×
20.04.2016
216.015.3472

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ СВЕРХПРОВОДЯЩИХ МНОГОСЕКЦИОННЫХ ОПТИЧЕСКИХ ДЕТЕКТОРОВ

Вид РИД

Изобретение

Аннотация: Использование: для изготовления сверхпроводниковых датчиков излучения. Сущность изобретения заключается в том, что способ изготовления сверхпроводящих многосекционных оптических детекторов, включающий формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде меандра, и сверхпроводящих соединительных проводов для соединения секций через токоограничители с контактными площадками, токоограничители формируют путем нанесения на сформированную структуру защитной резистивной маски, вскрытия в ней окон над отрезками соединительных проводов меандра с контактной площадкой и преобразованием их в несверхпроводящие за счет селективного изменения атомного состава воздействием пучка ускоренных частиц через защитную маску. Технический результат: обеспечение возможности создания нанорезисторов с высокими эксплуатационными характеристиками и меньшим количеством технологических операций. 7 з.п. ф-лы, 4 ил.

Изобретение относится к области сверхпроводниковой микроэлектроники, в частности к изготовлению сверхпроводниковых датчиков излучения, которые могут быть использованы в оптических устройствах, электротехнической, радиотехнической, медицинской и других отраслях науки и техники, в частности для безконтактного тестирования полупроводниковых интегральных микросхем, исследования излучения квантовых точек и в системах квантовой криптографии.

Технология изготовления сверхпроводниковых туннельных переходов, джозефсоновских переходов, структур типа сверхпроводник-изолятор-сверхпроводник (СИС), структур сверхпроводник-изолятор-нормальный металл (СИН), болометров на холодных электронах описывается в RU 2442246 [1]. Способ изготовления устройств с тонкопленочными сверхпроводниковыми переходами предусматривает нанесение поддерживающего и основного резиста, экспозицию, проявление этих слоев резиста, напыление первого слоя нормального металла или сверхпроводника под прямым углом к подложке, окисление для формирования туннельного барьера, напыление второго слоя пленки сверхпроводника под углом к нормали, взрывание резиста. Напыление верхней пленки сверхпроводника производится под двумя разными углами +φ и -φ с разных сторон от нормали так, что обе пленки сверхпроводника перекрывают необходимый зазор и образуют единый сверхпроводящий слой. Между нормальным металлом и сверхпроводником формируется туннельный контакт, при этом углы нанесения выбирают по формуле tgA≤φt/(L+w), где t=t1+t2 суммарная толщина двухслойного резиста, w ширина нижнего электрода, L - глубина подтрава. Недостатком известного способа является то, что он обеспечивает формирование переходов относительно большой площади. Кроме того, как и во всех литографических процессах возникает проблема совмещения топологий на различных стадиях процесса.

Известен способ формирования пленочного микромостика, включающий нанесение пленки ВТСП-материала и формирование путем фотолитографии дорожки со слабой связью, сверхпроводимость в области слабой связи дополнительно подавляют облучением дорожки сфокусированным электронным лучом (RU 2080693 [2]). В результате, поперек дорожки формируется узкая, шириной 0,8-1 мкм, область с подавленной сверхпроводимостью. Недостатком данного способа является то, что размер активной зоны велик. Устойчивые и воспроизводимые технические характеристики в подобных устройствах достигаются при размерах активной зоны менее 100 нм.

