×
20.04.2016
216.015.34d0

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ВРАЩЕНИЯ ЗАБОЙНОГО БЕСКОМПРЕССОРНОГО ДВИГАТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002581616
Дата охранного документа
20.04.2016
Аннотация: Изобретение относится к забойным бескомпрессорным двигателям для вращения буровых долот. Технический результат - обеспечение возможности контроля и/или управления работой забойного бескомпрессорного двигателя. Система бурения, предназначенная для бурения буровой скважины, включает забойный бескомпрессорный двигатель, содержащий ротор, установленный с возможностью вращения внутри статора, буровое долото, соединенное с забойным бескомпрессорным двигателем и выполненное с возможностью передачи вращения ротора на буровое долото для его вращения в буровой скважине, и процессор. Ротор двигателя включает по меньшей мере один источник магнитного поля или детектор магнитного поля, а статор включает по меньшей мере один источник магнитного поля, если ротор включает детектор магнитного поля или включает по меньшей мере один детектор магнитного поля, если ротор включает источник магнитного поля. Процессор выполнен с возможностью управления забойным бескомпрессорным двигателем с использованием измерений, сгенерированных посредством по меньшей мере одного источника магнитного поля и по меньшей мере одного детектора магнитного поля. 3 н. и 15 з.п. ф-лы, 11 ил.

ОБЛАСТЬ ТЕХНИКИ

Варианты осуществления настоящего изобретения относятся к буровому устройству, включающему буровое долото, соединенное с ротором, установленным с возможностью вращения внутри статора, например, двигателя объемного типа или турбины.

УРОВЕНЬ ТЕХНИКИ

Забойные бескомпрессорные двигатели используются в нефтехимической промышленности для приложения мощности в местоположении на забое скважины к буровому долоту в нефтяных и/или газовых скважинах для применений при бурении. Забойный бескомпрессорный двигатель, иногда упоминаемый как гидравлический забойный двигатель, устанавливается на днище бурильной колонны и соединяется с помощью выходного вала с буровым долотом. Буровой раствор, иногда упоминаемый как глинистый раствор для бурения или просто раствор, закачивается через бурильную колонну и через забойный бескомпрессорный двигатель. Забойный бескомпрессорный двигатель использует мощность закачиваемого/протекающего бурового раствора для получения механической полезной мощности, вращения выходного вала и, в свою очередь, бурового долота.

Хотя существуют различные типы забойных бескомпрессорных/гидравлических забойных двигателей, наиболее часто используемым типом в настоящее время является двигатель объемного типа, который использует вытянутый геликоидальный ротор внутри соответствующего геликоидального статора. Поток бурового раствора или раствора между статором и ротором заставляет ротор двигаться внутри статора по эксцентрической орбите вокруг продольной оси статора. Собственно ротор вращается вокруг своей продольной оси и также вращается по орбите вокруг центральной продольной оси статора. Эта эксцентрическая траектория и вращение ротора передается посредством соответствующей коробки передач, такой как сборка карданного сочленения, для получения концентрического вращения выходного вала.

Забойный бескомпрессорный двигатель является разновидностью динамического бурильного инструмента для забоя скважины, который преобразовывает мощность бурового раствора во вращение бурового долота; приложение крутящего момента и скорости к буровому долоту. Преимущества использования забойного бескомпрессорного двигателя состоят в том, что он обеспечивает: более высокую скорость бурения; лучший контроль искривления ствола скважины; сниженную частоту разрушения бурильной колонны.

Забойный бескомпрессорный двигатель, гидравлический забойный двигатель или буровой двигатель может также упоминаться как винтовой объемный насос, который может быть размещен на бурильной колонне для подачи дополнительной мощности на буровое долото в процессе бурения. Как указано выше, забойный бескомпрессорный двигатель использует буровой раствор для создания эксцентрического движения в силовой секции двигателя, которое передается как мощность концентрического движения на буровое долото. Забойный бескомпрессорный двигатель использует различные конфигурации ротора и статора с целью обеспечения оптимальных параметров для требуемой операции бурения; в типичном случае число лопастей и длина силовой установки могут быть увеличены для обеспечения большей мощности. В некоторых применениях для подачи мощности на забойный бескомпрессорный двигатель может использоваться сжатый воздух или другие сжатые газы. Вращение долота при использовании забойного бескомпрессорного двигателя может составлять от 60 оборотов в минуту до более 100 оборотов в минуту.

Забойные бескомпрессорные двигатели могут включать верхний переводник, который соединяет забойный бескомпрессорный двигатель с бурильной колонной; силовую секцию, которая состоит из ротора и статора; секцию коробки передач, где мощность эксцентрического движения от ротора передается как мощность концентрического движения на буровое долото; опору бурового долота, которая защищает инструмент от давлений над забоем и противодавлений на забой; и нижний переводник, который соединяет забойный бескомпрессорный двигатель с буровым долотом.

