×
10.04.2016
216.015.31f8

Результат интеллектуальной деятельности: КОРПУС ГЕНЕРАТОРА ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к импульсной высоковольтной технике и может быть использовано в составе высоковольтного оборудования. Сущность изобретения: корпус генератора импульсных напряжений, содержащий аппаратуру генератора импульсных напряжений, заполненный диэлектрической жидкостью, выполнен в виде герметичной емкости, на наружной поверхности которой герметично установлены два снабженных обратными клапанами компенсационных бачка, сопряженных с внутренним объемом корпуса и содержащих герметичные газовые полости и гибкие выпуклые мембраны, отделяющие эти полости от полостей, заполненных диэлектрической жидкостью. Корпус также снабжен ребрами жесткости, а аппаратура генератора размещена на плите, установленной на направляющих корпуса. На торце корпуса расположено отверстие, сопряженное с проходящей по всей длине корпуса трубкой, для заливки диэлектрической жидкости и поступления воздуха при ее сливе, а также отверстие для выхода воздуха при заливке и сливе диэлектрической жидкости. Помимо этого на торце корпуса имеется смотровой купол, с отверстием для выхода воздуха и защитными дугами. Технический результат - расширение диапазона рабочей температуры при его закреплении в любом положении и с целью исключения контакта диэлектрической жидкости с окружающей средой. 5 з.п. ф-лы, 4 ил.

Изобретение относится к импульсной высоковольтной технике и может быть использовано в составе любого высоковольтного оборудования, например в химических лазерных установках.

Известен температурный компенсатор, позволяющий поддерживать равномерное давление внутри скважинного инструмента, содержащий корпус, разделенный на две сообщающиеся камеры. Первая камера заполнена практически несжимаемым флюидом и связана с эластичным баллоном, заполненным рабочей жидкостью для управления скважинным инструментом. Вторая камера заполнена сжимаемым флюидом. Между камерами не происходит перетекания флюидов, и при температурных колебаниях рабочей жидкости изменение объема данной системы компенсируется за счет второй камеры, поддерживая постоянное давление рабочей жидкости (патент ЕПВ №1165934, Е21В 33/127, 07.04.2000 г.).

Недостатком данного температурного компенсатора является наличие множества кольцевых уплотнений и двух подвижных поршней, что требует высокой точности изготовления и усложняет конструкцию.

Наиболее близким к изобретению является генератор импульсов напряжения, собранный по схеме Маркса, содержит несколько каскадов с конденсаторами и разрядником в каждом каскаде. Конденсаторы в каскаде собраны в пакет, ось разрядника параллельна оси пакета конденсаторов. Оси всех пакетов конденсаторов расположены в одной плоскости, а оси всех разрядников в другой плоскости, параллельной плоскости осей пакетов. Эти плоскости максимально приближены друг к другу, что достигается таким взаимным расположением элементов генератора, при котором расстояния от оси любого пакета конденсаторов до осей соседних разрядников, электрически соединенных с ним, равны. Кроме того, генератор содержит зарядные индуктивности, импульсный трансформатор и нагрузку (например, рентгеновскую трубку). Все элементы генератора импульсов напряжений, импульсный трансформатор и нагрузка располагаются в корпусе, заполненном жидким диэлектриком (патент РФ на изобретение №2091980, H03K 3/00, 21.04.1995 г.).

Данная конструкция не учитывает то, что в процессе работы генератор импульсов напряжения как сам выделяет тепло, так и может подвергаться воздействиям температуры внешней среды, что неизбежно приводит к тепловому изменению объема жидкого диэлектрика. Данное изменение объема не играет роли в случае, когда корпус генератора импульсов напряжения выполнен негерметичным. Однако при этом будет происходить насыщение жидкого диэлектрика воздухом и влагой, что негативно скажется на его свойствах и потребует увеличения габаритов корпуса для обеспечения электропрочности. В случае если корпус выполнен герметичным, возникает необходимость в системе компенсации температурного изменения объема жидкого диэлектрика. Данная система в прототипе не предусмотрена, что может повлечь нарушение целостности корпуса в процессе работы.

Техническим результатом, на решение которого направлено предлагаемое изобретение, является совершенствование корпуса генератора импульсных напряжений с целью обеспечения возможности работы генератора импульсных напряжений (ГИН) в широком диапазоне температур при его закреплении в любом положении и с целью исключения контакта диэлектрической жидкости с окружающей средой.