Известен способ изготовления сверхпроводникового однофотонного детектора (RU 2476373 [3]), который включает формирование на диэлектрической подложке канала проводимости из нитрида ниобия любым из известных методов толщиной не более 20 нм, но не менее толщины, приводящей к нарушению сплошности, и с шириной не более 350 нм и его последующее облучение потоком ускоренных частиц в присутствии кислорода. В качестве ускоренных частиц используют атомы водорода или протоны, ионы или атомы гелия, ионы или атомы кислорода или смеси перечисленных частиц с энергией от 0,5 до 5,0 кэВ. В качестве подложки используют лейкосапфир. В результате облучения потоком ускоренных частиц происходит локальное изменение химического состава, что приводит к возникновению различного рода искажений в кристаллической решетке облучаемого материала (нитрида ниобия) в силу значительных различий объемной плотности нитрида и оксида ниобия что может способствовать возникновению поликристалличности в исходном монокристаллическом материале. Появление поликристалличности приводит к сильному разупорядочению сверхпроводника за счет возникновения межкристаллитных состояний. Данные состояния становятся ощутимы в транспорте сверхтока, а именно сверхток через такие межкристалитные связи может протекать туннельно либо обтекать их. Эффективно это приводит к искусственному заужению канала проводимости в каком-либо из сечений сверхпроводящей полоски. То есть сечение трубки тока после облучения становится меньше, что, собственно, и приводит к увеличению вероятности детектирования, а соответственно к увеличению квантовой эффективности детектирования одиночных фотонов. Данный способ разработан для изготовления односекционных сверхпроводниковых однофотонных детекторов. Чувствительный элемент в известном устройстве представляет собой узкую полоску из тонкой пленки сверхпроводника, изготовленного в виде меандра заполняющего прямоугольную площадку соответствующего размера адаптированного под размер оптического канала. Ограничением известного сверхпроводникового детектора является значительная величина кинетической индуктивности, существенно ограничивающая быстродействие детектора. Для повышения быстродействия детектора было предложено выполнять его в виде нескольких параллельно включенных секций, подключенных через резисторы (см. например RU 2327253[4]). Помимо увеличения быстродействия такого детектора был обнаружен эффект разрешения количества фотонов в коротких световых импульсах. В основе такого типа детектора лежит принцип пространственной локализации фотона в момент его поглощения в сверхпроводниковом нанопроводе. Принцип работы в этом случае состоит в следующем. В момент прихода одного фотона в коротком световом импульсе срабатывает только одна секция, при падении двух фотонов срабатывает две секции и так далее. В зависимости от количества поглощенных фотонов амплитуда сигнала разная, отслеживая ее можно различать количество фотонов в световых импульсах. Если создать чувствительный элемент детектора в виде параллельно подключенных секций на основе нанопроводов, то возникает возможность различать количество поглощаемых фотонов чувствительным элементом такого детектора. В случае, когда фотон поглощается любой, но одной секцией детектора, наблюдается сигнал определенной амплитуды; в момент поглощения фотонов любыми двумя секциями наблюдается сигнал удвоенной амплитуды и т.д. Важным условием работоспособности такого детектора являются интегрированные нанорезисторы, работающие как токоограничители между отдельными секциями. Так как устройство является криогенным, то требования к нанорезисторам весьма жесткие. Прежде всего, это связанно с требованиями к качеству омического контакта между нанорезистором и чувствительным элементом (отдельной секцией), размеру и плотности заполнения нанорезисторов, а также расстоянию от резистора до отдельной секции.

В настоящее время нанорезисторы изготавливают набором стандартных методов с использованием технологии нанесения слоя золота [4] или металлических слоев титана или золота (CN 102353464 [5]). Этот метод - единственный, который предлагается при создании резисторов, работающих при температурах жидкого гелия, так как только Ti-Au или Ti-Pt может обеспечить необходимый номинал резистора при разработке конечного устройства.

Наиболее близким к заявляемому является способ, описанный в [5], который предусматривает изготовление полированной с двух сторон подложки из сапфира или окиси кремния, на которую наносят тонкий слой сверхпроводящей пленки (толщина пленки 2~8 нм.) Из нее методом электронно-лучевой литографии получают несколько структур с конфигурацией многосекционного меандра. В качестве токоограничителя отдельных секций в момент поглощения фотона используются нанорезисторы, изготовленные из тонкой многослойной пленки титан-золота или титан-платина, получаемые любыми методами осаждения.

Такой технологии присущи следующие недостатки:

1) Необходимость большого количества технологических этапов, проблемы с межслоевым совмещением элементов, включающие в себя нанолитографию, осаждение и травление.

