×
10.04.2016
216.015.2dd1

Результат интеллектуальной деятельности: ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ

Вид РИД

Изобретение

№ охранного документа
0002579145
Дата охранного документа
10.04.2016
Аннотация: Изобретение относится к жидкому электролиту для вторичного аккумулятора, включающему смесь двух солей, растворенных в органическом растворителе. При этом первая соль содержит катион металла, совпадающий с материалом анода, и анион, выбранный из группы: , TFSI, BOB, , I, Br, , , а вторая соль с концентрацией 0,001-2 М содержит катион, выбранный из группы: ТМА, ТЕА, ТВА, ТРеА и анион, выбранный из группы: , TFSI, BOB, , I, Br, , . Также изобретение относится к аккумулятору. Использование настоящего изобретения позволяет увеличить емкость и срок службы аккумулятора. 2 н. и 5 з.п. ф-лы, 8 ил., 1 табл., 5 пр.

Область техники

Изобретение относится к неводному жидкому электролиту для вторичных аккумуляторов и к аккумулятору с металлическим анодом, содержащему жидкий неводный электролит.

Уровень техники

Из уровня техники (ЕР 1173899 А1, 23.01.2002) известен неводный жидкий электролит для литиевых аккумуляторов, содержащий соль лития - LiClO4, LiPF6 и др., растворенную в растворителе- органические карбонаты, эфиры и др.

Такие электролиты стабильны до 4-4,5 В и обладают проводимостью по литию порядка 10-2-10-3 См/см. Тем не менее, образование дендритов при перезаряде аккумулятора приводит к деградации его емкости и сокращению срока службы.

Наиболее близким аналогом заявленного изобретения является неводный жидкий электролит, раскрытый в US 2013/0202920 А1, 08.08.2013. Для снижения дендритообразования электролит содержит смесь двух растворов солей: LiPF6 и CsPF6.

Недостатками данного технического решения являются:

- Невысокая емкость аккумулятора - менее 250 мАч/г;

- потеря емкости составляет до 40% за 100 циклов перезарядки;

- растворимость CsPF6 в апротонных растворителях невысока, что не позволяет повышать равномерность осаждения лития за счет дальнейшего увеличения его концентрации в электролите;

- при повышении концентрации CsPF6 потенциал осаждения цезия из раствора приближается к потенциалу осаждения лития, что может привести к осаждению цезия и снижению кулоновской эффективности переосаждения.

Раскрытие изобретения

Задача предлагаемого технического решения состоит в разработке электролита для вторичных аккумуляторов, эффективно подавляющего образование дендритов и увеличивающего кулоновскую эффективность перезаряда.

Техническим результатом изобретения является увеличение емкости и срока службы аккумулятора за счет электролита, способствующего снижению дендритообразования и увеличению кулоновской эффективности перезаряда.

Данный технический результат достигается за счет того, что в отличие от известного электролита, содержащего смесь растворов двух солей, в предложенном жидком электролите для вторичного аккумулятора содержится смесь двух солей, растворенных в органическом растворителе, при этом первая соль содержит катион металла, совпадающий с материалом анода, и анион, выбранный из группы: , TFSl-, BOB-, , I-, Br-, , , а вторая соль содержит катион, выбранный из группы: тетраметиламмоний (ТМА+), тетраэтиламмоний (ТЕА+), тетрабутиламмоний (ТВА+), тетрапентиламмоний (ТРеА+), и анион, выбранный из группы: перхлорат ( ), бис-трифторметилсульфонилимид (TFSl-), бис-оксалатоборат (BOB-), трифторметансульфонат ( ), иодид (I-), бромид (Br-), гексафторфосфат ( ), тетрафторборат ( ).

Катион металла первой соли выбран из группы: Li+, Na+, K+, Mg2+, Са2+, Zn2+, Al3+, Fe2+.

Концентрация первой соли в растворе составляет 0,01-2 М.

Концентрация второй соли в растворе составляет 0,001-2 М.