Технический результат достигается тем, что корпус генератора импульсных напряжений, содержащий аппаратуру генератора импульсных напряжений, заполненный диэлектрической жидкостью, выполнен в виде герметичной емкости, на наружной поверхности которой герметично установлены два снабженных обратными клапанами компенсационных бачка, сопряженных с внутренним объемом корпуса и содержащих герметичные газовые полости и гибкие выпуклые мембраны, отделяющие эти полости от полостей, заполненных диэлектрической жидкостью. Корпус также снабжен ребрами жесткости, а аппаратура генератора импульсных напряжений размещена на плите, которая, в свою очередь, установлена на направляющих корпуса. На торце корпуса расположено отверстие, сопряженное с проходящей по всей длине корпуса трубкой, для заливки диэлектрической жидкости и поступления воздуха при ее сливе, а также отверстие для выхода воздуха при заливке диэлектрической жидкости и слива диэлектрической жидкости. Помимо этого на торце корпуса имеется смотровой купол, снабженный отверстием для выхода воздуха и защитными дугами. Таким образом, заявляемый корпус обеспечивает возможность работы ГИН в широком диапазоне температур при его закреплении в любом положении и исключает контакт диэлектрической жидкости с окружающей средой.

Предлагаемый корпус генератора импульсных напряжений (корпус ГИН) представлен на фиг. 1-4. На фиг. 1 представлен вид спереди корпуса ГИН. На фиг. 2 показан поперечный разрез корпуса ГИН. На фиг. 3 - вид на торец корпуса ГИН. На фиг. 4 - фрагмент корпуса ГИН в продольном разрезе, содержащий компенсационные бачки.

Корпус ГИН содержит герметичную обечайку поз. 1, на которой имеются ребра жесткости поз. 2, обеспечивающие прочность корпуса ГИН при перепадах внутреннего давления. Внутри корпуса ГИН установлены направляющие поз. 3, предназначенные для установки и закрепления плиты поз. 4 с установленной на ней аппаратурой ГИН. На корпусе ГИН располагаются крышки поз. 5, имеющие герметичные уплотнения и обеспечивающие доступ к направляющим в местах крепления к ним плиты поз. 4 с установленной на ней аппаратурой ГИН, а также крышка поз. 6, имеющая герметичные уплотнения, обеспечивающая возможность установки в направляющие поз. 3 плиты поз. 4 с установленной на ней аппаратурой ГИН и содержащая герметичные пробки поз. 7 и поз. 8, смотровой купол поз. 9, имеющий герметично закрываемым винтом отверстие. На крышке поз. 6 также располагаются защитные дуги поз. 10 и посадочные места для электрических разъемов поз. 11. Помимо этого корпус ГИН содержит крепежный фланец поз. 12, изолятор с токопроводом поз. 13, заливочную трубку поз. 14, закрепленную внутри герметичной обечайки поз. 1, соединенную с отверстием во фланце крышки поз. 6, расположенным соосно с пробкой поз. 7 и не доходящую некоторое расстояние до крепежного фланца поз. 12, компенсационные бачки поз. 15 и поз. 16, сопряженные с внутренним объемом корпуса ГИН и содержащие герметичные газовые полости и гибкие выпуклые мембраны поз. 17 и поз. 18, отделяющие эти полости от полостей, заполненных диэлектрической жидкостью. Компенсационные бачки, в свою очередь, содержат газовые клапаны поз. 19 и поз. 20, сопряженные с их газовыми полостями. На четырех парах соседних ребер жесткости поз. 2 находятся четыре подъемных крепления поз. 21, установленные таким образом, чтобы они одновременно выступали за габариты фланца поз. 12 и фланцев крышек поз. 6 и поз. 5, что обеспечивает возможность подъема корпуса ГИН в любых его положениях. Дополнительные отверстия в данных креплениях также удобно использовать для закрепления корпуса ГИН при монтаже.

Объемы полостей выпуклых мембран поз. 17 и поз. 18 рассчитываются таким образом, чтобы при заливке имеющей заданную температуру (например, 20±2°C) диэлектрической жидкости обеспечить без дополнительных поджатий выпуклых мембран поз. 17 и поз. 18 компенсацию расширения и уменьшения объема диэлектрической жидкости в пределах заданного рабочего диапазона температур корпуса ГИН.