Использование забойных бескомпрессорных двигателей существенно зависит от финансовой эффективности. В прямых вертикальных стволах скважин гидравлический забойный двигатель может использоваться для повышенной скорости проходки при бурении (СПБ), или чтобы минимизировать эрозию и износ на бурильной колонне, поскольку для бурильной колонны нет необходимости вращаться так же быстро. Однако, в большинстве случаев, забойный бескомпрессорный двигатель используется для направленного бурения. Хотя для управления буром для направленного бурения буровой скважины могут использоваться и другие способы, забойный бескомпрессорный двигатель может оказаться наиболее рентабельным способом.

В некоторых аспектах забойный бескомпрессорный двигатель может быть сконфигурирован таким образом, чтобы включать секцию изгиба с целью обеспечения возможности направленного бурения. В типичном случае забойные бескомпрессорные двигатели могут быть модифицированы в пределах от приблизительно нуля до четырех градусов для обеспечения возможности направленного бурения с приблизительно шестью инкрементами отклонения на градус изгиба. Величина изгиба определяется скоростью подъема, необходимой для достижения заданной зоны. За счет использования инструмента для измерения во время бурения (ИВБ), бурильщик наклонно-направленного бурения может направлять буровое долото, которое приводится в движение забойным бескомпрессорным двигателем, в требуемую заданную зону.

Силовая секция забойного бескомпрессорного двигателя состоит из статора и ротора. В некоторых забойных бескомпрессорных двигателях статор включает резиновую втулку на стенке стальной трубы, где внутренняя поверхность резиновой втулки определяет спиральную конструкцию с определенным геометрическим параметром. Ротор включает вал, такой как стальной вал, который может быть покрыт износостойким покрытием, таким как хром, и может иметь геликоидальный профиль, сконфигурированный для движения/поворота/вращения внутри статора.

В ходе процедуры бурения буровой раствор закачивается в забой скважины через буровую трубу при определенной скорости и давлении. Забойный бескомпрессорный двигатель преобразует гидравлическую энергию бурового раствора, проходящего через силовую секцию, в механическую энергию, вращение и крутящий момент. Эта механическая энергия передается от забойного бескомпрессорного двигателя на буровое долото.

Альтернативой использованию двигателя объемного типа является применение турбины в процессе, который часто называется турбинным бурением. В способе турбинного бурения мощность генерируется на дне ствола скважины с помощью турбин, работающих на буровом растворе. Турбобур состоит из четырех основных узлов: верхней, или осевой, опоры; турбин, нижней опоры и бурового долота. В процессе работы раствор закачивается через буровую трубу, проходит через осевую опору и в турбину. В турбине статоры, присоединенные к корпусу инструмента, отводят поток раствора на роторы, присоединенные к валу. Это заставляет вал, соединенный с буровым долотом, вращаться. Раствор проходит через полую часть вала в нижнюю опору и через буровое долото, как и при роторном бурении, для удаления отходов, охлаждения бурового долота и выполнения других функций бурового раствора. Объем раствора, который является источником мощности, является параметром при определении скорости вращения.

Лопасти многоступенчатой высокоэффективной реактивной турбины извлекают гидравлическую энергию из потока протекающего раствора и преобразовывают ее в механическую энергию (крутящий момент и вращение), чтобы привести в действие буровое долото. Каждая из ступеней турбины состоит из статора, прикрепленного к корпусу инструмента, и ротора, прикрепленного к выходному валу. Они сконструированы для синхронной работы, направляя и ускоряя раствор при его прохождении через каждую из ступеней. Для достижения высоких уровней мощности и крутящего момента, необходимых в применениях для бурения прямолинейных скважин, комплектные инструменты монтируются приблизительно со 150 наборами идентичных пар, состоящих из ротора и статора. С целью обеспечения длительного срока службы роторы и статоры изготавливаются с применением высококачественных сплавов, которые устойчивы как к эрозии, так и к коррозии.

Подобно двигателю объемного типа, турбобур генерирует механическую мощность за счет перепада давления поперек системы привода, связанного со скоростью потока флюида. В общем случае, чем больше величина перепада давления на инструменте, тем больше потенциал для передачи механической мощности на буровое долото. Поскольку система генерирования мощности турбобура является полностью механической, она способна выдерживать исключительно высокий перепад давления, который создает большую механическую мощность по сравнению с гидравлическим забойным двигателем.

С учетом своих преимуществ, двигатели объемного типа (ДОТ) и турбины в большом количестве используются в нефтепромысловых операциях бурения для увеличения скорости вращения и крутящего момента, подаваемого на буровое долото при бурении.

