×
10.04.2016
216.015.2df3

Результат интеллектуальной деятельности: СПОСОБ АВТОНОМНОЙ ЛОКАЛИЗАЦИИ САМОХОДНОГО МОТОРИЗОВАННОГО ТРАНСПОРТНОГО СРЕДСТВА

Вид РИД

Изобретение

№ охранного документа
0002579978
Дата охранного документа
10.04.2016
Аннотация: Изобретение относится к способу автономной локализации самоходного моторизованного транспортного средства внутри известной окружающей среды с применением по меньшей мере одного датчика. Техническим результатом является повышение надежности регистрации ориентиров. В способе автономной локализации самоходного моторизованного транспортного средства внутри известной окружающей среды скорость и/или направление поворота двигателя датчика по меньшей мере в областях окружающей среды с лишь малым количеством заранее определенных ориентиров таким образом управляется(ются), что датчик активно направляется на эти ориентиры, чтобы обеспечивать их регистрацию, при этом скорость двигателя (24) датчика снижается в области какого-либо из указанных ориентиров и увеличивается после регистрации ориентира. 5 з.п. ф-лы, 8 ил.

Настоящее изобретение относится к способу автономной локализации самоходного моторизованного транспортного средства внутри известной окружающей среды с применением по меньшей мере одного датчика.

Подобные способы известны в уровне техники в различных формах выполнения. Они служат для того, чтобы определять положение самоходного моторизованного транспортного средства, посредством чего возможна самоходная навигация транспортного средства.

Подобные способы локализации используются, например, в области складской логистики. Для транспортировки грузов там все больше применяются самоходные моторизованные транспортные средства для обеспечения высокой степени автоматизации.

Имеются способы локализации, которые применяют так называемые искусственные ориентиры в форме дополнительных установок, таких как отражающие маркерные знаки, направляющие тросы, радиостанции и т.п. Эти искусственные ориентиры в известной среде, внутри которой должно локализоваться транспортное средство, размещаются таким образом, что, с одной стороны, имеется достаточно ориентиров для надежной локализации, а с другой стороны, однако, затраты на установку, связанные с позиционированием ориентиров, являются по возможности малыми. В качестве датчика для регистрации искусственных ориентиров может служить, например, смонтированный на транспортном средстве датчик дистанционного измерения, например, в форме лазерного сканера, который с применением двигателя датчика равномерно поворачивается туда и обратно вокруг оси поворота.

Способы автономной локализации, напротив, не применяют искусственных ориентиров, а применяют естественные ориентиры, как, например, существующие в окружающей среде геометрические структурные элементы в форме труб, балок, колонн и т.п. Таким способом без какого-либо вмешательства в окружающую среду достигается высокая степень гибкости при высокоточной локализации. Это имеет особое преимущество, состоящее в том, что маршруты транспортного средства могут изменяться без больших временных и финансовых затрат. В качестве датчика здесь также может служить смонтированный на транспортном средстве лазерный сканер, который с применением двигателя датчика равномерно поворачивается туда и обратно вокруг оси поворота.

Подобные способы автономной локализации функционируют хорошо, если имеется достаточно информации об окружающей среде в форме естественных ориентиров, которые могут регистрироваться соответствующим датчиком. В общем случае, на практике часто происходит так, что некоторые области окружающей среды имеют лишь очень мало естественных ориентиров, которые могут служить для локализации транспортного средства. Поэтому в таких областях окружающей среды особое значение приобретают действительная регистрация и использование малой имеющейся информации. Предписанная регистрация ориентиров с помощью используемых датчиков может в любом случае гарантироваться только при соответственно высокой плотности измеренных данных, для чего требуется определенная продолжительность времени. Соответственно, вся окружающая среда транспортного средства может регистрироваться не в реальном времени, а с соответствующим смещением во времени. Это может привести к тому, что некоторые области окружающей среды, ввиду движения транспортного средства, вообще не будут зарегистрированы или будут зарегистрированы по меньшей мере в недостаточной степени. Иными словами, может произойти прохождение мимо ориентира без его регистрации. В областях, где имеется достаточно ориентиров, это обычно не создает проблем. Напротив, в областях окружающей среды, в которых имеется лишь мало ориентиров, пропуск регистрации ориентира может привести к тому, что транспортное средство более не может быть локализовано, что приводит к остановке транспортного средства.