2) Невысокое качество омического контакта.

3) Все технологические операции должны быть в одном процессе без нарушения вакуума.

4) Требования ограничения на топологию электрической схемы.

5) Ограничение на плотность заполнения наноэлементов элементов и их размеров.

Все эти недостатки приводят в итоге к некачественному конечному устройству. Прежде всего, это сказывается на выходе, годного на уровне нескольких процентов. Все детекторы на основе сверхпроводящих нанопроводов работают в режиме высокой плотности тока, а наличие некачественного омического контакта может приводить к сильному Джоулеву разогреву и, как результат, некорректной работе конечного устройства.

Заявляемый способ изготовления сверхпроводящих многосекционных оптических детекторов направлен на создание нанорезисторов с высокими эксплуатационными характеристиками и меньшим количеством технологических операций.

Указанный результат достигается тем, что способ изготовления сверхпроводящих многосекционных оптических детекторов включает формирование отдельных секций из сверхпроводящих нанопроводов, образующих рисунок в виде многосекционного меандра, и сверхпроводящих соединительных проводов с интегрированными нанорезисторами, работающие как токоограничители для соединения секций с контактными площадками. При этом токоограничители формируют путем нанесения на сформированную структуру защитной резистивной маски, вскрытия в ней окон над отрезками соединительных проводов меандра с контактной площадкой и преобразованием их в несверхпроводящие за счет селективного изменения атомного состава воздействием пучка ускоренных частиц через защитную маску. Топология (длина и ширина) окна в резистивной маске определяет номинал резистора - токоограничителя.

Указанный результат достигается также тем, что соединительные нанопровода формируют из нитрида ниобия, а преобразование выбранных участков в несверхпроводящие осуществляют путем селективного замещения атомов азота на атомы кислорода путем воздействия пучком ускоренных частиц через защитную маску до получения металлического оксида ниобия.

Указанный результат достигается также тем, что соединительные нанопровода формируют из нитрида ниобия, а преобразование выбранных участков в несверхпроводящие осуществляют путем селективного удаления атомов азота путем воздействия пучком ускоренных частиц через защитную маску до получения металлического ниобия.

Указанный результат достигается также тем, что соединительные нанопровода формируют из карбида ниобия, а преобразование выбранных участков в несверхпроводящие осуществляют путем селективного удаления атомов углерода путем воздействия пучком ускоренных частиц через защитную маску до получения металлического ниобия.

Указанный результат достигается также тем, что нанопровод формируют из карбида ниобия, а преобразование выбранных участков в несверхпроводящие осуществляют путем селективного замещения атомов углерода на атомы кислорода путем воздействия ускоренных частиц через защитную маску в присутствии кислорода в реакционном объеме до получения металлического оксида ниобия.

Указанный результат достигается также тем, что облучение нанопровода осуществляют пучком ускоренных частиц через защитную маску, наклоненную под углом к оси пучка.

Указанный результат достигается также тем, что в качестве ускоренных частиц используют протоны или атомы водорода.

Указанный результат достигается также тем, что энергию частиц и время воздействия ускоренным пучком на выбранные участки нанопровода подбирают расчетным путем или экспериментально в зависимости от вещества нанопровода и требуемого состава разделительного несверхпроводящего участка.

Преобразование участков нанопровода, выполненных из веществ, обладающих сверхпроводящими свойствами, в несверхпроводящие в выбранных разделительных участках, выполняющих роль токоограничителей за счет селективного изменения атомного состава путем воздействия пучком ускоренных частиц через защитную маску, позволяет за одну операцию и одновременно сформировать все токоограничители, наличие которых предусмотрено схемным решением изготавливаемого прибора, что обеспечивает высокую производительность процесса. Облучение через открытые участки сформированной на нанопроводах маски потоком ускоренных протонов или атомов водорода позволяет обеспечить преобразование этих участков нанопровода, выполненных из веществ, обладающих сверхпроводящими свойствами в несверхпроводящие. Наиболее целесообразным представляется использование в различных вариантах реализации предлагаемого способа для формирования нанопроводов из нитрида ниобия или из карбида ниобия и, соответственно, обеспечивать селективное удаление атомов азота или атомов углерода или обеспечивать селективную замену атомов азота на атомы кислорода, или атомов углерода на атомы кислорода. В частных случаях реализации целесообразно осуществлять облучение нанопровода пучком ускоренных частиц через защитную маску, наклоненную под углом к оси пучка. Это позволяет даже при относительно «больших» размерах окон в защитной маске существенно уменьшить размеры подвергаемых преобразованию участков.