Несмотря на широкое использование, однако, обычно неизвестно точно, какая скорость вращения генерируется в процессе операции бурения с использованием ДОТ и/или турбины.

Скорость вращения бурового двигателя или турбины может быть исключительно важной при управлении направлением бурения бурильной системы, СПБ, устойчивостью системы бурения, колебаниями системы бурения, эффективностью работы системы бурения и/или тому подобным. По существу, для обеспечения эффективной работы системы бурения с использованием забойного бескомпрессорного двигателя в значительной степени в реальном времени важным является определение свойств вращения забойного бескомпрессорного двигателя или турбины.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В настоящем описании изобретения термин бурильная турбина, вал, приводной вал и/или ротор могут использоваться попеременно для описания элемента (элементов), вращающихся в забойном бескомпрессорном двигателе и обеспечивающих вращение бурового долота.

Таким образом, в первом аспекте настоящее изобретение относится к буровому устройству, включающему буровое долото, соединенное с ротором, смонтированным вращательным образом внутри статора, ротор включает по меньшей мере один источник магнитного поля или детектор магнитного поля, и статор включает по меньшей мере один источник магнитного поля, если ротор включает детектор магнитного поля, или включает по меньшей мере один детектор магнитного поля, если ротор включает источник магнитного поля.

Таким образом, по мере вращения ротора относительно статора детектор на роторе или статоре будет детектировать флуктуации воспринимаемого магнитного поля. Скорость вращения ротора относительно статора может быть установлена путем интерпретирования флуктуаций.

Таким образом, во втором аспекте изобретение относится к способу определения скорости вращения ротора, смонтированного внутри статора, способ включает измерение магнитного поля, детектируемого по меньшей мере одним детектором магнитного поля в устройстве, определенном здесь, и определение скорости вращения на основе измерений.

Как указывалось выше, ротор и статор могут образовывать двигатель объемного или кавитационного типа или турбину. Однако также возможны и другие компоновки ротора и статора.

Скорость вращения ротора может, например, быть определена с помощью хронометража длительности времени между пиками детектируемого магнитного поля. Кроме того, скорость вращения может быть определена путем проведения частотного анализа измеренного магнитного поля.

В общем случае, однако, желательно также контролировать направление вращения, а также скорость вращения. Для того чтобы можно было установить направление вращения, источники и детекторы магнитного поля должны быть установлены таким образом, чтобы обеспечить возможность указания направления вращения в детектируемом магнитном поле.

Будет также очевидно, что, если имеется в наличии более чем один источник магнитного поля, то для того, чтобы их применение было полезным в рамках настоящего изобретения, они все должны быть расположены либо на роторе, либо на статоре. Подобным образом, если имеется в наличии более чем один детектор магнитного поля, то они все должны быть расположены либо на роторе, либо на статоре. Любые источники или детекторы магнитного поля, которые могут иметься в наличии, однако которые не расположены вместе с большей частью источников или детекторов на роторе или сенсоре, не могут давать вклад в измерение скорости или направления вращения ротора относительно статора для целей, определяемых изобретением.

Также будет ясно, что оказывают воздействие как северный полюс, так и южный полюс источника магнитного поля, которые будут физически разделены.

Таким образом, для того, чтобы определить направление вращения, должны иметься в наличии детектор и любые два из дополнительного детектора, первого источника магнитного поля и второго источника магнитного поля, отличного от первого, расположенные так, чтобы ни в коем случае не находиться на одной прямой с центром вращения ротора в любой точке в процессе полного оборота ротора внутри статора. Дополнительные детекторы и источники могут иметься в наличии, однако это минимальное условие обеспечивает детектирование направления вращения.

Такая компоновка задает асимметричную ориентацию источников и детекторов магнитного поля, позволяя установить направление вращения.

Удобным способом обеспечения отличных друг от друга магнитных полей является компоновка, в которой первый источник является северным полюсом, и второй источник является южным полюсом. Другим вариантом является обеспечение того, чтобы детектируемая напряженность магнитного поля от одного источника заметно отличалась от интенсивности от второго источника, например, путем установления различных расстояний между источниками и детекторами или путем установления одного источника, более сильного, чем другой.

Например, в варианте осуществления ротор включает один источник магнитного поля, и статор включает два детектора магнитного поля, при этом детекторы не находятся на одной оси с центром вращения ротора. В данном случае направление вращения может быть установлено с помощью взаимной корреляции магнитных полей, детектируемых двумя детекторами. Направление вращения может быть установлено, сравнивая времена, когда два детектора воспринимают воздействие магнитного поля.

