×
20.04.2016
216.015.3422

Результат интеллектуальной деятельности: СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ С ИСПОЛЬЗОВАНИЕМ КОНДЕНСАТОРА-ПЛЕНКОФОРМИРОВАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплотехнике и может быть использовано при охлаждении электронного и микроэлектронного оборудования. Способ охлаждения электронного и микроэлектронного оборудования реализуется за счет использования конденсатора пара в качестве пленкоформирователя, обеспечивающего формирование тонких безволновых пленок жидкости высокой равномерности и качества. Технический результат - обеспечение более интенсивного, контролируемого и экономичного охлаждения. 1 ил.
Основные результаты: Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя, при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, сформированной с помощью пленкоформирователя и за счет движения пара в мини- или микроканале, отличающийся тем, что в качестве пленкоформирователя используют конденсатор пара, обеспечивающий формирование тонких, безволновых пленок жидкости высокой равномерности и качества.

В последние десятилетия существенное развитие получило использование двухфазных потоков для охлаждения высоконапряженных по тепловым потокам электронных компонентов, таких как компьютерные чипы, силовая электроника (транзисторы, тиристоры), чипы конверторов и инверторов в гибридных автомобилях, мощные лазеры и др. Ведутся исследования, в которых для охлаждения электронных компонентов используется пленка жидкости, увлекаемая потоком газа в микро- и мини-каналах. В ряде случаев поток жидкости в микроканале может охлаждать сразу несколько электронных компонентов, между которыми находятся адиабатические секции. В таких системах жидкость вводится в поток газа с использованием специального устройства - пленкоформирователя. Основной задачей данного устройства является обеспечить равномерное распределение жидкости поперек канала, а также ввести жидкость без излишней дестабилизации границы раздела газ-жидкость. Неравномерность жидкости и дестабилизация границы раздела газ-жидкость могут привести к нежелательным разрывам тонкой пленки жидкости. Обычно роль такого устройства выполняет плоская щель в подложке под острым углом к потоку газа, плоская пластина, установленная параллельно подложке или отверстие в подложке. Во всех случаях устройство пленкоформирователя обладает целым рядом недостатков и, как правило, не обеспечивает нужного качества создаваемой пленки. Например, проблематичным является создание очень тонких пленок от 1·10-5 м до 2·10-5 м. Как правило, затруднительно изготовить детали сопла с погрешностью от 1·10-6 м до 2·10-6 м и менее и отъюстировать зазор с погрешностью от 5·10-6 м до 1·10-5 м и менее. Это приводит к значительным неоднородностям в расходе жидкости и толщине пленки. Экспериментально было установлено, что сразу после щелевого сопла жидкости для канала высотой 1·10-4 м формировалось неустойчивое течение двухфазного потока.

Известен способ, описанный в статье (Kabov О.А., Kuznetsov V.V., and Legros J-C, Heat transfer and film dynamic in shear-driven liquid film cooling system of microelectronic equipment, Second Int. Conference on Microchannels and Minichannels, Ed. S.G. Kandlikar, June 17-19, 2004, Rochester, NY, ASME, New York, pp. 687-694 (2004)), при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости. Тонкая пленка диэлектрической жидкости FC-72 движется со спутным потоком газа (азота) в микроканале с электронными тепловыделяющими элементами.

Наиболее близкое техническое решение, которое можно рассматривать как прототип, описано в статье (Kabov О.А., Kuznetsov V.V., and Legros J-C, Heat transfer and film dynamic in shear-driven liquid film cooling system of microelectronic equipment, Second Int. Conference on Microchannels and Minichannels, Ed. S.G. Kandlikar, June 17-19, 2004, Rochester, NY, ASME, New York, pp. 687-694 (2004)), при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, которая создается за счет движения пара в мини- или микроканале. Тонкая пленка жидкости движется с потоком пара в микроканале с электронными тепловыделяющими элементами, расположенными либо на одной стороне канала, либо на двух противоположных сторонах канала. Тонкая пленка жидкости формируется за счет использования щелевого пленкоформирователя.