Исходя из этого уровня техники, задачей настоящего изобретения является создание способа вышеуказанного типа, при котором гарантируется, что ориентиры и в критических областях окружающей среды, где имеется лишь немного ориентиров, надежным образом регистрируются, чтобы таким образом предотвратить остановку транспортного средства.

Для решения этой задачи предложенное изобретение создает способ автономной локализации самоходного моторизованного транспортного средства внутри известной окружающей среды с применением размещенного на транспортном средстве датчика измерения дальности, направление измерения которого или плоскость измерения которого за счет приведения в действие по меньшей мере одного двигателя датчика является изменяемой, причем способ имеет следующие этапы: создание географической карты окружающей среды на основе естественных ориентиров; установление предопределенного маршрута, вдоль которого должно перемещаться транспортное средство; определение тех ориентиров, которые вдоль предопределенного маршрута должны служить в качестве вспомогательного средства локализации; сканирование окружающей среды в различные моменты времени с применением датчика для регистрации определенных заранее ориентиров, в то время как транспортное средство перемещается вдоль предопределенного маршрута; и локализация транспортного средства путем сравнения зарегистрированных ориентиров с помеченными на географической карте ориентирами; причем скорость и/или направление поворота двигателя датчика по меньшей мере в областях окружающей среды с лишь малым количеством заранее определенных ориентиров таким образом управляется(ются), что датчик активно направляется на эти ориентиры, чтобы гарантировать их регистрацию. Иными словами, датчик по меньшей мере в областях окружающей среды с лишь небольшим количеством ориентиров активно направляется и наводится на эти ориентиры за счет того, что скорость и/или направление привода датчика соответственно изменяются. Таким способом гарантируется, что регистрация ориентиров в критических областях окружающей среды гарантируется, из-за чего транспортное средство не может потерять свое текущее положение. Соответственно, это не приводит ни к остановке транспортного средства, ни к прерыванию навигации транспортного средства.

Согласно варианту осуществления предложенного изобретения в качестве датчика применяется измеряющий в одной плоскости лазерный сканер, плоскость измерений которого может поворачиваться с помощью двигателя датчика. За счет комбинации движения двигателя и плоскости лазера пространство измерения соответственно регистрируется трехмерным образом.

В качестве альтернативы, в качестве датчика может применяться однолучевой лазер, который закреплен на двигателе с возможностью поворота вокруг двух осей поворота. Альтернативно, его луч может также отклоняться с помощью зеркала, размещенного на двигателе с возможностью поворота вокруг двух осей поворота.

Предпочтительным образом, при локализации транспортного средства учитывается скорость транспортного средства, регистрируемая посредством другого датчика. При учете текущей скорости транспортного средства, с одной стороны, скорость, с которой должен приводиться в действие двигатель датчика, чтобы гарантировать надежную регистрацию конкретных ориентиров, определяется очень точно. С другой стороны, сканирования, выполненные в различные моменты времени, через скорость транспортного средства могут логически связываться друг с другом.

Согласно одному варианту осуществления, скоростью и/или направлением поворота двигателя датчика управляют таким образом, чтобы датчик по меньшей мере ориентиры в областях окружающей среды с лишь небольшим количеством заранее определенных ориентиров сканировал интенсивнее, чем другие ориентиры, в частности, в течение более длительного временного интервала. Посредством повышения плотности измеренных данных ожидаемое значение неопределенности положения транспортного средства может минимизироваться, так как ошибка структурного элемента или естественного ориентира при увеличении количества измерений уменьшается.

Области, в которых никакие информации не могут быть получены, напротив, предпочтительным образом сканируются с меньшей интенсивностью или вообще не рассматриваются. Тем самым количество ненужных измерений существенным образом снижается, благодаря чему упрощается обработка зарегистрированных данных измерений, так как за счет рассмотрения исключительно релевантных областей объем вычислений для локализации транспортного средства снижается.