В другом варианте осуществления ротор включает один источник магнитного поля, однако при этом северный и южный полюса установлены так, чтобы не находиться на одной оси с центром вращения ротора. Кроме того, статор включает один детектор магнитного поля. В данном случае один детектор воспринимает воздействие со стороны как северного, так и южного полюса в процессе одного оборота ротора, и направление вращения может быть определено с помощью сравнения времен между воздействиями со стороны северного и южного полюсов.

Таким образом, в одном варианте осуществления направление движения измеряется с помощью взаимной корреляции измеренного магнитного поля, воспринимаемого по меньшей мере двумя детекторами магнитного поля. В другом варианте осуществления направление движения измеряется с помощью сравнения времени между пиками и/или провалами по меньшей мере двух отличных друг от друга детектируемых магнитных полей.

В одном варианте осуществления имеются дополнительные источники и детекторы магнитного поля для того, чтобы обеспечить возможность дополнительных измерений скорости и направления, которые приводят к улучшению точности и вводят избыточность в компоновку на случай поломки инструмента. Таким образом, в некоторых вариантах осуществления буровое устройство включает по меньшей мере два источника магнитного поля и по меньшей мере два детектора магнитного поля.

Источник магнитного поля может соответствующим образом задаваться магнитом, который может представлять собой любой вид магнита, например, постоянный магнит или электромагнит.

Детектор магнитного поля может включать магнитометр. В некоторых аспектах может быть использован магнитометр полного поля для обеспечения детектором, который был бы нечувствительным к вращению в магнитном поле Земли, и для обеспечения возможности точной интерпретации движения вала.

В одном варианте осуществления настоящего изобретения измерение относительных движений может быть передано, например, с помощью передачи электромагнитного сигнала, на поверхность с целью обеспечения возможности проведения операции управления забойным бескомпрессорным двигателем. Передача может быть осуществлена посредством телеметрической системы регистрации параметров бурения с помощью импульсов давления в столбе бурового раствора, трубы с кабелем, передачи акустического сигнала, беспроводной передачи, передачи электромагнитного сигнала и/или тому подобного. В других вариантах осуществления для управления забойным бескомпрессорным двигателем может использоваться процессор в забое скважины, использующий данные об относительном движении. Еще в других вариантах осуществления забойный бескомпрессорный двигатель может обрабатывать данные об относительном движении и передавать данные, полученные из данных об относительном движении, на поверхность.

В вариантах осуществления настоящего изобретения данные об относительном движении могут быть переданы от одного элемента бурильной колонны и/или на поверхность с помощью различных методик, включающих: короткопрыжковую передачу электромагнитного сигнала, токосъемные контактные кольца и кабели, пульсацию давления, передачу акустического сигнала и/или тому подобные.

Изобретение ниже проиллюстрировано только в качестве примера и со ссылкой на приведенные ниже фигуры, где:

Фигура 1 - это схематическое представление поперечного сечения через ротор с целью использования в гидравлическом забойном бескомпрессорном двигателе, согласно настоящему изобретению.

Фигура 2 - это схематическое представление поперечного сечения через другой ротор с целью использования в гидравлическом забойном бескомпрессорном двигателе, согласно настоящему изобретению.

Фигура 3 - это схематическое представление поперечного сечения через еще один ротор с целью использования в гидравлическом забойном бескомпрессорном двигателе, согласно настоящему изобретению.

Фигура 4 - это схематическое представление поперечного сечения вместе с видом сбоку через еще один ротор с целью использования в гидравлическом забойном бескомпрессорном двигателе, согласно настоящему изобретению.

Фигура 5 - это график, показывающий показания магнитометра в зависимости от времени для компоновки, показанной на Фигуре 1.

Фигура 6 - это схематическое представление вида сбоку в разрезе компоновки ротора и статора с целью использования в качестве гидравлического забойного бескомпрессорного двигателя, согласно настоящему изобретению.

Фигура 7 - это записанная кривая показаний магнитометра в компоновке, согласно настоящему изобретению.

Фигура 8 - это изображение внешней части корпуса статора в компоновке, согласно настоящему изобретению, с вырезанной частью кожуха так, чтобы показать панель магнитометра цифрового универсального электроизмерительного прибора (ЦУЭИП) внутри.

Фигура 9 - это график, на котором представлена вычисленная скорость вращения ротора относительно статора на основании измерений, полученных от варианта осуществления, согласно настоящему изобретению.

Фигура 10 - это график, показывающий распределение измеренных частот магнитного поля в процессе бурильного движения с применением устройства, согласно настоящему изобретению.