Наиболее эффективно использовать для преобразования веществ, обладающих сверхпроводящими свойствами, в несверхпроводящие путем использования в качестве ускоренных частиц протонов или атомов водорода. Для того чтобы эффективно осуществлять указанные преобразования целесообразно энергию частиц и время воздействия ускоренным пучком на выбранные участки нанопровода подбирать расчетным путем или экспериментально в зависимости от вещества нанопровода и требуемого состава токоограничителя (разделительного несверхпроводящего участка), обеспечивающего требуемый номинал резистора. Либо создание номинала нанорезистора - токоограничителя за счет изменения топологии (длины и ширины) окон, через которые происходит модификация исходного материала при фиксированных параметрах облучения.

Данный метод позволяет создавать любые номиналы токоограничителей в сверхпроводниковых нанопроводах, поскольку условия облучения позволяют управлять электрическими свойствами облучаемого материала, то есть материал может проявлять себя как диэлектрик или как металл в зависимости от соотношения кислорода и азота в модифицированной области.

Также данный метод является технологически простым, так как исключает множество стандартных технологических операций, которые в свою очередь очень сильно влияют на выход годных и на производительность технологии.

Сущность заявляемого способа поясняется примерами осуществления и графическими материалами, поясняющими процесс реализации.

На фиг. 1-3 представлены схематично (в плане) некоторые стадии процесса реализации: 1 - заготовка со сформированными секциями, параллельно соединенными с контактными площадками с помощью нанопроводов; 2 - заготовка с нанесенной маской с вскрытыми окнами; 3 - заготовка со сформированными в нанопроводах токоограничителями (нанорезисторами). На фиг. 2 показан вариант реализации способа с облучением нанопровода, осуществляемого пучком ускоренных частиц через защитную маску, наклоненную под углом к оси пучка (направление потока ускоренных частиц показано стрелками).

Пример 1. В самом общем случае способ осуществляется следующим образом. На подложке 1, выполненной из диэлектрика (лейкосапфира, оксидируемого кремния, нитрида кремния и др.), формируют заготовку прибора путем изготовления на ней любым из известных способов из нанопроводов 2 из сверхпроводящего вещества, состоящего из нескольких отдельных секций 3 в виде меандра, и параллельно соединенных с контактными площадками 4 с помощью нанопроводов 5. На заготовку с сформированными на ней любым из известных способов нанопроводами 2 и 5 из сверхпроводящего вещества наносят защитную маску 6 с выполненными в ней окнами 7 над соединительными нанопроводами 5 и помещают в рабочую камеру, где подвергают облучению пучком ускоренных частиц. В результате облучения в веществе нанопровода происходит селективное изменение атомного состава сверхпроводящего вещества, что приводит к переходу этого вещества в несверхпроводящее состояние. Таким образом, токоограничитель (нанорезистор) 8 оказывается сформированным.

Пример 2. Способ реализовывался следующим образом. В камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с изготовленными на ней секциями из нанопроводов из нитрида ниобия 2 и соединительных нанопроводов 5, заданные участки которых должны преобразоваться под воздействием потока ускоренных протонов.

