×
10.04.2016
216.015.3071

Результат интеллектуальной деятельности: ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области органической электроники, а именно к устройствам памяти на основе органических полевых транзисторов, изготовленных с использованием фотохромных соединений в составе активного слоя, расположенного на границе между слоем полупроводникового материала и диэлектрика. Изобретение обеспечивает формирование и применение фотопереключаемых и электропереключаемых органических полевых транзисторов, содержащих в своей структуре слой фотохромных молекул, расположенный на границе между слоем полупроводникового материала и диэлектрика. Технические результаты, достигаемые при реализации заявленного изобретения, заключаются в упрощении структуры и технологии изготовления фотопереключаемого и электропереключаемого полевого транзистора; возможности создания множественных дискретных состояний, отличающихся пороговыми напряжениями; достижении существенных различий в токах I для разных состояний (до 10000 раз); в обеспечении спектральной чувствительности устройства: воздействие импульсами света различной длины волны переводит транзистор в разные состояния; в возможности использования фотопереключаемого и электропереключаемого полевого транзистора в качестве мультибитной ячейки памяти; в возможности оптического и электрического программирования указанной ячейки памяти; в увеличении плотности записи информации за счет реализации мультибитного режима. 4 н.п. ф-лы, 10 ил.

Изобретение относится к области органической электроники, а именно к новому типу устройств памяти на основе органических полевых транзисторов, изготовленных с использованием фотохромных соединений в составе активного слоя, расположенного на границе между слоем полупроводникового материала и диэлектрика. Такая структура устройства позволяет создавать мультибитные элементы памяти, используя оптическое/электрическое программирование транзисторов.

В настоящее время активно развивается область исследований, связанная с разработкой элементов памяти на основе органических полевых транзисторов, способных к переключению между двумя различными состояниями, отличающимися величиной порогового напряжения. Известно несколько подходов, позволяющих реализовать два или более стабильных состояний в полевом транзисторе. Они основаны на использовании устройств, имеющих сложную архитектуру, например транзисторы с плавающим затвором, транзисторы на основе фоточувствительных и сегнетоэлектрических материалов и ряд других.

Известны двухбитные устройства памяти на основе транзисторов с плавающим затвором (Т. Sekitani, Т. Yokota, U. Zschieschang, Н. Klauk, S. Bauer, К. Takeuchi, M. Takamiya, Т. Sakurai, Т. Someya. Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays. Science 2009, 326: 1516-1519), содержащие в своей структуре: 1) пластиковую подложку; 2) нанесенный на нее туннельный слой (затвор) из алюминия толщиной 20 нм; 3) слой диэлектрического материала из оксида алюминия толщиной 4 нм, покрытого сверху (4) слоем органического диэлектрика (алкилфосфоновой кислоты) толщиной 2 нм; 5) плавающий затвор из алюминия толщиной 20 нм (запоминающий слой); 6) слой диэлектрического материала (оксида алюминия с толщиной 4 нм); 7) слой алкилфосфоновой кислоты (2 нм); 8) слой органического полупроводника - пентацена (50 нм); и 9) проводящие электроды (сток и исток) из золота толщиной 50 нм. Работа такого устройства основана на тунеллировании электронов через слой диэлектрика в плавающий затвор, отделенный от полупроводникового рабочего слоя тонким диэлектриком (т.е. фактически в диэлектрике реализуется предпробойный режим, что накладывает ограничения на число циклов переключения и скорость записи информации). Заряд, накопленный в плавающем затворе, создает электрическое поле, которое влияет на прохождение носителей заряда через полупроводник в канале транзистора.

Недостатками такого устройства памяти являются: 1) технологическая сложность изготовления; 2) небольшое количество циклов перезаписи (это связанно с разрушением диэлектрического слоя); 3) время хранения информации ограничено тепловым тунеллированием электронов из плавающего затвора; 4) сильное влияние статического электричества на работу данного элемента памяти.