Фигура 11 - это график, показывающий вычисленную скорость вращения ротора относительно статора в компоновке, согласно настоящему изобретению.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Последующее описание предоставляет только предпочтительный пример (примеры) осуществления изобретения и не направлено на то, чтобы ограничивать объем, применимость или конфигурацию изобретения. Скорее, последующее описание предпочтительного примера (примеров) осуществления изобретения обеспечит специалистов в рассматриваемой области техники описанием, предоставляющим возможность реализации предпочтительного примера осуществления изобретения. При этом предполагается, что различные изменения в функции и компоновке элементов могут быть выполнены без отхода от объема изобретения, как указано в настоящем документе.

Конкретные подробности приведены в последующем описании для обеспечения всестороннего понимания вариантов осуществления. Однако для среднего специалиста в рассматриваемой области техники понятно, что варианты осуществления могут быть использованы на практике и без таких конкретных подробностей. Например, схемы могут быть показаны в виде блок-схем, чтобы не затруднять варианты осуществления ненужными подробностями. В других примерах хорошо известные схемы, процессы, алгоритмы, конструкции и методики могут быть показаны без ненужных подробностей, чтобы избежать затруднения понимания вариантов осуществления.

Также следует отметить, что варианты осуществления могут быть описаны, как процесс, который изображается в виде схемы процесса, технологической схемы, диаграммы потоков данных, структурной схемы или блок-схемы. Хотя схема процесса и может описывать операции как последовательный процесс, многие операции могут быть выполнены параллельно или одновременно. Кроме того, порядок операций может быть перегруппирован. Процесс прекращается, когда его операции завершены, но может иметь дополнительные этапы, не включенные на фигуре. Процесс может соответствовать способу, функции, процедуре, стандартной подпрограмме, части программы и т.д. Если процесс соответствует функции, его прекращение соответствует возврату функции к вызывающей функции или к главной функции.

Кроме того, варианты осуществления могут быть реализованы с помощью аппаратных средств, программных средств, программно-аппаратных средств, микропрограммных средств, микрокода, языков описания аппаратных средств или любого их сочетания. При внедрении в программных средствах, программно-аппаратных средствах, микропрограммных средствах или в микрокоде код программы или сегменты кода для выполнения требуемых задач могут храниться на машиночитаемом носителе информации, таком как запоминающее устройство. Процессор (процессоры) может выполнять требуемые задачи. Сегмент кода может представлять процедуру, функцию, часть программы, программу, стандартную программу, стандартную подпрограмму, модуль, пакет программ, класс или любое сочетание команд, структур данных или операторов программ. Сегмент кода может быть сочленен с другим сегментом кода или аппаратной схемой за счет пересылки и/или получения информации, данных, аргументов, параметров или содержимого запоминающих устройств. Информация, аргументы, параметры, данные и т.д. могут быть пересланы, посланы или переданы с помощью любых соответствующих средств, включая совместное использование памяти, обмен сообщениями, эстафетную передачу, передачу по сети и т.д.

Обращаясь к фигурам, на Фигуре 1 показано поперечное сечение через ротор 10, включающий первый источник магнитного поля 12 и второй источник магнитного поля 14, согласно варианту осуществления настоящего изобретения. Первый источник магнитного поля 12 ориентирован так, что его полюса находятся на одной оси с центром вращения ротора, при этом северный полюс расположен дальше от центра. Второй источник магнитного поля 14 ориентирован так, что его полюса находятся на одной оси с центром вращения ротора 10, при этом южный полюс расположен дальше от центра. В варианте осуществления настоящего изобретения ротор 10 установлен внутри кожуха 20, в котором ротор 10 может вращаться. В некоторых аспектах кожух 20 может включать статор.

Таким образом, в некоторых вариантах осуществления, когда один детектор размещается в произвольном месте на соответствующем статоре, могут быть определены как скорость, так и направление вращения ротора. В таком варианте осуществления детектор воспринимает смену положительного сигнала, затем отрицательного, при этом они имеют разные фазы, что может обрабатываться процессором (не показан) с целью определения скорости и/или направления вращения вала относительно корпуса двигателя или турбины.

В некоторых вариантах осуществления настоящего изобретения ротор 10 на Фигуре 1 может включать центральный элемент турбины. В таком случае варианты воплощения ротора 10 могут включать одну или более лопастей, и ротор 10 может быть расположен внутри кожуха 20. Лопасти ротора 10 обеспечивают преобразование движения флюида через кожух 20 во вращательное движение ротора 10. В таких вариантах воплощения система включает турбину, которая может быть использована для приведения в движение бурового долота в системе бурения.

На Фигуре 2 показано поперечное сечение через ротор 20, включающий один источник магнитного поля 22, имеющий как северный, так и южный полюс, согласно варианту осуществления настоящего изобретения. Однако, в данном варианте осуществления, с учетом того, что полюса не находятся на одной оси с центром вращения ротора, один детектор, установленный в произвольном месте на соответствующем статоре, может измерять как скорость, так и направление вращения ротора относительно статора.

