгу из пакета (набора N фольг) и заряжает весь набор конденсаторов, соединенных последовательно с каждой из фольг. При этом на первой фольге остаются электроны с минимальной энергией, на второй фольге с большей энергией и, наконец, на N-той фольге электроны с максимальной энергией. Общая толщина N фольг выбирается из условия полного поглощения заряженных частиц (электронов) с максимальной энергией. Для того чтобы не происходило переотражение электронов и не вносило искажение в их распределение по энергиям, каждую фольгу покрывают слоем диэлектрика (полимера) такой толщины, чтобы работа выхода для поглощенных электронов была значительно больше, чем средняя энергия случайных, переотраженных электронов. Последовательно, с помощью переключателя с необходимым интервалом времени примерно 10-15 сек, каждый из конденсаторов подсоединяется к баллистическому гальванометру, который определяет заряд каждого конденсатора по углу отклонения стрелки предварительно откалиброванного по эталонному источнику гальванометра.

Возможность достижения технического результата обеспечивается тем, что в процессе прохождения электронов через набор металлических фольг, покрытых диэлектрическим слоем (например, слоем нитроцеллюлозы толщиной до 2 мкм), быстрые электроны основного спектра проходят через диэлектрический слой практически без потерь и поглощаются только на фольге определенного номера, а низкоэнергетические вторичные электроны, энергия которых меньше работы выхода из диэлектрика, не переизлучаются, оставаясь в данной фольге, и не влияют на точность измерений. Так как каждая фольга соединена с конденсатором постоянной ёмкости, то ее потенциал чрезвычайно мал и относительная погрешность измерения находится в пределах 1-2 %. В то время как аналогичные фольговые спектрографы, не покрытые слоем диэлектрика, дают относительную погрешность измерения в пределах 20-30%. Таким образом, с заданной степени точности (варьированием толщины и количества фольг) получается распределение электронов по глубине образца. Из данного распределения, например, в области низких энергий до 511 кэВ по известным зависимостям ионизационных потерь электронов от глубины проникновения в материал можно получать распределение электронов по энергиям.

Пример 1. Изготовлен спектрограф, содержащий пакет из 15 алюминиевых фольг толщиной 1 мкм, расположенных параллельно друг другу в вакуумной камере на расстоянии 1 мм друг от друга, при значении давления Р=10-6÷10-7 Па в вакуумной камере и энергетическом спектре электронов, излучаемых генератором импульсных напряжений ГИН -400 в интервале Е=10÷300 кэВ, плотность потока электронов Ф=1·1014 эл/см2, при этом каждая фольга была подсоединена к отдельному конденсатору постоянной ёмкости 10 МКФ, имеющему отдельный разъем для соединения с баллистическим гальванометром M1510A с пределом измерений 100 мкА, при этом каждая фольга была покрыта слоем нитроцеллюлозы толщиной 1 мкм методом окунания в раствор нитролака. На фиг. 1 изображен акустический отклик давления σ(Па) 1, возбуждаемый в данном образце при облучении образца алюминия потоком электронов заданной плотности Ф=1·1014 эл/см2. Видно, что при этом глубина d экстраполированного пробега электронов в алюминии не превышает 15 мкм. На фиг. 2 изображена полученная экспериментальная зависимость 1 между 15 значениями заряда Q(Кл·10-7), приходящегося на каждую из 15 алюминиевых фольг при данной плотности потока электронов. Ф=1·1014 эл/см2.

Пример 2. Изготовлен спектрограф, содержащий пакет из 15 алюминиевых фольг толщиной 1 мкм, расположенных параллельно друг другу в вакуумной камере на расстоянии 1 мм друг от друга, при значении давления Р=10-6÷10-7 Па в вакуумной камере и энергетическом спектре электронов, излучаемых генератором импульсных напряжений ГИН -400 в интервале Е=10÷300 кэВ, плотность потока электронов Ф=0,77·1014 эл/см2 , при этом каждая фольга была подсоединена к отдельному конденсатору постоянной ёмкости 10 МКФ, имеющему отдельный разъем для соединения с баллистическим гальванометром M1510A с пределом измерений 100 мкА, при этом каждая фольга была покрыта слоем нитроцеллюлозы толщиной 1,5 мкм методом окунания в раствор нитролака. На фиг. 1 изображен акустический отклик σ(Па) 2, возбуждаемый в данном образце при облучении образца алюминия потоком электронов заданной плотности Ф=0,77·1014 эл/см2. При этом также глубина d экстраполированного пробега электронов в алюминии не превышает 15 мкм. На фиг. 2 изображена полученная экспериментальная зависимость 2 между 15 значениями заряда Q(Кл·10-7), приходящегося на каждую из 15 алюминиевых фольг при данной плотности потока электронов Ф=0,77·1014 эл/см2.

Пример 3. Изготовлен спектрограф, содержащий пакет из 15 алюминиевых фольг толщиной 1 мкм, расположенных параллельно друг другу в вакуумной камере на расстоянии 1 мм друг от друга, при значении давления Р=10-6÷10-7 Па в вакуумной камере и энергетическом спектре электронов, излучаемых генератором импульсных напряжений ГИН -400 в интервале Е=10÷300 кэВ, плотность потока электронов Ф=0,5·1014 эл/см2, при этом каждая фольга была подсоединена к отдельному конденсатору постоянной ёмкости 10 МКФ, имеющему отдельный разъем для соединения с баллистическим гальванометром M1510A с пределом измерений 100 мкА, каждая фольга была покрыта слоем нитроцеллюлозы толщиной 2 мкм методом окунания в раствор нитролака. На фиг. 1 изображен акустический отклик σ(Па) 3, возбуждаемый в данном образце при облучении образца алюминия потоком электронов заданной плотности Ф=0,5·1014 эл/см2. Глубина d экстраполированного пробега электронов в алюминии не превышает 15 мкм. На фиг. 2 изображена полученная экспериментальная зависимость 3 между 15 значениями заряда Q(Кл·10-7), приходящегося на каждую из 15 алюминиевых фольг (толщиной d) при данной плотности потока электронов Ф=0,5·1014 эл/см2.