Недостатки описанных выше способов:

1) усложнение конструкции и, как следствие, дороговизна способа за счет использования пленкоформирователя;

2) проблематичным является создание очень тонких пленок от 1·10-5 м до 2·10-5 м.

Как правило, затруднительно изготовить детали сопла с погрешностью от 1·10-6 м до 2·10-6 м и менее и отъюстировать зазор с погрешностью от 5·10-6 м до 1·10-5 м и менее. Это приводит к значительным неоднородностям в расходе жидкости и толщине пленки.

Задачей заявляемого изобретения является обеспечение более интенсивного, контролируемого и экономичного охлаждения электронного оборудования за счет создания тонких, безволновых пленок жидкости высокой равномерности и качества.

Поставленная задача решается тем, что в способе охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя, при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, сформированной с помощью пленкоформирователя и за счет движения пара в мини- или микроканале, согласно изобретению в качестве пленкоформирователя используют конденсатор пара, обеспечивающий формирование тонких, безволновых пленок жидкости высокой равномерности и качества.

Использование конденсатора пара в качестве пленкоформирователя позволяет создавать ровные, равномерные по ширине, практически идеально гладкие (безволновые) тонкие пленки жидкости.

Известно, что в тонких пленках жидкости (порядка 1·10-4 м) тепло передается практически только теплопроводностью. В результате коэффициент теплоотдачи можно описать следующей зависимостью:

где δ - толщина слоя жидкости; λ - коэффициент теплопроводности жидкости (Вт/м К).

Зависимость показывает, что снижение толщины пленки на порядок, например от 1·10-4 м до 1·10-5 м, ведет к интенсификации испарения на порядок.

Для обеспечения равномерности пленки по ширине канала достаточно обеспечить равномерное охлаждение конденсатора пара. Конденсатор пара может создавать очень тонкие пленки, от 1·10-5 м до 5·10-5 м и менее. Практически толщина в меньшую сторону не ограничена и может составлять даже несколько мкм. Толщина пленки может точно регулироваться и достаточно точно рассчитываться с помощью имеющейся математической модели (Marchuk I.V., Lyulin Y.V., and Kabov O.A., Theoretical and Experimental Study of Convective Condensation inside Circular Tube, Interfacial Phenomena and Heat Transfer, vol. 1(2), pp. 153-171, 2013). Регулировка толщины пленки осуществляется простой регулировкой температуры стенки конденсатора пара.

Экспериментальные и теоретические исследования показывают, что конденсация подавляет неустойчивость в пленке жидкости. Это связано с тем, что утонение пленки в силу ее неустойчивости вызывает интенсификацию теплообмена в этой области и выпадающий конденсат частично сглаживает утонение пленки. Этот факт потенциально позволяет создавать пленки очень высокого качества, в том числе и при относительно больших расходах жидкости. Можно ожидать снижение расхода жидкости, необходимой для охлаждения электронных компонентов в таких системах, за счет более высокого качества создаваемых пленок. Это, в свою очередь, приведет к снижению энергозатрат на прокачку жидкости и газа и повышению общей эффективности системы.

Данные системы могут работать как двухфазные однокомпонентные системы. В этом случае в качестве рабочего тела используется чистая жидкость, т.е. без неконденсирующихся примесей. В качестве рабочего тела может использоваться смесь жидкостей. Использование добавки неконденсирующегося газа может позволить существенно расширить параметры системы и управляемость ее работы. Известно, что присутствие неконденсирующегося газа существенно снижает интенсивность теплообмена при конденсации, но действие газа снижается с ростом скорости парогазовой смеси. Снижение интенсивности конденсации позволяет более точно контролировать толщину пленки и ее равномерность за счет снижения к требованию по распределению температуры на стенке конденсатора. Регулировкой концентрации неконденсирующегося газа можно добиться ситуации, когда отклонения температуры на стенке конденсатора от 0,1°C до 0,5°C практически не будут влиять на толщину пленки. В таких случаях может использоваться обычное водяное охлаждение конденсатора, где нагрев воды, абсорбирующей тепло конденсации, в пределах от 1°C до 0,5°C вдоль тракта охлаждения не приведет к заметным изменениям толщины пленки. Для очень точной регулировки толщины пленки в однокомпонентных системах для охлаждения конденсатора могут использоваться Пельтье-элементы с последующим их охлаждение водой или воздухом.