Другие признаки и преимущества предложенного изобретения поясняются на основе последующего описания предпочтительной формы выполнения соответствующего изобретению способа автономной локализации со ссылками на приложенные чертежи, на которых показано следующее:

Фиг.1 - схематичный вид сверху на подлежащее локализации моторизованное транспортное средство;

Фиг.2-4 - схематичные виды сверху, с помощью которых поясняются способ функционирования известного способа автономной локализации и связанные с ним недостатки; и

Фиг.5-8 - схематичные виды сверху, с помощью которых поясняются способ функционирования способа автономной локализации согласно форме выполнения предложенного изобретения и связанные с ним преимущества.

Одинаковые ссылочные позиции относятся в последующем описании к одинаковым или подобным образом выполненным компонентам.

Фиг.1 показывает схематичный вид сверху самоходного моторизованного транспортного средства 10, которое с применением способа автономной локализации должно быть локализовано внутри известной окружающей среды 12, которая в данном случае ограничена двумя расположенными напротив друг друга стенками 14 и 16. Локализация транспортного средства 10 осуществляется на основе естественных ориентиров в форме стенок 14 и 16, а также в форме имеющихся в окружающей среде 12 геометрических структурных элементов 18а, b, c, d, e, f, как, например, трубы, балки колонны и т.п. Эти естественные ориентиры 14, 16, 18а-f во время движения транспортного средства 10 в направлении движения, обозначенном стрелкой 20, регистрируются с помощью расположенного на транспортном средстве 10 измеряющего расстояние датчика 22, который в данном случае представляет собой лазерный сканер. Датчик 22 размещен на двигателе 24 датчика, так что его плоскость измерения посредством приведения в действие двигателя 24 датчика может поворачиваться вокруг непоказанной оси поворота. Посредством поворота датчика 22, как изображено стрелкой 26, окружающая среда 12 может соответственно сканироваться трехмерным образом, чтобы таким способом регистрировать ориентиры 14, 16, 18. Кольцо 28 символизирует при этом неопределенность положения транспортного средства 10 в направлении х и у.

В известном способе автономной локализации двигатель 24 датчика для регистрации ориентиров 14, 16, 18а-f приводится в действие непрерывно с постоянной скоростью v0 в направлении стрелки 26. Скорость v0 при этом выбирается таким образом, что датчик 22 регистрирует окружающую среду 12 с достаточно высокой плотностью данных. Иными словами, датчик 22 не может поворачиваться произвольно быстро, так как иначе регистрация ориентиров 18а-f была бы невозможной. Для локализации транспортного средства 10 в окружающей среде 12 затем зарегистрированные ориентиры 14, 16, 18 сравниваются с предварительно созданной географической картой. Таким способом может осуществляться навигация транспортного средства 10.

При регистрации стен или ориентиров 14, 16 последние обеспечивают информацию локализации относительно y-положения и ориентации транспортного средства 10. Если регистрируются ориентиры 18а-f, то они обеспечивают по существу информацию локализации относительно х-положения транспортного средства.

Регистрация ориентиров 14, 16, ввиду их протяженности, в данном примере является некритичной. Перемещение мимо них без их регистрации невозможно. Локализация транспортного средства в y-положении и ориентация, таким образом, возможны в любой момент. Критичной является, напротив, локализация х-положений транспортного средства, как показывают следующие пояснения.

Ввиду перемещения транспортного средства 10 и времени, которое необходимо для сканирования окружающей среды с требуемой плотностью данных, может произойти, что некоторые из ориентиров 18а-f не регистрируются. Это имеет место в том случае, когда датчик 22, в то время как транспортное средство 10 проезжает мимо одного из ориентиров 18а-f, ориентирован как раз в другом направлении. Тем самым соответствующие ориентиры 18а-f пропускаются. В областях окружающей среды, в которых имеется достаточно много ориентиров 18а-f, это не является проблематичным, так как регистрируется достаточно других ориентиров 18а-f, на основе которых может осуществляться локализация транспортного средства 10. Напротив, «проезд» является критичным в областях окружающей среды с лишь небольшим количеством ориентиров, как это далее поясняется со ссылками на фиг.2-4.