Поверх размещается маска 6 с требуемым рисунком (с вскрытыми окнами 7), изготавливаемая по любой из известных технологий. Заготовка облучается протонами с расчетной энергией в диапазоне 0,1-4,5 кэВ до дозы, соответствующей минимальному значению, достаточному для требуемого частичного или полного удаления атомов азота из нитрида ниобия без маски. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным или расчетным путем. В результате взаимодействия материала с потоком ускоренных частиц под окнами 7 в маске 6 происходит требуемый частичный или полный переход нитрида ниобия в металлический ниобий, т.е переход в несверхпроводящее состояние при рабочей температуре. Таким образом, токоограничитель (нанорезистор) 8 оказывается сформированным.

Пример 3. Способ реализовывался следующим образом. В камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с изготовленными на ней секциями 3 из нанопроводов из нитрида ниобия 2 и соединительных нанопроводов 5, заданные участки которых должны преобразоваться под воздействием потока ускоренных протонов. Поверх размещается маска 6 с требуемым рисунком, изготавливаемая по любой из известных технологий. Заготовка облучается ускоренными частицами в присутствии кислорода с расчетной энергией, соответствующей минимальному значению, достаточному для частичного или полного замещения атомов азота из нитрида ниобия на атомы кислорода на участках, не закрытых маской. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным или расчетным путем. В результате взаимодействия материала с потоком ускоренных частиц под окнами 7 в маске 6 происходит частичный или полный переход нитрида ниобия в металлический оксид ниобия, т.е переход в несверхпроводящее состояние. Таким образом, токоограничитель (нанорезистор) 8 оказывается сформированным.

Пример 4. Способ реализовывался следующим образом. В камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с изготовленными на ней секциями 3 из нанопроводов из карбида ниобия 2 и соединительных нанопроводов 5, заданные участки которых должны преобразоваться под воздействием потока ускоренных протонов.

Поверх размещается маска 6 с требуемым рисунком, изготавливаемая по любой из известных технологий. Заготовка облучается протонами с расчетной энергией в диапазоне 0,1-4,5 кэВ до дозы, соответствующей минимальному значению, достаточному для частичного или полного удаления атомов углерода из карбида ниобия на участках, не защищенных маской. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным или расчетным путем. В результате взаимодействия материала с потоком ускоренных частиц под окнами 7 в маске 6 происходит частичный или полный переход карбида ниобия в ниобий, т.е переход в несверхпроводящее состояние при рабочей температуре. Таким образом, токоограничитель (нанорезистор) 8 оказывается сформированным.

Пример 5. Способ реализовывался следующим образом. В камере технологической установки на подложкодержателе устанавливается подложка (заготовка) 1 с изготовленными на ней секциями 3 из нанопроводов из карбида ниобия 2 и соединительных нанопроводов 5, заданные участки которых преобразуется под воздействием потока ускоренных атомов водорода в присутствии кислорода.

Поверх размещается маска 6 с требуемым рисунком, изготавливаемая по любой из известных технологий. Заготовка облучается атомами водорода в присутствии кислорода с расчетной энергией в диапазоне 0,1-4,5 кэВ до дозы, соответствующей минимальному значению, достаточному для требуемого частичного или полного удаления атомов азота из карбида ниобия на участках, не защищенных маской. Соответствующее значение минимальной дозы облучения определяется заранее экспериментальным или расчетным путем. В результате взаимодействия материала с потоком ускоренных частиц под окнами 7 в маске 6 происходит частичный или полный переход карбида ниобия в оксид ниобия, т.е. переход в несверхпроводящее состояние. Таким образом, токоограничитель (нанорезистор) 8 оказывается сформированным.