На фиг. 1 представлен общий вид системы охлаждения микроэлектронного оборудования с использованием конденсатора-пленкоформирователя, где обозначено: 1 - подложка, 2 - электронный компонент, 3 - конденсатор пара, 4 - система охлаждения конденсатора пара, 5 - мини- или микроканал, 6 - конденсирующаяся и испаряющаяся пленка жидкости, 7 - дополнительный подогреватель, 8 - резервуар пара, 9 - насос, 10 - вход пара или парогазовой смеси.

Способ осуществляется следующим образом.

В начальном состоянии, перед началом работы, жидкость перетекает в нижнюю часть системы. Включается дополнительный подогреватель 7, который превращает жидкость в пар. Пар или парогазовая смесь равномерно распределяется по системе. Включается насос 9 и начинает подавать пар или парогазовую смесь через вход 10 в микроканал 5. Резервуар пара 8 служит для более устойчивой работы насоса и может быть конструктивно совмещен с подогревателем 7. Включается система охлаждения конденсатора 4, конденсатор 3 начинает генерировать пленку жидкости 6, которая увлекается частью не сконденсировавшегося пара или парогазовой смеси. Пленка натекает на электронный компонент 2, расположенный на подложке 1, и охлаждает его. При этом часть жидкости превращается в пар и уходит по каналу к насосу. Часть жидкости может не испариться и также уходит по каналу в сторону насоса под действием потока пара и гравитации. Эта часть жидкости превращается в пар в подогревателе 7 таким образом, чтобы на вход насоса всегда подавался чистый пар или парогазовая смесь.

Использование заявляемого изобретения позволяет обеспечить более интенсивное, контролируемое и экономичное охлаждение электронного оборудования за счет создания тонких, безволновых пленок жидкости высокой равномерности и качества.

Способ охлаждения электронного оборудования с использованием конденсатора-пленкоформирователя, при котором охлаждение электронного компонента происходит за счет испарения тонкой пленки жидкости, сформированной с помощью пленкоформирователя и за счет движения пара в мини- или микроканале, отличающийся тем, что в качестве пленкоформирователя используют конденсатор пара, обеспечивающий формирование тонких, безволновых пленок жидкости высокой равномерности и качества.
СПОСОБ ОХЛАЖДЕНИЯ ЭЛЕКТРОННОГО ОБОРУДОВАНИЯ С ИСПОЛЬЗОВАНИЕМ КОНДЕНСАТОРА-ПЛЕНКОФОРМИРОВАТЕЛЯ
Источник поступления информации: Роспатент

Showing 21-30 of 96 items.
20.02.2015
№216.013.2a2c

Способ интенсификации теплообмена при кипении на гладкой поверхности

Изобретение относится к способам интенсификации теплообмена жидкости с гладкой поверхностью и может быть использовано при изготовлении систем охлаждения гладкой поверхности, в частности, при изготовлении систем охлаждения микроэлектронного оборудования. На гладкой охлаждаемой поверхности...
Тип: Изобретение
Номер охранного документа: 0002542253
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2ada

Неинвазивный способ лазерной нанодиагностики онкологических заболеваний

Изобретение относится к медицине, а именно к диагностике, и может быть использовано для неинвазивной лазерной нанодиагностики онкологических заболеваний. Для этого проводят исследование биологической жидкости пациента методом лазерной корреляционной спектроскопии, определяют диагностический...
Тип: Изобретение
Номер охранного документа: 0002542427
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
Showing 21-30 of 67 items.
20.02.2015
№216.013.2a2c