На Фигуре 3 показано поперечное сечение через ротор 30, включающий один источник магнитного поля 32, при этом его полюса находятся на одной прямой с центром вращения ротора, согласно варианту осуществления настоящего изобретения. В данном варианте осуществления два детектора 34, 36 используются для измерения как скорости вращения, так и направления вращения ротора 30.

В варианте осуществления настоящего изобретения направление вращения может быть определено с помощью взаимной корреляции откликов, измеренных с помощью двух детекторов 34, 36.

На Фигуре 4 показано поперечное сечение через ротор 40, включающий первый источник магнитного поля 42 и второй источник магнитного поля 44, согласно варианту осуществления настоящего изобретения. В данном варианте осуществления как первый источник магнитного поля 42, так и второй источник магнитного поля 14 ориентированы так, что их полюса находятся на одной оси с центром вращения ротора, при этом их северные полюса расположены дальше от центра.

На Фигуре 5 проиллюстрированы реальные измеренные показатели магнитометра, полученные от трех магнитометров, расположенных в статоре, окружающем ротор, как изображено на Фигуре 1, согласно варианту осуществления настоящего изобретения.

На Фигуре 6 показано схематическое представление вида сбоку в разрезе ротора 50 и статора 52 в сочетании, согласно варианту осуществления настоящего изобретения. Ротор содержит источник магнитного поля 54, и статор содержит детекторы магнитного поля 56, 58.

В варианте осуществления, показанном на Фигуре 6, так как источник магнитного поля 54, так и детекторы 56, 58 находятся на одной оси с центром вращения статора в двух точках при одном обороте статора, в данной компоновке возможно определять только скорость вращения ротора, и невозможно определять направление вращения.

На Фигуре 7 показан график измеренного магнитного поля в компоновке, показанной на Фигуре 6, согласно варианту осуществления настоящего изобретения. Измеренные времена между первыми четырьмя пиками составляют 0,6412, 0,6522, 0,6492 и 0,6532 секунд. Согласно варианту осуществления настоящего изобретения, это дает в результате измеренные значения скорости вращения, соответственно 93,57, 91,99, 92,42 и 91,85 оборотов в минуту. В некоторых вариантах осуществления такие измерения могут быть усреднены, например, используя скользящее среднее, для получения показаний измеренной скорости вращения в любой момент времени.

В вариантах осуществления настоящего изобретения скорости ротора/турбины могут быть обработаны с помощью процессора, который может быть расположен в забое скважины и/или на поверхности, и обработанные скорости могут быть использованы для управления работой забойного бескомпрессорного двигателя и/или процессом бурения.

На Фигуре 8 показано изображение реального устройства, проиллюстрированного на Фигуре 6, согласно варианту осуществления настоящего изобретения, и с помощью данного устройства были сгенерированы данные, показанные на Фигуре 7.

На Фигуре 9 показан график измеренных значений скорости вращения, измеренных согласно варианту осуществления настоящего изобретения, как функции времени на протяжении более длительного периода времени. В варианте осуществления настоящего изобретения измеренные данные могут быть обработаны так, чтобы показать, что скорость работы забойного бескомпрессорного двигателя изменяется от 120 до 90 оборотов в минуту на протяжении двух минут измерения данных.

На Фигуре 10 показан частотный анализ данных, измеренных магнитометрами, согласно варианту осуществления настоящего изобретения. В вариантах осуществления настоящего изобретения данные по частоте могут быть обработаны для определения того, что пики наблюдаются на частотах приблизительно 1,0, 1,5 и 2,0 Гц. Пики на частотах 1,5 и 2,0 Гц относятся к вращению ротора внутри статора. Пик на частоте 1,0 Гц относится к вращению статора в магнитном поле Земли.

На Фигуре 11 показан график скорости вращения, показанный на Фигуре 9, но с наложением скорости вращения статора. Обработка данных показывает, что статор вращается со скоростью приблизительно 60 оборотов в минуту в магнитном поле Земли.

Данные, полученные обработкой сигналов от систем роторов, согласно вариантам осуществления настоящего изобретения, обеспечивают возможность определения вращательных свойств ротора при проведении процессов бурения. Таким образом, в вариантах осуществления настоящего изобретения можно контролировать и/или управлять работой ротора/забойного бескомпрессорного двигателя.