СПОСОБ ИЗГОТОВЛЕНИЯ СВЕРХПРОВОДЯЩИХ МНОГОСЕКЦИОННЫХ ОПТИЧЕСКИХ ДЕТЕКТОРОВ
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕРХПРОВОДЯЩИХ МНОГОСЕКЦИОННЫХ ОПТИЧЕСКИХ ДЕТЕКТОРОВ
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕРХПРОВОДЯЩИХ МНОГОСЕКЦИОННЫХ ОПТИЧЕСКИХ ДЕТЕКТОРОВ
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕРХПРОВОДЯЩИХ МНОГОСЕКЦИОННЫХ ОПТИЧЕСКИХ ДЕТЕКТОРОВ
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕРХПРОВОДЯЩИХ МНОГОСЕКЦИОННЫХ ОПТИЧЕСКИХ ДЕТЕКТОРОВ
Источник поступления информации: Роспатент

Showing 101-110 of 263 items.
27.04.2016
№216.015.3827

Способ изготовления сварного составного образца типа ст для испытаний на трещиностойкость облученного металла

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного...
Тип: Изобретение
Номер охранного документа: 0002582626
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3891

Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах

Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002582490
Дата охранного документа: 27.04.2016
27.08.2016
№216.015.506f

Способ изготовления и модификации электрохимических катализаторов на углеродном носителе

Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых для электролизеров или топливных элементов с твердым полимерным электролитом (ТПЭ). Техническим результатом заявленного изобретения является...
Тип: Изобретение
Номер охранного документа: 0002595900
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.508a

Полимеросодержащее лекарственное средство на основе противоопухолевого препарата этопозида

Изобретение относится к области фармакологии и медицины, а именно к новому поколению противоопухолевых препаратов на основе этопозида, и описывает полимерсодержащее лекарственное средство на основе противоопухолевого препарата этопозида, который включает биодеградируемый полимер в виде...
Тип: Изобретение
Номер охранного документа: 0002595859
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.5247

Способ получения радионуклида лютеций-177

Изобретение относится к технологии получения радионуклидов для ядерной медицины. Способ получения радионуклида Lu включает изготовление мишени, содержащей лютеций природного изотопного состава или обогащенный по изотопу Lu, облучение нейтронами мишени, с последующим выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002594020
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5862

Способ преобразования энергии

Изобретение относится к энергетике. В способе преобразования энергии в энергоустановку подают воздух, сжимаемый затем в компрессоре, а также газообразное топливо, продукты сгорания которого расширяют в газовой турбине, используемой в качестве привода компрессора и электрогенератора, а затем...
Тип: Изобретение
Номер охранного документа: 0002588313
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.62a8

Способ изготовления наноструктурированной мишени для производства радиоизотопов молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Mo), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). Способ изготовления мишени для производства радиоизотопа молибден-99 осуществляется посредством реакции Mo(n,γ)Mo, протекающей в...
Тип: Изобретение
Номер охранного документа: 0002588594
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6394

Способ регулирования параметров ядерного реактора

Изобретение относится к области ядерной техники и может быть использовано в системах управления ядерными реакторами. В способ регулирования параметров ядерного реактора путем перемещения регулятором органов изменения реактивности по сигналу отклонения измеренного параметра от заданного...
Тип: Изобретение
Номер охранного документа: 0002589038
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6c9a

Способ разработки залежи тяжелой нефти

Изобретение относится к способам разработки нефтяных месторождений, в частности к способам теплового воздействия на залежь, содержащую высоковязкую нефть. Технический результат - повышение коэффициента извлечения нефти, снижение расхода энергоресурсов, уменьшение затрат на прокачку и потери,...
Тип: Изобретение
Номер охранного документа: 0002597039
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7253

Способ каталитической конверсии углеводородного сырья

Изобретение относится к нефтеперерабатывающей, нефтехимической и химической отраслям промышленности, в частности к способам переработки тяжелых нефтей и битумов. Способ каталитической конверсии углеводородного сырья включает контактирование в конверторе углеводородного сырья в псевдоожиженном...
Тип: Изобретение
Номер охранного документа: 0002598074
Дата охранного документа: 20.09.2016
Showing 101-110 of 160 items.
20.04.2016
№216.015.3605

Структура полупроводник-на-изоляторе и способ ее получения

Изобретение относится к твердотельной электронике. Изобретение заключается в том, что на изоляторе формируют поверхностный слой полупроводника. В изоляторе на расстоянии от поверхностного слоя полупроводника, меньшем длины диффузии носителей заряда, возникающих при облучении внешним...
Тип: Изобретение
Номер охранного документа: 0002581443
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3827