Фиг.2-4 показывают мгновенные снимки во время сканирования областей окружающей среды, в которых имеется только один единственный ориентир 18g, который может служить для локализации транспортного средства 10 внутри этой области окружающей среды. Фиг.1 показывает движущееся в направлении стрелки 20 транспортное средство 10 в первом положении, в котором датчик 22 ориентирован в направлении стенки 14. Если теперь транспортное средство 10 перемещается из показанного на фиг.2 положения далее в направлении стрелки 20 в положение, представленное на фиг.3, в то время как датчик 22 при приведении в действие двигателя 24 датчика поворачивается с постоянной скоростью v0 в направлении стрелки 26, то неопределенность положения в y-направлении снижается ввиду того факта, что расстояния до стенки 14 регистрировались с помощью датчика 22. Напротив, неопределенность положения в х-направлении возрастает, так как на этом участке не могли регистрироваться никакие ориентиры. Если теперь транспортное средство 10, исходя из представленного на фиг.3 положения, перемещается дальше в направлении стрелки 20 в представленное на фиг.4 положение, то становится ясно, что ориентир 18g был пройден, не имея возможности быть зарегистрированным датчиком 22. При этом неопределенность положения в х-направлении увеличивается таким образом, что локализация транспортного средства 10 внутри окружающей среды 12 более невозможна, по причине чего транспортное средство 10 останавливается.

Эта проблема устраняется посредством соответствующего изобретению способа автономной локализации, как это поясняется далее со ссылками на фиг.5-8 с помощью примера осуществления соответствующего изобретению способа.

На первом этапе в соответствующем изобретению способе автономной локализации согласно форме выполнения предложенного изобретения создается географическая карта окружающей среды 12 на основе имеющихся в ней естественных ориентиров 14, 16, 18. На следующем этапе устанавливается предопределенный маршрут, вдоль которого должно двигаться транспортное средство 10 в окружающей среде 12. Затем определяются те ориентиры 18, которые могут служить в качестве вспомогательного средства локализации вдоль предопределенного маршрута. При этом идентифицируются критические области окружающей среды, в которых имеется лишь малое количество заранее определенных ориентиров 18.

Теперь транспортное средство 10 движется в направлении стрелки 20 с равномерной скоростью вдоль предопределенного маршрута, причем двигатель 24 датчика с постоянной скоростью v0 приводится в действие для поворота датчика 22. Если теперь транспортное средство 10 достигает заранее идентифицированной критичной области окружающей среды, где имеется только малое количество ориентиров, в данном случае один единственный ориентир 18g, как показано на фиг.2, то двигатель 24 датчика активно ускоряется от скорости v0 до скорости v1, так что датчик 22 существенно быстрее поворачивается в направлении стрелки 26. При этом неопределенность положения в y-направлении, как показано на фиг.6, уменьшается, в то время как неопределенность положения в х-направлении возрастает, как это уже было описано выше со ссылкой на фиг.2 и 3. Незадолго перед тем моментом времени, в который датчик 22 регистрирует ориентир 18g, двигатель 24 датчика снова активно управляется, чтобы снизить скорость v1 до скорости v2, причем v2 меньше, чем v0. Это приводит к тому, что датчик 22 регистрирует ориентир 18g с очень высокой плотностью измеренных данных, за счет чего неопределенность положения в х-направлении сильно снижается, как это представлено на фиг.7. После регистрации ориентира 18g датчиком 22 двигатель 24 датчика снова активно управляется, чтобы снова повысить его скорость, например, до скорости v0, как представлено на фиг.8.