Объемы газовых полостей компенсационных бачков поз. 15 и поз. 16 (при крайнем положении выпуклых мембран поз. 17 и поз. 18 согласно фиг.4) определяются исходя из условия сохранения прочности этих бачков под воздействием внутреннего давления, меняющегося вследствие расширения либо сжатия данных полостей при тепловом изменении объема диэлектрической жидкости.

Ограничителем хода мембран поз. 17 и поз. 18 при компенсации теплового изменения объема диэлектрической жидкости, препятствующим их растягиванию, служат стенки компенсационных бачков поз. 15 и поз. 16.

Компенсационный бачок поз. 15 с целью упрощения конструкции может быть выполнен без выделенной газовой полости (такой как в компенсационном бачке поз. 16), при этом объем полости мембраны поз. 17 должен быть увеличен на величину объема отсутствующей полости.

Заливка корпуса ГИН диэлектрической жидкостью производится следующим образом. Сначала через газовый клапан поз. 19 в газовую полость компенсационного бачка поз. 15 подается газ под давлением, превышающим максимальное давление столба жидкости на уровне компенсационного бачка поз. 15. В результате этого мембрана поз. 17 становится в свое крайнее положение согласно фиг. 4. Затем при вертикальном положении корпуса ГИН (крепежным фланцем поз. 12 вниз) через пробку поз. 7 (при открытой пробке поз. 8 и открытом отверстии смотрового купола поз. 9) подается диэлектрическая жидкость до полного заполнения внутренней полости корпуса ГИН. При этом мембрана поз. 18 под давлением столба диэлектрической жидкости также становится в свое крайнее положение согласно фиг. 4. Пробки поз. 7, поз. 8 и отверстие смотрового купола поз. 9 закрываются, после чего газ под давлением, равным давлению в компенсационном бачке поз. 15, подается через газовый клапан поз. 20 в газовую полость компенсационного бачка поз. 16.

Описанный процесс заливки обеспечивает установку мембран поз. 17 и поз. 18 в начальное положение (согласно фиг. 4), а также плавное повышение уровня диэлектрической жидкости от нижней части корпуса, за счет чего минимизируется насыщение ее газами и влагой, содержащимися в воздухе. Пробка поз. 8 и отверстие в смотровом куполе поз. 9 при необходимости позволяют производить вакуумирование корпуса ГИН.

Компенсационные бачки поз. 15 и поз. 16 при изменении температуры диэлектрической жидкости работают следующим образом. Пока температура диэлектрической жидкости равна температуре диэлектрической жидкости при заливке (например, 20±2°С), обе мембраны поз. 17 и поз. 18 находятся в своих начальных крайних положениях (согласно фиг. 4). При повышении температуры диэлектрической жидкости (например, до +50°C) происходит ее расширение, при этом мембрана поз. 17 компенсационного бачка поз. 15 начинает прогибаться, компенсируя данное расширение. В то же время, мембрана поз. 18 компенсационного бачка поз. 16 остается неподвижной. При понижении температуры диэлектрической жидкости (например, до -50°C) происходит уменьшение ее объема. При этом мембрана поз. 17 компенсационного бачка поз. 15 встает на свое начальное крайнее положение, и прогибаться начинает мембрана поз. 18 компенсационного бачка поз. 16, компенсируя таким образом данное уменьшение объема. При этом герметичность корпуса сохраняется.

Таким образом, заявляемый корпус ГИН обеспечивает возможность работы ГИН в широком диапазоне температур, сохраняя при этом герметичность вне зависимости от своей ориентации в пространстве.


КОРПУС ГЕНЕРАТОРА ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ
КОРПУС ГЕНЕРАТОРА ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ
КОРПУС ГЕНЕРАТОРА ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ
КОРПУС ГЕНЕРАТОРА ИМПУЛЬСНЫХ НАПРЯЖЕНИЙ
Источник поступления информации: Роспатент

Showing 111-113 of 113 items.
09.06.2019
№219.017.7d00

Контактный датчик цели

Изобретение относится к области военной техники и предназначено для выдачи команды на подрыв любых типов боеприпасов при их соударении с целью. Технический результат - повышение надежности замыкания контактов датчика, упрощение конструкции, повышение помехозащищенности, а также в расширении...
Тип: Изобретение
Номер охранного документа: 0002416780
Дата охранного документа: 20.04.2011
09.06.2019
№219.017.7ed2

