×
10.04.2016
216.015.2e71

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ

Вид РИД

Изобретение

№ охранного документа
0002579359
Дата охранного документа
10.04.2016
Аннотация: Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. Согласно способу возбуждают колебания в резонаторе на фиксированной частоте. При изменении начальной собственной частоты резонатора в фиксированных пределах определяют его амплитудно-частотную характеристику, вычисляют площадь под ней, по которой судят о значении измеряемой физической величины. Причем в качестве резонатора применяют волноводный резонатор с оконечной нагрузкой с реактивным сопротивлением Х, площадь под амплитудно-частотной характеристикой находят согласно соотношению , где - начальное, при номинальном значении измеряемой физической величины, значение Х, [Х, Х] - фиксированные пределы изменения Х, соответствующие фиксированным пределам , - амплитуда колебаний в волноводном резонаторе при величине Х оконечной нагрузки. Технический результат заключается в упрощении процесса измерения. 2 ил.
Основные результаты: Способ измерения физической величины, при котором возбуждают колебания в резонаторе на фиксированной частоте, при изменении начальной собственной частоты резонатора в фиксированных пределах определяют его амплитудно-частотную характеристику, вычисляют площадь под ней, по которой судят о значении измеряемой физической величины, отличающийся тем, что в качестве резонатора применяют волноводный резонатор с оконечной нагрузкой с реактивным сопротивлением Х, площадь под амплитудно-частотной характеристикой находят согласно соотношению , где X- начальное, при номинальном значении измеряемой физической величины, значение Х, [X, X] - фиксированные пределы изменения X, соответствующие фиксированным пределам , A(X) - амплитуда колебаний в волноводном резонаторе при величине Х оконечной нагрузки.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических величин. К их числу относятся механические величины, геометрические параметры объектов, физические свойства веществ и др. К ним же относятся также электрофизические и другие параметры контролируемых объектов (материалов, веществ).

Известен способ измерения физической величины, заключающийся в размещении контролируемого объекта в резонаторе (колебательном контуре с сосредоточенными параметрами, объемном или открытом ВЧ-, СВЧ-резонаторе и др.) и измерении характеристики этого резонатора (монографии: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963. Стр. 37-144; Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука. 1989. Стр. 168-177). К числу таких характеристик относятся собственная (резонансная) частота колебаний, добротность резонатора и др., которые могут изменяться в зависимости от физических или (и) геометрических параметров контролируемого объекта. В частности, известен способ измерения физического параметра, который состоит в возбуждении колебаний в резонаторе, в поле которого размещают контролируемый объект, и регистрации одного из параметров амплитудно-частотной характеристики (АЧХ). В качестве регистрируемого параметра используют собственную (резонансную) частоту колебаний резонатора.

Известен также способ измерения (RU 2029247, 20.02.1995), который заключается в возбуждении в резонаторе частотно-модулированных колебаний в фиксированном диапазоне частот и регистрации площади, покрываемой значениями амплитуды при девиации частоты в указанном диапазоне частот, т.е. площади под резонансной кривой. Данный способ характеризуется существенно большей чувствительностью к измеряемому параметру по сравнению со способом, в котором информативным параметром служит резонансная частота колебаний.

Недостатком этого способа является его достаточно сложная реализация. Она предполагает наличие генератора частотно-модулированных колебаний, подсоединяемого к резонатору, который обеспечивает девиацию частоты колебаний в достаточно широких пределах, соответствующих возможным значениям резонансной частоты, зависящей от величины измеряемого параметра.

Известно также техническое решение (RU 2427851, 27.08.2011), которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа. Этот способ-прототип заключается в возбуждении в резонаторе частотно-модулированных колебаний на фиксированной частоте, определении амплитудно-частотной характеристики при изменении начальной собственной частоты резонатора в фиксированных пределах и регистрации площади, покрываемой значениями амплитуды, т.е. площади под резонансной кривой.

Недостатком способа-прототипа является достаточно сложная реализация, которая при измерениях с применением волноводных резонаторов может быть упрощена: изменение начальной собственной частоты резонатора в фиксированных пределах возможно в данном случае производить путем измерения параметров оконечной нагрузки такого резонатора.

Техническим результатом настоящего изобретения является упрощение процесса измерения.

Технический результат в предлагаемом способе измерения физической величины достигается тем, что возбуждают колебания в резонаторе на фиксированной частоте, при изменении начальной собственной частоты резонатора в фиксированных пределах [fp1, fp2] определяют его амплитудно-частотную характеристику, вычисляют площадь под ней, по которой судят о значении измеряемой физической величины, в качестве резонатора применяют волноводный резонатор с оконечной нагрузкой с реактивным сопротивлением Хн, площадь под амплитудно-частотной характеристикой находят согласно соотношению , где - начальное, при номинальном значении измеряемой физической величины, значение Хн, [Хн1, Хн2] - фиксированные пределы изменения Хн0, соответствующие фиксированным пределам [fp1, fp2], - амплитуда колебаний в волноводном резонаторе при величине Хн0 оконечной нагрузки.