Должно быть ясно, что не только скорость двигателя датчика, но и направление поворота двигателя 24 датчика может изменяться для обеспечения регистрации ориентира. Также датчик 22, в качестве альтернативы, может представлять собой однолучевой лазер, который закреплен на двигателе с возможностью поворота вокруг двух осей поворота или измерительный луч которого отклоняется посредством зеркала, закрепленного на двигателе с возможностью поворота относительно двух осей поворота.

Существенное преимущество соответствующего изобретению способа автономной локализации по сравнению со способом, описанным со ссылкой на фиг.2-4, состоит в том, что посредством активного управления двигателем 24 датчика гарантируется, что ориентиры и в тех областях окружающей среды, в которых имеется лишь малое количество ориентиров, регистрируются, так что транспортное средство 10 внутри окружающей среды 12 всегда может локализироваться. Потеря положения транспортного средства и связанное с этим прерывание навигации исключаются. Также снижение скорости транспортного средства в критических областях окружающей среды не требуется для надежной регистрации ориентиров. Снижение скорости двигателя датчика от скорости v1 до скорости v2 в области ориентира 18g в критической области окружающей среды обеспечивает возможность повышения плотности измеренных данных и таким способом надежную регистрацию соответствующих ориентиров 18g. Повышение скорости двигателя датчика от v0 до v1 и связанное с этим снижение плотности измеренных данных приводит к тому, что соответствующий участок окружающей среды сканируется менее интенсивно. Это не создает проблем, так как предварительно проведенный анализ предопределенного маршрута показал, что на участке окружающей среды, который датчик 22 сканирует во время ускорения двигателя 24 датчика, не имеется никаких релевантных ориентиров 18. На участках окружающей среды без ориентиров 18 сканирование может вообще отсутствовать, если неопределенность положения в y-направлении не слишком высока. Чем меньше регистрируется ненужных данных, тем быстрее и проще транспортное средство 10 может быть локализовано внутри окружающей среды 12.

Если скорость транспортного средства не постоянная, то она предпочтительно регистрируется с помощью соответствующего датчика, например, с применением датчика, регистрирующего число оборотов колес транспортного средства. Актуально зарегистрированная скорость транспортного средства учитывается затем при локализации транспортного средства 10.


СПОСОБ АВТОНОМНОЙ ЛОКАЛИЗАЦИИ САМОХОДНОГО МОТОРИЗОВАННОГО ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ АВТОНОМНОЙ ЛОКАЛИЗАЦИИ САМОХОДНОГО МОТОРИЗОВАННОГО ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ АВТОНОМНОЙ ЛОКАЛИЗАЦИИ САМОХОДНОГО МОТОРИЗОВАННОГО ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ АВТОНОМНОЙ ЛОКАЛИЗАЦИИ САМОХОДНОГО МОТОРИЗОВАННОГО ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ АВТОНОМНОЙ ЛОКАЛИЗАЦИИ САМОХОДНОГО МОТОРИЗОВАННОГО ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ АВТОНОМНОЙ ЛОКАЛИЗАЦИИ САМОХОДНОГО МОТОРИЗОВАННОГО ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ АВТОНОМНОЙ ЛОКАЛИЗАЦИИ САМОХОДНОГО МОТОРИЗОВАННОГО ТРАНСПОРТНОГО СРЕДСТВА
СПОСОБ АВТОНОМНОЙ ЛОКАЛИЗАЦИИ САМОХОДНОГО МОТОРИЗОВАННОГО ТРАНСПОРТНОГО СРЕДСТВА
Источник поступления информации: Роспатент

Showing 551-560 of 1,427 items.
10.04.2016
№216.015.2e54

Избирательное управление двигателем переменного тока или двигателем постоянного тока

Изобретение относится к области электротехники и может быть использовано для управления приводами, используемыми на подводных лодках. Техническим результатом является обеспечение возможности избирательного управления двигателями переменного или постоянного тока. В устройстве (1) для...
Тип: Изобретение
Номер охранного документа: 0002579439
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e6b

Газовая турбина и способ балансировки вращающейся части газовой турбины

Газовая турбина содержит систему балансировки вращающейся части, включающую балансировочный весовой элемент и крепежный элемент. Балансировочный весовой элемент выполнен с первым и вторым отверстиями, при этом первое и второе отверстия выполнены с возможностью съемной установки крепежного...
Тип: Изобретение
Номер охранного документа: 0002579613
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2eb0