Способ изготовления сварного составного образца типа ст для испытаний на трещиностойкость облученного металла

Изобретение относится к методам испытаний металлов на трещиностойкость, в частности к способу изготовления сварного составного образца типа СТ для испытаний на трещиностойкость облученного металла по стандартным методикам. Обойму изготавливают из необлученного металла и вставку из облученного...
Тип: Изобретение
Номер охранного документа: 0002582626
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3891

Способ измерения профиля стационарных мегаваттных пучков ионов и атомов в инжекторах

Изобретение относится к диагностике профилей (распределения плотности тока по сечению пучка) пучков ионов и атомов в мегаваттных квазистационарных (десятки и сотни секунд) инжекторах, предназначенных для нагрева плазмы и поддержания тока в термоядерных установках типа токамак. Способ измерения...
Тип: Изобретение
Номер охранного документа: 0002582490
Дата охранного документа: 27.04.2016
27.08.2016
№216.015.506f

Способ изготовления и модификации электрохимических катализаторов на углеродном носителе

Изобретение относится к области электрохимии, а именно к способам модификации электрохимических катализаторов на углеродном носителе, применяемых для электролизеров или топливных элементов с твердым полимерным электролитом (ТПЭ). Техническим результатом заявленного изобретения является...
Тип: Изобретение
Номер охранного документа: 0002595900
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.508a

Полимеросодержащее лекарственное средство на основе противоопухолевого препарата этопозида

Изобретение относится к области фармакологии и медицины, а именно к новому поколению противоопухолевых препаратов на основе этопозида, и описывает полимерсодержащее лекарственное средство на основе противоопухолевого препарата этопозида, который включает биодеградируемый полимер в виде...
Тип: Изобретение
Номер охранного документа: 0002595859
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.5247

Способ получения радионуклида лютеций-177

Изобретение относится к технологии получения радионуклидов для ядерной медицины. Способ получения радионуклида Lu включает изготовление мишени, содержащей лютеций природного изотопного состава или обогащенный по изотопу Lu, облучение нейтронами мишени, с последующим выделением целевого...
Тип: Изобретение
Номер охранного документа: 0002594020
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5862

Способ преобразования энергии

Изобретение относится к энергетике. В способе преобразования энергии в энергоустановку подают воздух, сжимаемый затем в компрессоре, а также газообразное топливо, продукты сгорания которого расширяют в газовой турбине, используемой в качестве привода компрессора и электрогенератора, а затем...
Тип: Изобретение
Номер охранного документа: 0002588313
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.62a8

Способ изготовления наноструктурированной мишени для производства радиоизотопов молибдена-99

Изобретение относится к реакторной технологии получения радиоизотопа молибден-99 (Mo), являющегося основой для создания радиоизотопных генераторов технеция-99m (Tc). Способ изготовления мишени для производства радиоизотопа молибден-99 осуществляется посредством реакции Mo(n,γ)Mo, протекающей в...
Тип: Изобретение
Номер охранного документа: 0002588594
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.6394

Способ регулирования параметров ядерного реактора

Изобретение относится к области ядерной техники и может быть использовано в системах управления ядерными реакторами. В способ регулирования параметров ядерного реактора путем перемещения регулятором органов изменения реактивности по сигналу отклонения измеренного параметра от заданного...
Тип: Изобретение
Номер охранного документа: 0002589038
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6c9a

Способ разработки залежи тяжелой нефти

Изобретение относится к способам разработки нефтяных месторождений, в частности к способам теплового воздействия на залежь, содержащую высоковязкую нефть. Технический результат - повышение коэффициента извлечения нефти, снижение расхода энергоресурсов, уменьшение затрат на прокачку и потери,...
Тип: Изобретение
Номер охранного документа: 0002597039
Дата охранного документа: 10.09.2016
+ добавить свой РИД