Известны фотопереключаемые органические полевые транзисторы на основе фоточувствительных органических полупроводников [В.Y. Guo, C. Di, S. Ye, X. Sun, J. Zheng, Y. Wen, W. Wu, G. Yu, and Y. Liu. Multibit Storage of Organic Thin-Film Field-Effect Transistors. Adv Mater 2009, 21: 1954-1959]. В таких устройствах можно реализовать несколько различных электрических состояний в зависимости от величины напряжения UGS, приложенного при облучении транзистора светом. Недостатками таких устройств являются: 1) малое время хранения информации около (250 ч); 2) нет данных о воспроизводимости фоточувствительных эффектов и устойчивости дискретных состояний.

Известны устройства памяти на основе полевых транзисторов с сегнетоэлектрическими [R. Schroeder, L.A. Majewski, М. Grell, Adv. Mater. 2004, 16, 633] и электретными компонентами [H. Yu, Y. Chen, C. Huang, and Y. Su. Investigation of Nonvolatile Memory Effect of Organic Thin-Film Transistors with Triple Dielectric Layers. Appl. Phys. Express. 2012, 5, 034101]. Недостатками данных устройств являются: 1) нестабильность и низкая воспроизводимость электрических свойств, 2) сильное влияние статического электричества на работу данного элемента памяти; 3) большие напряжения записи для генерации поля переключения; 4) низкая надежность, обусловленная миграцией носителей зарядов.

Наиболее близкими к заявленному изобретению являются транзисторы с фотохромными материалами в структуре органического полевого транзистора (J. Phys. Chem. С 2009, 113, 10807-10812), содержащие: 1) пластину из легированного кремния, выполняющую роль затвора, покрытую (2) слоем оксида кремния, на которую последовательно нанесены (3) слой пролупроводникового материала - пентацена, (4) проводящие электроды (сток и исток) из золота и (5) слой фотохромного материала (спиропиран). Эффект фоточувствительности такого устройства основан на изомеризации фотохромных молекул на границе с полупроводниковым материалом при облучении светом. Возникающий при этом дипольный момент создает электрическое поле, которое влияет на инжекцию носителей заряда с электродов в слой полупроводника. При этом может возникать множество дискретных электронных состояний транзистора. Недостатками такого устройства являются: 1) пренебрежимо малые различия в токах IDS между дискретными состояниями (менее 10% от номинальной величины IDS); 2) низкая воспроизводимость фоточувствительных эффектов; 3) небольшое количество циклов перезаписи, связанное с ухудшением свойств границ раздела полупроводник/электроды/фотохромный слой.

Задачей заявляемого изобретения является создание нового типа устройств памяти. Задача решается разработкой фотопереключаемых и электропереключаемых органических полевых транзисторов, принципиально отличающихся тем, что они содержат в своей структуре слой фотохромных молекул, расположенный на границе между слоем полупроводникового материала и диэлектрика.

Схема конструкции защищаемого фотопереключаемого и электропереключаемого органического полевого транзистора представлена на Фиг. 1, где слои 1а и 1б обозначают:

- исток и сток соответственно - электроды на основе электропроводящего материала, представляющего собой металл, выбранный из группы: золото, серебро, алюминий, медь, олово, платина, хром, цинк, титан, никель, палладий, редкоземельные металлы, щелочноземельные металлы и др., или сплавы вышеперечисленных металлов, или проводящий полимер, выбранный из группы допированных политиофенов (например, PEDOT - полиэтилендиокситиофен), полианилинов и полипирролов, или допированные оксиды металлов, выбранные из группы: оксиды индия-олова (ITO), допированный фтором оксид олова (FTO), легированный оксид цинка, или комбинации из нескольких различных электропроводящих материалов;

где слой 2 обозначает:

- слой полупроводникового материала n-типа, р-типа или амбиполярного полупроводника, при этом в качестве полупроводникового материала n-типа могут быть использованы производные фуллеренов (С60, С70, С>70 и их смеси), нафталиндиимиды, перилендиимиды и комбинации вышеперечисленных материалов, в качестве органического полупроводникового материала p-типа может быть использован пентацен, замещенный квинкветиофен или динафтотиенотиофен (молекулярные формулы полупроводниковых материалов: фуллерена C60, производного фуллерена [60] PCBM, фуллерена C70, нафталиндиимида (NDI, R - углеводородный радикал), перилендиимида (PDI, R - углеводородный радикал), пентацена (Pc), квинкветиофена (QT) и динафтотиенотиофена (DNT) приведены на Фиг. 2), а в качестве амбиполярного органического полупроводникового материала может быть использован индиго, его функциональные производные, производные дикетопирролопирролов, изоиндиго и другие группы соединений;