Фольговый зарядовый спектрограф, содержащий пакет из N металлических фольг, общая толщина которых подбирается из условия равенства экстраполированному пробегу электронов d максимальной энергии электронов Ε<511 кэВ, при этом фольги расположены параллельно друг другу в вакуумной камере при значении давления P=10÷10 Па, каждая фольга подсоединена к отдельной емкости, накапливающей поглощенный данной фольгой заряд, имеющей отдельный разъем для снятия зарядовых характеристик, и полностью покрыта диэлектрической пленкой толщиной не более 2 мкм.
ФОЛЬГОВЫЙ ЗАРЯДОВЫЙ СПЕКТРОГРАФ
ФОЛЬГОВЫЙ ЗАРЯДОВЫЙ СПЕКТРОГРАФ
Источник поступления информации: Роспатент

Showing 21-28 of 28 items.
10.04.2016
№216.015.307c

Способ получения монофазного кристаллического кремний-замещенного гидроксилапатита

Изобретение относится к технологии получения кристаллического кремний-замещенного гидроксилапатита (Si-ГА), который может быть использован в ортопедии и стоматологии. Si-ГА получают методом осаждения из модельного раствора внеклеточной жидкости путем приготовления раствора состава: СаСl -...
Тип: Изобретение
Номер охранного документа: 0002580728
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.312d

Способ повышения коррозионной стойкости труб из малоуглеродистых сталей

Изобретение относится к области металлургии. Для повышения стойкости труб к коррозии и увеличения срока эксплуатации тепловоспринимающих элементов при применении таких труб в теплоэнергетике способ повышения коррозионной стойкости труб из малоуглеродистой стали марки ст.20 включает загрузку...
Тип: Изобретение
Номер охранного документа: 0002580256
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.318d

Способ получения sr-содержащего карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека

Изобретение относится к области медицины, в частности к способу получения Sr-содержащего карбонатгидроксилапатита из модельного раствора синовиальной жидкости человека. Способ получения Sr-содержащего карбонатгидроксилапатита включает получение неорганического вещества, в искусственно созданной...
Тип: Изобретение
Номер охранного документа: 0002580633
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3215

Способ формирования сверхпроводящей тонкой пленки с локальными областями переменной толщины

Использование: для формирования в сверхпроводящих тонких пленках областей с требуемыми значениями плотности критического тока. Сущность изобретения заключается в том, что способ формирования областей переменной толщины сверхпроводящей тонкой пленки методом лазерного распыления мишени YBaCuO, в...
Тип: Изобретение
Номер охранного документа: 0002580213
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.3fa9

Способ моделирования процесса образования зубного камня из аналога раствора слюны человека

Изобретение относится к области медицины, а именно к стоматологическим методам экспериментального моделирования процессов, протекающих в полости рта человека, в частности образования зубного камня. Для этого предложен способ моделирования процесса образования зубного камня из аналога раствора...
Тип: Изобретение
Номер охранного документа: 0002584652
Дата охранного документа: 20.05.2016
25.08.2017
№217.015.a877

Способ моделирования процесса кристаллизации кальцификатов сосудов из аналога раствора плазмы крови человека в условиях, близких к физиологическим, in vitro

Изобретение касается способа моделирования патологических процессов образования минеральных фаз при патогенной кальцификации коллагеновых и мышечных тканей. Сущность способа заключается в том, что получают минеральные фазы, составляющие основу неорганической компоненты кальцификатов сердечных...
Тип: Изобретение
Номер охранного документа: 0002611412
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.a8f4

Способ определения суммарного содержания углеводородов в водах

Изобретение относится к области аналитической химии применительно к оценке суммарных содержаний однотипных органических соединений с помощью оптических средств. Способ включает: отбор пробы, экстракцию углеводородов тетрахлорметаном, сорбционную очистку экстракта с помощью AlO, измерения...
Тип: Изобретение
Номер охранного документа: 0002611413
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.bcf1

Способ моделирования процесса образования зубного камня из аналога раствора зубного налета

Изобретение относится к области медицины, а именно к способам экспериментального моделирования процессов, протекающих в полости рта человека, в частности, образования зубного камня. Предлагаемый способ моделирования процесса образования зубного камня из аналога раствора зубного налета основан...
Тип: Изобретение
Номер охранного документа: 0002616251
Дата охранного документа: 13.04.2017
Showing 31-31 of 31 items.
12.04.2023
№223.018.4577

Дозиметр ионизирующих излучений

Изобретение относится к датчикам и устройствам для определения ионизирующих излучений и/или ионизирующих частиц. Дозиметр, содержащий чувствительный элемент, выполненный в виде бипластины из материалов с разными коэффициентами радиационного изменения модуля упругости, устройство измерения...
Тип: Изобретение
Номер охранного документа: 0002756394
Дата охранного документа: 30.09.2021
+ добавить свой РИД