Предлагаемый способ поясняется чертежами.

На фиг. 1 приведен график зависимости амплитуды колебаний от начального значения реактивного сопротивления оконечной нагрузки волноводного резонатора.

На фиг. 2 приведена схема устройства для реализации предлагаемого способа.

Здесь показаны волноводный резонатор 1, волновод 2, оконечная нагрузка 3, генератор 4, функциональный элемент 5, детектор 6, интегратор 7, регистратор 8.

Способ реализуется следующим образом.

Колебания фиксированной частоты f подаются в волноводный резонатор от генератора фиксированной частоты. При совпадении этой частоты f с собственной (резонансной) частотой fp волноводного резонатора амплитуда А колебаний в нем принимает максимальное значение A0. Согласно предлагаемому способу, как и в способе-прототипе, возбуждение колебаний осуществляют на фиксированной частоте f, определяют его амплитудно-частотную характеристику при изменении в фиксированных пределах [fp1, fp2] начального значения собственной (резонансной) частоты fp волноводного резонатора и вычисляют площадь S под ней, по которой судят о значении измеряемой физической величины х. В предлагаемом способе в качестве резонатора применяют волноводный резонатор 1, образованный волноводом 2 с оконечной нагрузкой 3, имеющей реактивное сопротивление Хн. От величины Хн зависит значение частоты волноводного резонатора. В общем случае оконечной нагрузкой волноводного резонатора может являться комплексное сопротивление Zн=Rн+jХн, где Rн - активная составляющая Zн. Именно реактивная составляющая Хн комплексного сопротивления Zн влияет на значение и ее изменение при изменении Хн.

Пределы [fp1, fp2] изменения частоты и, соответственно, пределы [Хн1, Хн2] изменения начального значения величины Хн должны соответствовать диапазону возможных значений [х1, х2] измеряемой физической величины х. На фиг. 1 приведен график функции при изменении в фиксированных пределах [Хн1, Хн2], соответствующих пределам [fp1, fp2] изменения частоты . Максимальное значение амплитуды А=А0 имеет место при значении , то есть на частоте , равной фиксированной частоте f генератора.

При измерениях с применением волноводного резонатора (отрезка длинной линии, объемного волноводного резонатора и др.) изменяемым параметром резонатора, влияющим на начальное значение его собственной частоты , может являться, в частности, какой-либо геометрический параметр оконечной нагрузки резонатора или (и) электрофизический параметр вещества, находящегося в электромагнитном поле этой оконечной нагрузки, а также совокупность указанных параметров. Для волноводного резонатора с колебаниями волноводных типов Hmnp или Emnp известны и применяются реактивные компоненты, в частности диафрагмы емкостного и индуктивного типа в волноводах (Семенов Н.А. Техническая электродинамика. М.: Связь. 1973. С. 334-340). Такая реактивная компонента может быть в данном случае оконечной нагрузкой волноводного резонатора, ей можно управлять и изменять, тем самым, значение .

Однако проще и эффективнее осуществить электрически управляемую перестройку в фиксированных пределах [Хн1, Хн2] значения и, следовательно, произвести изменение (частотную модуляцию) частоты волноводного резонатора в соответствующих пределах [fp1, fp2]. В частности для волноводного резонатора в виде отрезка длинной линии с колебаниями типа ТЕМ в качестве такого модулятора может быть применена оконечная нагрузка в виде электрически управляемого сосредоточенного реактивного сопротивления Хн - переменной индуктивности L или переменной емкости С. При этом, соответственно, Хн=2πfL, Хн=1/2πfC. Наличие на конце отрезка однородной длинной линии индуктивности L эквивалентно удлинению короткозамкнутого на конце отрезка длинной линии на величину , а наличие емкости С - эквивалентно удлинению разомкнутого на конце отрезка длинной линии на величину . В этих формулах с - скорость света, W - волновое (характеристическое) сопротивление длинной линии (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1978. С. 10-29, 42-50).

В качестве переменной емкости С может быть применен, в частности, диод с управляемой емкостью - варикап (Давыдова Н.С., Данюшевский Ю.З. Диодные генераторы и усилители СВЧ. М.: Радио и связь. 1986. 184 с).

Следовательно, изменяя величину оконечной реактивной нагрузки отрезка длинной линии - индуктивности L в пределах [L1, L2] или емкости С в пределах [С1, С2], соответствующих пределам [fp1, fp2] изменения частоты волноводного резонатора - отрезка длинной линии, можно при фиксированной частоте f генератора производить измерение площади S под соответствующей резонансной кривой и, следовательно, определить искомое значение х измеряемой физической величины.

Параметр S представляет собой площадь под амплитудно-частотной характеристикой - резонансной кривой, т.е. площадь, покрываемую значениями амплитуды А при изменении величины в диапазоне [Хн1, Хн2], соответствующем диапазону изменения начальной собственной частоты резонатора в фиксированных пределах [fp1, fp2]:

Диапазон [Хн1, Хн2] должен соответствовать диапазону частот колебаний [fp1, fp2], возбуждаемых в резонаторе на фиксированной частоте f генератора.