где слой 3 обозначает:

- фоточувствительный слой, состоящий из органических материалов с фотохромными свойствами, принадлежащих к классу спирооксазинов SPOxAz, общей формулы представленной на Фиг. 3, где радикалы R1-R4, представляют независимым образом атомы водорода, алкильные заместители C1-C10, фенильные группы, нитрогруппы или алкилкарбонильные группы C1-C10. Кроме того, радикалы R1-R4 попарно, т.е. R1 и R2, либо R2 и R3, либо R3 и R4, могут представлять бензольные кольца, аннелированные (т.е. конденсированные, имеющие общую C-C связь) с бензольным кольцом, несущим указанные заместители R1-R4 в формуле SPOxAz, при этом наиболее предпочтительны спирооксазины, проиллюстрированые структурами 1-4 на Фиг. 4,

где слой 4 обозначает:

- слой диэлектрического материала, представляющий собой оксид алюминия, гафния или другого металла, обладающий диэлектрическими свойствами, при этом оксид металла может быть немодифицированным или покрытым пассивирующим слоем (например, алкилфосфоновыми кислотами);

где слой 5 обозначает:

- затвор, представляющий собой электрод на основе металлического алюминия или другого материала, обладающего электропроводностью, характерной для металлов;

где слои 0 и 6 обозначают:

- подложку, изолирующее покрытие или другой слой, не оказывающий непосредственного влияния на электрические характеристики транзистора, но обеспечивающий необходимые механические и эксплуатационные свойства транзистора. Подложка может быть гибкой (на основе полимерных материалов, например полиэтилентерефталата, полиимидов, полиэтиленнафталатов и др.), полужесткой или жесткой (например, стекло).

Технические результаты, достигаемые при реализации заявленного изобретения, заключаются в:

- упрощении структуры и технологии изготовления фотопереключаемого и электропереключаемого полевого транзистора;

- возможности создания множественных дискретных состояний, отличающихся пороговыми напряжениями;

- достижении существенных различий в токах IDS для разных состояний (до 10000 раз);

- в обеспечении спектральной чувствительности устройства: воздействие импульсами света различной длины волны переводит транзистор в разные состояния;

- в возможности использования фотопереключаемого и электропереключаемого полевого транзистора в качестве мультибитной ячейки памяти;

- в возможности оптического и электрического программирования указанной ячейки памяти;

- в увеличении плотности записи информации за счет реализации мультибитного режима.

Указанные технические результаты достигаются за счет введения дополнительного слоя фотохромного материала (соединения класса спирооксазинов) между слоями полупроводникового материала и диэлектрика. Роль фотохромного слоя заключается в изменении электрических характеристик (зарядового состояния, емкости, диэлектрической проницаемости, зарядово-транспортных свойств) границы раздела между органическим полупроводником и диэлектриком при оптическом и электрическом программировании.

Переключение транзистора между состояниями транзистора (например, при записи или стирании информации) может осуществляться как оптическим методом (импульс света), так и оптоэлектрическим: воздействие импульса света и электрического поля, возникающего за счет приложенного напряжения.

Заявляемое изобретение иллюстрируется, но никак не ограничивается следующими примерами.

Пример 1

Изготавливаемый фотопереключаемый транзистор имел структуру, представленную в описании (см. выше) и в формуле изобретения (см. ниже). В качестве фотохромного соединения применялось производное спирооксазина 1,3-Дигидро-1,3,3-триметилспиро[2Н-индол-2,3′-[3H]фенантрен[9,10-b](1,4)оксазин], а качестве полупроводникового материала - фуллерен C60. Молекулярные формулы и схема фотоизомеризации производного спирооксазина (2), используемого в составе фотопереключаемого и электропереключаемого транзистора представлена на Фиг. 5, где символом «X» обозначена длина волны светового импульса, а «E» - потенциал VGS, приложенный между затвором и истоком, создающий электрическое поле в слое фотохромного материала. Подложками служили стеклянные пластины 1.5×1.5 см. Нанесение слоев 1а, 1б, 2 и 5 проводилось методом термического испарения в вакуумной камере (при давлении 10-6 мБар), встроенной внутри аргонового бокса. Толщины Al затвора и Ag электродов составляли 200 нм, а полупроводникового слоя - 100 нм. Нанесение фотохромного слоя осуществлялось в аргоновом боксе с помощью спинкоутера при скорости вращения подложки 1000 об/мин. В качестве источников света использовались лазеры с длиной волны 405 и 532 нм. Для записи проходных характеристик применялся измеритель Kethley 2612А. На Фиг. 6 представлены проходные характеристики транзистора в разных режимах оптическо-электрического программирования (показано три различных состояния). На Фиг. 7 представлена зависимость тока IDS от времени при переключении транзистора между разными состояниями (иллюстрация алгоритма записи - стирания данных).