Способ и блок управления для распознавания манипуляций в сети транспортного средства

Изобретение относится к контролю информационной безопасности. Технический результат - обеспечение безопасности сети транспортного средства. Способ распознавания манипулирования в по меньшей мере одной сети транспортного средства транспортного средства, имеющий следующие этапы: определение...
Тип: Изобретение
Номер охранного документа: 0002580790
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2ecd

Усилительное устройство для управляемого возврата мощности потерь

Изобретение относится к усилительным устройствам и может быть использовано в мощных передатчиках. Достигаемый технический результат - уменьшение модуляционных нелинейностей и уменьшение нелинейных искажений. Усилительное устройство для начального сигнала (s), имеющего начальную частоту (f),...
Тип: Изобретение
Номер охранного документа: 0002580025
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30a5

Электростатический инжектор частиц для высокочастотного ускорителя заряженных частиц

Изобретение относится к области ускорительной техники. На входе первого объемного резонатора предусмотрен электрод, который подключен к источнику постоянного напряжения и на основе которого формируется потенциальная яма, которая обуславливает ускорение частиц, испускаемых источником ионов, к...
Тип: Изобретение
Номер охранного документа: 0002580950
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.32d0

Пробоотборное устройство для отбора проб капель и газа в узких каналах газовой турбины или любого другого устройства с масляным сапуном

Группа изобретений относится к области техники измерения выбросов от газовых турбинных двигателей в целях соблюдения государственных и региональных стандартов окружающей среды. Аналитическое устройство (100) для анализа состава текучей среды, такой как масляный туман, газовой турбины содержит...
Тип: Изобретение
Номер охранного документа: 0002581086
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.368c

Газовая турбина и способ изготовления такой газовой турбины

Газовая турбина содержит устройство с внешним и внутренним корпусами и уплотнительным кольцом, а также дополнительное устройство с дополнительным внутренним и дополнительным внешним корпусами. Внешний и внутренний корпуса устройства расположены с образованием между ними канала охлаждения....
Тип: Изобретение
Номер охранного документа: 0002581287
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.372c

Способ изготовления турбинного диска и турбина

Турбина включает турбинный диск и другую турбинную часть, между которыми образована полость. Турбинный диск содержит первый и второй выступы. Первый и второй выступы образованы так, что обеспечивается возможность закрепления балансировочного грузика между первым выступом и вторым выступом....
Тип: Изобретение
Номер охранного документа: 0002581296
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37e3

Миниатюрная магнитная проточная цитометрия

Группа изобретений относится к области магнитного обнаружения клеток, а именно к магнитной проточной цитометрии. Устройство для магнитной проточной цитометрии включает в себя магниторезестивный датчик, проточную камеру, которая предназначена для прохождения потока клеточной суспензии, и участок...
Тип: Изобретение
Номер охранного документа: 0002582391
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.384a

Усовершенствованная группа отверстий футеровок камеры сгорания газотурбинного двигателя с низкими динамикой горения и выделениями

Камера сгорания для газовой турбины содержит внутренний корпус и наружный корпус. Внутренний корпус содержит внутренний стеночный элемент, который содержит группу первых отверстий и группу вторых отверстий. Внутренний стеночный элемент охватывает объем горения камеры сгорания. Группа первых...
Тип: Изобретение
Номер охранного документа: 0002582378
Дата охранного документа: 27.04.2016
Showing 551-560 of 944 items.
10.03.2016
№216.014.cc21

Ключный замок и устройство с ключным замком

Изобретение относится к ключному замку и применяется в технике безопасности на железнодорожном транспорте для предохранения обслуживаемых вручную переводных элементов. Ключный замок содержит коммуникационное устройство для беспроводного соединения с постом централизации. Для автономного...
Тип: Изобретение
Номер охранного документа: 0002577160
Дата охранного документа: 10.03.2016
20.03.2016
№216.014.cc39

Лопатка для турбомашины и турбомашина, содержащая такую лопатку.