Изобретение было подробно описано в целях его ясности и понимания. Однако следует понимать, что некоторые изменения и модификации могут применяться на практике в пределах объема прилагаемой формулы изобретения. Кроме того, в приведенном выше описании для целей иллюстрирования в определенном порядке были описаны различные способы и/или процедуры. Следует понимать, что в альтернативных вариантах осуществления способы и/или процедуры могут быть выполнены в порядке, отличающемся от описанного.


СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ВРАЩЕНИЯ ЗАБОЙНОГО БЕСКОМПРЕССОРНОГО ДВИГАТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ВРАЩЕНИЯ ЗАБОЙНОГО БЕСКОМПРЕССОРНОГО ДВИГАТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ВРАЩЕНИЯ ЗАБОЙНОГО БЕСКОМПРЕССОРНОГО ДВИГАТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ВРАЩЕНИЯ ЗАБОЙНОГО БЕСКОМПРЕССОРНОГО ДВИГАТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ВРАЩЕНИЯ ЗАБОЙНОГО БЕСКОМПРЕССОРНОГО ДВИГАТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ВРАЩЕНИЯ ЗАБОЙНОГО БЕСКОМПРЕССОРНОГО ДВИГАТЕЛЯ
Источник поступления информации: Роспатент

Showing 151-160 of 324 items.
20.01.2016
№216.013.a01b

Способ оптимизации бурения с забойным бескомпрессорным двигателем

Описывается оптимизация работы бура, приводимого в действие от ротора и статора гидравлически, при бурении им ствола скважины в земле. Оптимизация бурения предусматривает измерение первого набора эксплуатационных параметров ротора и статора, включая скорость вращения ротора и крутящий момент...
Тип: Изобретение
Номер охранного документа: 0002572629
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a028

Системы и способы с применением настраиваемого дифференциального гравиметра

Использование: для определения плотности геологической формации. Сущность изобретения заключается в том, что предложены системы и способы для определения свойства, например, плотности геологической формации на основе гравитационной теории Эйнштейна. Разность гравитационного потенциала...
Тип: Изобретение
Номер охранного документа: 0002572642
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a102

Система погружной концевой кабельной муфты для использования в скважинном применении

Изобретение относится к средствам соединения в скважине электрического кабеля с погружным электродвигателем. Техническим результатом является повышение герметичности и прочности соединения. Предложена система формирования электрического соединения в подводной среде, содержащая: погружной...
Тип: Изобретение
Номер охранного документа: 0002572860
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a23f

Максимальная глубина исследования замеров в подземной формации

Настоящее изобретение относится к области геофизики и может быть использовано для определения объема интервала формации, окружающей ствол скважины, подлежащего исследованию. Для реализации заявленного изобретения используется каротажный прибор, который может устанавливаться на каротажном...
Тип: Изобретение
Номер охранного документа: 0002573177
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bc8f

Многомасштабное цифровое моделирование породы для моделирования пласта

Изобретение относится к способам получения характеристик трехмерных (3D) образцов породы пласта, в частности к укрупнению масштаба данных цифрового моделирования. Технический результат - более точное моделирование потока. Модели в масштабе скважины используют МТС (многоточечную статистику) для...
Тип: Изобретение
Номер охранного документа: 0002573739
Дата охранного документа: 27.01.2016
27.02.2016
№216.014.c019

Система и способ для получения опережающих измерений в процессе операции бурения

Изобретение относится к направленному бурению скважин, в частности к средствам каротажа удельного сопротивления пород в реальном времени. Техническим результатом является повышение точности и информативности о наборе слоев перед буровым долотом по мере перемещения компоновки низа бурильной...
Тип: Изобретение
Номер охранного документа: 0002576043
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c083

Способы построения 3-мерных цифровых моделей пористой среды с использованием комбинации данных высокого и низкого разрешения и многоточечной статистики

Изобретение относится к компьютерным системам визуализации пористых пород. Техническим результатом является повышение точности сегментации данных при построении модели образца пористой среды. Предложен способ построения модели образца пористой среды. Способ включает в себя этап приема данных...
Тип: Изобретение
Номер охранного документа: 0002576501
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c4a1

Определение характеристик составляющих пласта на месте проведения работ

Использование: для измерений качественных показателей пластов. Сущность изобретения заключается в том, что выполняют сбор множества моментальных снимков ядерного магнитного резонанса (ЯМР) из ствола скважины, показывающих изменения в геологическом пласте и определяющих данные ядерного...
Тип: Изобретение
Номер охранного документа: 0002574329
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4b3

Клапаны, компоновки низа бурильной колонны и способы избирательного приведения в действие двигателя

Группа изобретений относится к клапанам, используемым при бурении скважин, к компоновкам низа бурильной колонны и к способам избирательного приведения в действие забойного двигателя. Технический результат заключается в повышении надежности и точности управления работой забойного двигателя....
Тип: Изобретение
Номер охранного документа: 0002574429
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c91a