Пример 2

Изготавливаемый фотопереключаемый транзистор имел структуру, представленную в описании (см. выше) и в формуле изобретения (см. ниже). В качестве фотохромного соединения применялось производное спирооксазина 1,3-Дигидро-1,3,3-триметилспиро[2H-индол-2,3′-[3H]фенантрен[9,10-b](1,4)оксазин], а качестве полупроводникового материала - N,N′-ди(н-амил)перилендиимид. (Фиг. 2). Подложками служили стеклянные пластины 1.5×1.5 см. Нанесение слоев 1а, 1б, 2 и 5 проводилось методом термического испарения в вакуумной камере (при давлении 10-6 мБар), встроенной внутри аргонового бокса. Толщины Al затвора и Ag электродов составляли 200 нм, а полупроводникового слоя - 100 нм. Нанесение фотохромного слоя осуществлялось в аргоновом боксе с помощью спинкоутера при скорости вращения подложки 1000 об/мин. В качестве источников света использовались лазеры с длиной волны 405 и 532 нм. Для записи проходных характеристик применялся измеритель Kethley 2612А. На Фиг. 8 представлены проходные характеристики фотопереключаемого и электропереключаемого органического полевого транзистора с N,N′-ди(н-амил)перилендиимидом в качестве полупроводникового материала в разных режимах оптическо-электрического программирования (показано пять различных состояний).

Пример 3

Изготавливаемый фотопереключаемый транзистор имел структуру, представленную в описании (см. выше) и в формуле изобретения (см. ниже). В качестве фотохромного соединения применялось производное спирооксазина 1,3-Дигидро-1,3,3-триметилспиро[2H-индол-2,3′-[3H]фенантрен[9,10-b](1,4)оксазин], а качестве полупроводникового материала использовалось производное нафталиндиимида (2,7-бис(н-гептил)бензо[lmn][3,8]фенантролин-1,3,6,8(2H,7H)-тетраон). Подложками служили стеклянные пластины 1.5×1.5 см. Нанесение слоев 1а, 1б, 2 и 5 проводилось методом термического испарения в вакуумной камере (при давлении 10-6 мБар), встроенной внутри аргонового бокса. Толщины Al затвора и Ag электродов составляли 200 нм, а полупроводникового слоя - 100 нм. Нанесение фотохромного слоя осуществлялось в аргоновом боксе с помощью спинкоутера при скорости вращения подложки 1000 об/мин. В качестве источников света использовались лазеры с длиной волны 405 и 532 нм. Для записи проходных характеристик применялся измеритель Kethley 2612А. На Фиг. 9 представлены проходные характеристики фотопереключаемого и электропереключаемого органического полевого транзистора с 2,7-бис(н-гептил)бензо[lmn][3,8]фенантролин-1,3,6,8(2Н,7Н)-тетроном в качестве полупроводникового материала (показано три различных состояния).

Пример 4

Изготавливаемый фотопереключаемый транзистор имел структуру, представленную в описании (см. выше) и в формуле изобретения (см. ниже). В качестве фотохромного соединения применялось производное спирооксазина 1,3-Дигидро-1,3,3-триметилспиро[2Н-индол-2,3′-[3H]фенантрен[9,10-b](1,4)оксазин], а качестве полупроводникового материала - пентацен (Фиг. 2). Подложками служили стеклянные пластины 1.5×1.5 см. Нанесение слоев 1а, 1б, 2 и 5 проводилось методом термического испарения в вакуумной камере (при давлении 10-6 мБар), встроенной внутри аргонового бокса. Толщины Al затвора и Ag электродов составляли 200 нм, а полупроводникового слоя - 100 нм. Нанесение фотохромного слоя осуществлялось в аргоновом боксе с помощью спинкоутера при скорости вращения подложки 1000 об/мин. В качестве источников света использовались лазеры с длиной волны 405 и 532 нм. Для записи проходных характеристик применялся измеритель Kethley 2612А. На Фиг. 10 представлены проходные характеристики фотопереключаемого и электропереключаемого органического полевого транзистора с пентаценом в качестве полупроводникового материала (показано два различных состояния).


ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ
ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ
ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ
ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ
ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ
ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ
ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ
ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ
ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ
ФОТОПЕРЕКЛЮЧАЕМЫЙ И ЭЛЕКТРОПЕРЕКЛЮЧАЕМЫЙ ОРГАНИЧЕСКИЙ ПОЛЕВОЙ ТРАНЗИСТОР, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ЕГО ПРИМЕНЕНИЕ В КАЧЕСТВЕ УСТРОЙСТВА ПАМЯТИ
Источник поступления информации: Роспатент

Showing 41-44 of 44 items.
24.05.2019
№219.017.5efc

Способ получения нанокомпозиционных микропористых пластиков с армированными порами

Изобретение относится к способу получения нанокомпозиционных микропористых пластиков с армированными порами без использования растворителей, газа и микросфер. Способ включает два основных этапа, где на первом этапе получают нанокомпозиционное связующее на основе олигомера цианат-эфира из смеси,...
Тип: Изобретение
Номер охранного документа: 0002688554
Дата охранного документа: 21.05.2019
14.05.2023
№223.018.5635

Способ газификации твёрдого топлива и устройство для его осуществления

Изобретение относится к области переработки твердых топлив с получением горючего газа, в том числе синтез-газа, и может быть использовано для переработки органических топлив с плохой газопроницаемостью, склонных к неустойчивому горению с образованием каналов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002730063
Дата охранного документа: 17.08.2020
16.05.2023
№223.018.6232

Сопряженный полимер на основе замещенного флуорена, бензотиадиазола и тиофена и его применение в перовскитных солнечных батареях

Изобретение может быть использовано при изготовлении солнечных батарей. Сопряженный полимер на основе замещенного флуорена, бензотиадиазола и тиофена имеет следующее строение: где n=5-200. Предложено также применение сопряженного полимера в качестве дырочно-транспортного материала в...
Тип: Изобретение
Номер охранного документа: 0002789133
Дата охранного документа: 30.01.2023
16.05.2023
№223.018.6235

Сопряженный полимер на основе бензодитиофена, тиофена и бензотиадиазола и его применение в перовскитных солнечных батареях

Изобретение может быть использовано при изготовлении солнечных батарей. Сопряженный полимер на основе замещенного бензодитиофена, бензотиадиазола и тиофена имеет следующее строение: где n=5-200. Предложено также применение сопряженного полимера в качестве дырочно-транспортного материала в...
Тип: Изобретение
Номер охранного документа: 0002789131
Дата охранного документа: 30.01.2023
Showing 51-60 of 64 items.
29.03.2019
№219.016.f79b

Водорастворимые биядерные катионные нитрозильные комплексы железа с природными алифатическими тиолилами, обладающие цитотоксической, апоптотической и no-донорной активностью

Изобретение относится к биядерному катионному нитрозильному комплексу железа с природными алифатическими тиолилами общей формулы [Fe(SR)(NO)]SO, где R представляет собой алифатические лиганды природного происхождения. Также предложены способ получения биядерного катионного нитрозильного...
Тип: Изобретение
Номер охранного документа: 0002441873
Дата охранного документа: 10.02.2012
08.05.2019
№219.017.4917

Зарядно-транспортный слой для солнечных батарей

Изобретение может быть использовано для создания стабильных и эффективных источников энергии для современных маломощных сенсоров, датчиков и осветительных панелей. Изобретение относится к органическим соединениям, полупроводниковым материалам на основе этих соединений и перовскитным солнечным...
Тип: Изобретение
Номер охранного документа: 0002686860
Дата охранного документа: 06.05.2019
14.05.2019
№219.017.51d7

Применение нитрозильного комплекса железа с n,n-диэтилтиомочевиной в качестве нового no-донорного противоопухолевого средства