Лопатка для турбомашины, в частности газовой турбины, расположена на турбинном роторе и содержит перо и хвостовую часть, выполненные за одно целое с лопаткой, проход для подачи охлаждающего воздуха в хвостовой части для направления охлаждающего воздуха в охладитель и отвод охлаждающего воздуха,...
Тип: Изобретение
Номер охранного документа: 0002577688
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.cc9b

Электрическая машина с замкнутым, автономным контуром охлаждающей среды

Изобретение касается электрической машины с жидкостным охлаждением. Технический результат - повышение эффективности охлаждения. Электрическая машина имеет основное тело, роторный вал и теплообменник. В основном теле, содержащем статор, расположены охлаждающие каналы для жидкой охлаждающей...
Тип: Изобретение
Номер охранного документа: 0002577773
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.cd5f

Лопатка газовой турбины

Лопатка газовой турбины содержит хвостовик и перо лопатки с входной и выходной кромками и вершиной, систему каналов для охлаждающего воздуха, простирающихся от отверстия для охлаждающего воздуха в хвостовике посредством извилистого змеевидного канала к расположенному в зоне выходной кромки...
Тип: Изобретение
Номер охранного документа: 0002575842
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cd66

Способ компьютерного моделирования технической системы

Изобретение относится к области компьютерного моделирования технических систем. Технический результат - обеспечение более точного и надежного прогнозирования рабочих параметров за счет применения нейронной сети при моделировании. Способ для компьютерного моделирования технической системы, при...
Тип: Изобретение
Номер охранного документа: 0002575417
Дата охранного документа: 20.02.2016
27.02.2016
№216.014.cdb9

Разрядник защиты от перенапряжений с растяжимой манжетой

Разрядник (1) защиты от перенапряжений с колонкой варисторных элементов содержит растяжимую манжету (8) для размещения натяжных элементов (4) и фиксации их в радиальном направлении. Форма манжеты предусматривает заданные зоны деформации, за счет чего при неисправности и перегрузке манжета (8)...
Тип: Изобретение
Номер охранного документа: 0002575917
Дата охранного документа: 27.02.2016
20.02.2016
№216.014.cdfd

Сопловая лопатка с охлаждаемой платформой для газовой турбины

Узел платформы для поддержки сопловой лопатки для газовой турбины содержит поверхность прохождения газа, расположенную так, чтобы контактировать с потоковым рабочим газом, по меньшей мере, один охлаждающий канал. Охлаждающий канал имеет форму для направления охлаждающей текучей среды в...
Тип: Изобретение
Номер охранного документа: 0002575260
Дата охранного документа: 20.02.2016
10.02.2016
№216.014.cead

Устройство для монтажа и демонтажа конструктивного элемента стационарной газовой турбины, стационарная газовая турбина и способ монтажа и демонтажа конструктивного элемента стационарной газовой турбины

Изобретение относится к способу и устройству для монтажа и демонтажа конструктивного элемента в виде горелки или переходной трубы газовой турбины на стационарной газовой турбине. Устройство содержит двухколейную рельсовую систему, по которой передвигается рамная тележка, несущий узел для...
Тип: Изобретение
Номер охранного документа: 0002575109
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.cf3d

Способ компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора

Изобретение относится к способу компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора. Управляемая данными модель обучается предпочтительно в областях тренировочных данных с низкой плотностью. Оценщик плотности выдает для наборов...
Тип: Изобретение
Номер охранного документа: 0002575328
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cf4e

Способ для динамической авторизации мобильного коммуникационного устройства

Изобретение относится к области технического обслуживания. Технический результат - ограничение открытого доступа к сетям с обслуживаемыми установками. Способ для динамической авторизации мобильного коммуникационного устройства для сети, при котором ассоциированный с коммуникационным устройством...
Тип: Изобретение
Номер охранного документа: 0002575400
Дата охранного документа: 20.02.2016
+ добавить свой РИД