Пассивная система охлаждения радиоэлементов в съемном модуле

Изобретение относится к области электроники, а именно к охлаждению теплонапряженных компонентов постоянно работающих электронных приборов, включая компьютеры, а также к области теплотехники, в частности к тепловым трубам. Техническим результатом является создание эффективной системы охлаждения...
Тип: Изобретение
Номер охранного документа: 0002437140
Дата охранного документа: 20.12.2011
10.07.2019
№219.017.af5e

Устройство коммутации и связи

Изобретение может быть использовано для обработки и преобразования информации в узлах коммутации данных. Технический результат заключается в расширении функциональных возможностей за счет преобразования цифровой информации с помощью увеличенного количества алгоритмов обработки цифровых данных....
Тип: Изобретение
Номер охранного документа: 0002429562
Дата охранного документа: 20.09.2011
Showing 91-98 of 98 items.
13.01.2017
№217.015.8c0a

Способ изготовления полимерного открытопористого материала

Изобретение относится к области получения изделий из полимерного открытопористого материала (поропласта). Детали из поропласта могут быть использованы как функциональные элементы, например фильтроэлементы фильтрующих устройств, матрицы-носители катализаторов, теплоизоляция. Детали из поропласта...
Тип: Изобретение
Номер охранного документа: 0002604844
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9650

Устройство для пассивной защиты ядерного реактора

Изобретение относится к системам защиты ядерных реакторов и может быть использовано при создании ядерных реакторов, в частности реакторов на быстрых нейтронах. Устройство пассивного ввода отрицательной реактивности выполнено в виде двух емкостей, расположенных в общем кожухе одна под другой,...
Тип: Изобретение
Номер охранного документа: 0002608826
Дата охранного документа: 25.01.2017
25.08.2017
№217.015.bb17

Способ герметизации разборного соединения и герметичное разборное соединение для его реализации

Изобретение относится к уплотнительной технике и может быть использовано для уплотнения разборных неподвижных соединений. В способе герметизации разборного соединения, включающем установку между частями разборного соединения уплотнительного элемента в виде металлического кольца с последующим...
Тип: Изобретение
Номер охранного документа: 0002615886
Дата охранного документа: 11.04.2017
25.08.2017
№217.015.d369

Двухконтурный газовый лазер и способ его эксплуатации

Изобретение относится к лазерной технике. Двухконтурный газовый лазер содержит лазерную камеру, внутри которой размещены полая кювета с окнами, прозрачными к оптическому излучению и снабженными затвором с датчиком положения и устройством охлаждения, управляемым блоком. Два контура циркуляции...
Тип: Изобретение
Номер охранного документа: 0002621616
Дата охранного документа: 06.06.2017
11.03.2019
№219.016.dbca

Сорбционный фильтр

Изобретение относится к фильтрам, в частности к насыпным сорбционным фильтрам для очистки различных сред, например газов, от механических и химических примесей, и может быть использовано в устройствах, где положение фильтра меняется в пространстве и(или) присутствуют вибрационные нагрузки....
Тип: Изобретение
Номер охранного документа: 0002470694
Дата охранного документа: 27.12.2012
10.04.2019
№219.017.0845

Устройство для заполнения емкости газом высокой чистоты

Изобретение относится к устройствам для заполнения емкостей газами высокой чистоты. Устройство для заполнения емкости газом высокой чистоты содержит систему напуска газа, снабженную заправочным трубопроводом с разъемом для емкости и коммутационной арматурой. Устройство характеризуется тем, что...
Тип: Изобретение
Номер охранного документа: 0002438946
Дата охранного документа: 10.01.2012
18.05.2019
№219.017.562f

Запорный клапан

Изобретение относится в области машиностроения, в частности к пневмоавтоматике, и предназначено для перекрытия потока газа в выходной канал при импульсной подаче давления во входной канал. Запорный клапан содержит корпус с проточной частью, входным и выходными каналами, седло и запорный орган,...
Тип: Изобретение
Номер охранного документа: 0002390683
Дата охранного документа: 27.05.2010
09.06.2019
№219.017.7996

Съемник кольцевой прокладки из трубы

Изобретение относится к ручным устройствам и предназначено для монтажно-ремонтных работ. Съемник кольцевой прокладки из трубы с резьбой содержит корпус с полостью и резьбой для совместного свинчивания его с трубой, силовой элемент, захватный элемент, установленный с возможностью осевого...
Тип: Изобретение
Номер охранного документа: 0002393080
Дата охранного документа: 27.06.2010
+ добавить свой РИД