Способ интенсификации теплообмена при кипении на гладкой поверхности

Изобретение относится к способам интенсификации теплообмена жидкости с гладкой поверхностью и может быть использовано при изготовлении систем охлаждения гладкой поверхности, в частности, при изготовлении систем охлаждения микроэлектронного оборудования. На гладкой охлаждаемой поверхности...
Тип: Изобретение
Номер охранного документа: 0002542253
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2ada

Неинвазивный способ лазерной нанодиагностики онкологических заболеваний

Изобретение относится к медицине, а именно к диагностике, и может быть использовано для неинвазивной лазерной нанодиагностики онкологических заболеваний. Для этого проводят исследование биологической жидкости пациента методом лазерной корреляционной спектроскопии, определяют диагностический...
Тип: Изобретение
Номер охранного документа: 0002542427
Дата охранного документа: 20.02.2015
10.04.2015
№216.013.3b54

Интенсифицированная испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002546676
Дата охранного документа: 10.04.2015
27.04.2015
№216.013.46c3

Катализатор паровой конверсии углеводородов, способ его приготовления и способ паровой конверсии углеводородов с использованием указанного катализатора

Изобретение относится к области гетерогенного катализа и направлено на получение катализатора паровой конверсии углеводородов с повышенной термостойкостью и активностью с целью использования водородсодержащего газа в топливных элементах и в химическом синтезе. Катализатор паровой конверсии...
Тип: Изобретение
Номер охранного документа: 0002549619
Дата охранного документа: 27.04.2015
20.05.2015
№216.013.4ca7

Испарительная система охлаждения светодиодного модуля

Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла от каждого из собранных в модуль полупроводниковых светодиодов при минимальном значении сопротивления...
Тип: Изобретение
Номер охранного документа: 0002551137
Дата охранного документа: 20.05.2015
10.08.2015
№216.013.6a27

Комбинированный индукционно-дуговой плазмотрон и способ поджига индукционного разряда

Изобретение относится к плазменной технике, а именно к плазмотронам, использующимся в плазмохимии и металлургии для проведения различных плазмохимических процессов. Комбинированный индукционно-дуговой плазмотрон дополнительно снабжен четырьмя подвижными электродами, попарно установленными в...
Тип: Изобретение
Номер охранного документа: 0002558728
Дата охранного документа: 10.08.2015
10.12.2015
№216.013.967b

Металло-воздушный источник тока

Изобретение относится к химическим источникам тока с газодиффузионным воздушным катодом, металлическим анодом и водными растворами электролитов. Металло-воздушный источник тока содержит корпус, заполненный электролитом, размещенный внутри него металлический анод, газодиффузионные воздушные...
Тип: Изобретение
Номер охранного документа: 0002570143
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c4f5

Способ облачной триангуляции толщины горячего проката

Изобретение относится к области контрольно-измерительной техники и может быть использовано для автоматизации процессов контроля и сортировки листового проката и других подобных изделий. В заявленном способе противоположные стороны проката зондируют набором световых лучей с известным...
Тип: Изобретение
Номер охранного документа: 0002574864
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2d94

Горелочное устройство

Изобретение относится к жидкотопливным горелочным устройствам, использующим при горении перегретый водяной пар. Горелочное устройство содержит корпус с топкой. В корпусе размещен парогенератор перегретого водяного пара, а в дне топки установлена форкамера. Парогенератор состоит из...
Тип: Изобретение
Номер охранного документа: 0002579298
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33fc

Устройство для нанесения функциональных слоёв тонкоплёночных солнечных элементов на подложку путём осаждения в плазме низкочастотного индукционного разряда трансформаторного типа низкого давления

Изобретение относится к плазменной технике, а именно к устройствам для плазменного осаждения пленок, и может быть использовано для изготовления тонкопленочных солнечных элементов, фоточувствительных материалов для оптических сенсоров и тонкопленочных транзисторов большеразмерных дисплеев, для...
Тип: Изобретение
Номер охранного документа: 0002582077
Дата охранного документа: 20.04.2016
+ добавить свой РИД