Способ изготовления вставки статора для забойного двигателя

Изобретение относится к области бурения. Способ изготовления вставки статора для забойного двигателя, в котором обеспечивают шпиндель, имеющий наружную геометрию, комплементарную с необходимой внутренней геометрией статора; осуществляют наложение гибкого рукава поверх шпинделя; устанавливают...
Тип: Изобретение
Номер охранного документа: 0002578066
Дата охранного документа: 20.03.2016
Showing 151-160 of 236 items.
20.11.2015
№216.013.928d

Устройство и способ подачи нефтепромыслового материала

Группа изобретений относится к добыче нефти и газа из подземных пластов. Способ действия, по меньшей мере, одного сосуда высокого давления для закачки суспензии твердых частиц в линию высокого давления содержит первый рабочий цикл, содержащий изоляцию, по меньшей мере, одного сосуда высокого...
Тип: Изобретение
Номер охранного документа: 0002569134
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.9292

Электрическая насосная система и способ перекачки текучей среды из подземной скважины с использованием данной системы

Группа изобретений относится к электрическим насосным системам с погружными электрическими центробежными насосами для перекачивания сред из скважин. Система содержит центробежный насос (18), размещенный в скважине, емкость (6) моторного масла, размещенную на поверхности вне скважины, и...
Тип: Изобретение
Номер охранного документа: 0002569139
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9387

Способ улучшения волоконного тампонирования

Изобретение относится к способу улучшения волоконного тампонирования и таким образом управления поглощением бурового раствора во время бурения скважины. Способ тампонирования геологической формации включает введение в скважину состава, который содержит текучую среду, имеющую исходную вязкость...
Тип: Изобретение
Номер охранного документа: 0002569386
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.96be

Способ формирования пазов в обсадной колонне ствола скважины

Способ формирования пазов в обсадной колонне ствола скважины осуществляется с помощью системы для формирования пазов и содержит обеспечение по меньшей мере одного режущего инструмента, содержащего по меньшей мере сборку кумулятивного перфорирования и сборку дискретного позиционирования,...
Тип: Изобретение
Номер охранного документа: 0002570210
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.96bf

Обнаружение притока газа в стволе скважины

Изобретение относится к средствам для обнаружения притока газа в скважину в процессе бурения. Техническим результатом является повышение точности определения расположения притока газа в скважине. Предложен способ обнаружения притока газа в буровую скважину, содержащий: развертывание буровой...
Тип: Изобретение
Номер охранного документа: 0002570211
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.997a

Система зацепления с низким напряжением

Способ зацепления инструмента в скважине, обеспечивающий сцепление со скважинным компонентом без создания концентраций высокого напряжения, которые ослабляют скважинный компонент. Крепежное устройство содержит крепежные элементы, которые являются избирательно перемещаемыми в расширенную...
Тип: Изобретение
Номер охранного документа: 0002570915
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9a3b

Скважинный перфоратор и способ его взведения

Группа изобретений относится к области добычи жидких и газообразных текучих сред из буровых скважин. Скважинный перфоратор содержит загрузочную трубу, включающую заряд взрывчатого вещества, электрический проводник и детонационный шнур; взводящее устройство, включающее детонатор и электрический...
Тип: Изобретение
Номер охранного документа: 0002571108
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9a71

Система и способ измерения дебита отдельных нефтяных скважин, входящих в состав куста скважин

Предлагаются система и способ динамической калибровки, предназначенные для измерения дебита скважинного флюида отдельных нефтяных скважин, входящих в состав куста скважин. Отличительной особенностью системы и способа динамической калибровки является то, что они включают в себя средство,...
Тип: Изобретение
Номер охранного документа: 0002571162
Дата охранного документа: 20.12.2015
27.12.2016
№216.013.9e0f

Оптимизированное бурение

Изобретение относится к способу оптимизации скорости бура, приводимого в действие от ротора и статора гидравлически или пневматически, при бурении им ствола скважины в толще пород. Причем способ включает: (a) измерение первого набора эксплуатационных параметров ротора и статора, включая...
Тип: Изобретение
Номер охранного документа: 0002572093
Дата охранного документа: 27.12.2015
20.01.2016
№216.013.a01b

Способ оптимизации бурения с забойным бескомпрессорным двигателем

Описывается оптимизация работы бура, приводимого в действие от ротора и статора гидравлически, при бурении им ствола скважины в земле. Оптимизация бурения предусматривает измерение первого набора эксплуатационных параметров ротора и статора, включая скорость вращения ротора и крутящий момент...
Тип: Изобретение
Номер охранного документа: 0002572629
Дата охранного документа: 20.01.2016
+ добавить свой РИД