На фиг. 2 приведена схема устройства для реализации предлагаемого способа. Здесь волноводный резонатор 1 содержит волновод 2, который имеет на конце оконечную нагрузку 3. С помощью генератора 4 в волноводном резонаторе 1 возбуждают электромагнитные колебания на фиксированной частоте f. С применением функционального элемента 5 производят изменение начального (т.е. при некотором номинальном значении х0 измеряемой физической величины х) реактивного сопротивления Хн оконечной нагрузки 3 волноводного резонатора 1. Значение изменяется в фиксированных пределах [Хн1 и Хн2] и зависит, в свою очередь, от, по меньшей мере, одного параметра а оконечной нагрузки резонатора, изменяющегося в фиксированных пределах [а1, а2] с применением функционального элемента 4. К выходу резонатора 1 подсоединена цепочка последовательно соединенных детектора 6, интегратора 7 и регистратора 8. В регистраторе 8 определяют получаемое на выходе интегратора 7 значение функции S, выражаемой формулой (1), при девиации значения в пределах диапазона [Xн1, Хн2]. Этот диапазон должен соответствовать пределам изменения значений [х1, х2] измеряемой физической величины x.

Таким образом, данный способ измерения физической величины характеризуется упрощением процесса измерения с применением волноводного резонатора за счет проведения измерений площади под амплитудно-частотной характеристикой на фиксированной частоте при изменении начальной собственной частоты резонатора в фиксированных пределах вследствие изменения начального значения оконечной реактивной нагрузки резонатора.

Способ измерения физической величины, при котором возбуждают колебания в резонаторе на фиксированной частоте, при изменении начальной собственной частоты резонатора в фиксированных пределах определяют его амплитудно-частотную характеристику, вычисляют площадь под ней, по которой судят о значении измеряемой физической величины, отличающийся тем, что в качестве резонатора применяют волноводный резонатор с оконечной нагрузкой с реактивным сопротивлением Х, площадь под амплитудно-частотной характеристикой находят согласно соотношению , где X- начальное, при номинальном значении измеряемой физической величины, значение Х, [X, X] - фиксированные пределы изменения X, соответствующие фиксированным пределам , A(X) - амплитуда колебаний в волноводном резонаторе при величине Х оконечной нагрузки.
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ
Источник поступления информации: Роспатент

Showing 51-60 of 61 items.
26.08.2017
№217.015.e31f

Устройство для бесконтактного измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Предлагаемое устройство для бесконтактного измерения диаметра провода содержит размещаемую снаружи провода коаксиально с ним...
Тип: Изобретение
Номер охранного документа: 0002626063
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e3c4

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626409
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e447

Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в...
Тип: Изобретение
Номер охранного документа: 0002626303
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e523

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или...
Тип: Изобретение
Номер охранного документа: 0002626458
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f37a

Способ определения состояния поверхности дороги

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Техническим результатом является повышение точности и упрощение процесса определения состояния поверхности...
Тип: Изобретение
Номер охранного документа: 0002637797
Дата охранного документа: 07.12.2017
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
Showing 51-60 of 94 items.
26.08.2017
№217.015.e31f

Устройство для бесконтактного измерения диаметра провода

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения диаметра провода как готового изделия, так и при его производстве. Предлагаемое устройство для бесконтактного измерения диаметра провода содержит размещаемую снаружи провода коаксиально с ним...
Тип: Изобретение
Номер охранного документа: 0002626063
Дата охранного документа: 21.07.2017
26.08.2017
№217.015.e3c4

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств, например, плотности, концентрации смесей, влагосодержания и др., различных диэлектрических жидкостей, находящихся в электромагнитном поле волновода. Предложенный способ...
Тип: Изобретение
Номер охранного документа: 0002626409
Дата охранного документа: 27.07.2017
26.08.2017
№217.015.e447

Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в...
Тип: Изобретение
Номер охранного документа: 0002626303
Дата охранного документа: 25.07.2017
26.08.2017
№217.015.e523

Способ измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения физических свойств диэлектрических жидкостей, в том числе плотности, концентрации смесей, влагосодержания и т.д., при этом исследуемые жидкости находятся в измерительных ячейках или...
Тип: Изобретение
Номер охранного документа: 0002626458
Дата охранного документа: 28.07.2017
29.12.2017
№217.015.f37a

Способ определения состояния поверхности дороги

Изобретение относится к измерительной технике и может быть применено для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Техническим результатом является повышение точности и упрощение процесса определения состояния поверхности...
Тип: Изобретение
Номер охранного документа: 0002637797
Дата охранного документа: 07.12.2017
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00d5

Устройство для измерения влагосодержания жидкости

Изобретение относится к измерительной технике, в частности к промышленным влагомерам. Устройство для измерения влагосодержания жидкости содержит два измерительных участка, на каждом из которых размещен резонатор, включенный в качестве частотозадающего элемента в схему соответствующего...
Тип: Изобретение
Номер охранного документа: 0002629701
Дата охранного документа: 31.08.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
+ добавить свой РИД