Изобретение относится к медицине. Предложено применение нитрозильного комплекса железа с N-этилтиомочевиной состава [Fe(SR)(NO)]Cl⋅[Fe(SR)Cl(NO)], где R=C(NH)(NHCH), в качестве противоопухолевого средства для NO терапии опухоли, выбранной из карциносаркомы Hs578T, инвазивной гормонозависимой...
Тип: Изобретение
Номер охранного документа: 0002687269
Дата охранного документа: 13.05.2019
24.05.2019
№219.017.5efc

Способ получения нанокомпозиционных микропористых пластиков с армированными порами

Изобретение относится к способу получения нанокомпозиционных микропористых пластиков с армированными порами без использования растворителей, газа и микросфер. Способ включает два основных этапа, где на первом этапе получают нанокомпозиционное связующее на основе олигомера цианат-эфира из смеси,...
Тип: Изобретение
Номер охранного документа: 0002688554
Дата охранного документа: 21.05.2019
24.05.2019
№219.017.6023

Сополимеры на основе производных замещенного циклопентанонбитиофена и способ их получения

Изобретение относится к области химической технологии высокомолекулярных соединений. Описаны сополимеры на основе производных замещенного циклопентанонбитиофена общей формулы (I), где Х означает S или остаток дициановинильной группы формулы (II-а), или моноциановинильной группы общей формулы...
Тип: Изобретение
Номер охранного документа: 0002423392
Дата охранного документа: 10.07.2011
19.06.2019
№219.017.8c03

Аминофуллерены и способ их получения

Изобретение относится к химической и фармацевтической отраслям промышленности и может быть использовано в биомедицинских исследованиях и фармакологии, а также при получении наномодификаторов пластических масс. Новые аминофуллерены, являющиеся биосовместимыми и улучшающие механические свойства...
Тип: Изобретение
Номер охранного документа: 0002460688
Дата охранного документа: 10.09.2012
01.11.2019
№219.017.dce8

Применение водорастворимых производных фуллерена в качестве лекарственных препаратов нейропротекторного и противоопухолевого действия

Изобретение относится к медицине и предназначено для лечения заболеваний нервной системы. Раскрыто использование водорастворимых производных фуллерена С60 в производстве лекарственных препаратов нейропротекторного действия. Используют производные фуллеренов формулы I, содержащие 5 гидрофильных...
Тип: Изобретение
Номер охранного документа: 0002704483
Дата охранного документа: 29.10.2019
04.11.2019
№219.017.de2c

Способ изготовления дисковых секторов для захвата, удержания и анализа магнитных микрочастиц и меченных ими биологических объектов на поверхности спиновых вентилей с помощью фемтосекундного лазерного облучения

Изобретение относится к области разработки биомедицинских сенсоров новых поколений, а именно к созданию секторов на поверхности приборов спинтроники. В биомедицине разделение здоровых и больных клеток основано на разной вероятности захвата магнитных наночастиц или микрочастиц клетками в...
Тип: Изобретение
Номер охранного документа: 0002704972
Дата охранного документа: 01.11.2019
22.01.2020
№220.017.f816

Способ получения циклопропановых производных фуллеренов

Изобретение относится к способу получения циклопропановых производных фуллеренов. Изобретение может быть использовано в производстве полупроводниковых фуллеренсодержащих материалов. Cпособ получения метилового эфира фенил-С61-бутановой кислоты ([60]РСВМ) или метилового эфира фенил-С71-бутановой...
Тип: Изобретение
Номер охранного документа: 0002711566
Дата охранного документа: 17.01.2020
31.07.2020
№220.018.390a

Биядерные кристаллические комплексы редкоземельных ионов (3+), способ их получения, способ получения магнитных полимерных композитов, применение магнитных полимерных композитов в качестве светочувствительных магнитных сред для спинтроники и устройств памяти

Изобретение относится к способу получения кристаллических комплексов редкоземельных ионов (3+) общей формулы (РЗЭ)L(NO)⋅nCHOH, где РЗЭ - ионы лантаноидов (3+), n=2-4, L представляет собой фотохромный лиганд ряда дитиенилэтена...
Тип: Изобретение
Номер охранного документа: 0002728127
Дата охранного документа: 28.07.2020
+ добавить свой РИД