В качестве растворителя используют выбранные из группы: пропиленкарбонат, этиленкарбонат, бутиленкарбонат, диметилкарбонат, этилметилкарбонат, диэтилкарбонат, 1,2-диметоксиэтан, 1,3-диоксолан, тетрагидрофуран, диметиловый эфир диэтиленгликоля, диметиловый эфир триэтиленгликоля, дибутиловый эфир диэтиленгликоля, диметилсульфоксид, гексафторфосфат 1-этил-3-метилимидазолия, тетрафторборат 1-этил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-этил-3-метилимидазолия, гексафторфосфат 1-бутил-3-метилимидазолия, бис-трифторметилсульфонилимид 1-бутил-3-метилимидазолия, гексафторфосфат 1-метил-1-пропилпиперидиния, бис-трифторметилсульфонилимид 1-метил-1-пропил пиперидиния или их различные смеси, при их различном соотношении в смеси.

Кроме того, данный технический результат достигается за счет того, что вторичный аккумулятор содержит металлический анод, катод и раскрытый выше жидкий электролит.

Материал анода включает металл, выбранный из группы: Li, Na, K, Mg, Са, Zn, Al, Fe.

Материал катода выбран из группы: ацетиленовая сажа, графен, углеродные нанотрубки, оксиды переходных металлов, соединения со структурой перовскита, оливина или шпинели.

Краткое описание чертежей

Фиг. 1 - Циклические вольтамперограммы электрохимической ячейки с электролитом, содержащим 1 М LiClO4 и 1 М TBAClO4 в пропиленкарбонате.

Фиг. 2 - Циклические вольтамперограммы электрохимической ячейки с электролитом, содержащим 1 М LiClO4 и 1 М TBAClO4 в тетрагидрофуране.

Фиг. 3 - Циклические вольтамперограммы электрохимической ячейки с электролитом, содержащим 1 М LiClO4 в растворителе, содержащем пропиленкарбонат и диметоксиэтан в соотношении 7:3 по объему, соответственно.

Фиг. 4 - Циклические вольтамперограммы электрохимической ячейки с электролитом, содержащим 1 М концентрации NaBF4 и 0,5 М концентрации TPeAPF6 в растворителе, содержащем пропиленкарбонат и диметоксиэтан в соотношении 7:1 по объему, соответственно.

Фиг. 5 - Циклические вольтамперограммы электрохимической ячейки с электролитом, содержащим 0,01 М концентрации Mg(BF4)2 и 0,001 М концентрации TMAPF6 в растворителе, содержащем пропиленкарбонат, дибутиловый эфир диэтиленгликоля и диметоксиэтан в соотношении 5:3:1 по объему, соответственно.

Фиг. 6 - Фотографии поверхности металлического лития после перезаряда в пропиленкарбонате с добавлением различных солей.

Фиг. 7 - Фотографии поверхности металлического натрия до и после осаждения натрия (до и после перезаряда) в электролите, содержащем 1 М концентрации NaBF4 и 0,5 М концентрации TPeAPF6 в растворителе, содержащем пропиленкарбонат и диметоксиэтан в соотношении 7:1 по объему, соответственно.

Фиг. 8 - Фотографии поверхности металлического магния до и после осаждения магния (до и после перезаряда) в электролите, содержащем 0,01 М концентрации Mg(BF4)2 и 0,001 М концентрации TMAPF6 в растворителе, содержащем пропиленкарбонат, дибутиловый эфир диэтиленгликоля и диметоксиэтан в соотношении 5:3:1 по объему соответственно.

Осуществление изобретения

Жидкий электролит для вторичного аккумулятора включает смесь двух солей, растворенных в органическом растворителе. При этом первая соль с концентрацией 0,01-2 М в растворе содержит катион металла, совпадающий с материалом анода, и анион, выбранный из группы: , TFSl-, BOB-, , I-, Br-, , , а вторая соль с концентрацией 0,001-2 М в растворе содержит катион, выбранный из группы: ТМА+, ТЕА+, ТВА+, ТРеА+ и анион, выбранный из группы: , TFSl-, BOB-, , I-, Br-, , . Как показали эксперименты, наличие в электролите первой соли обеспечивает необходимую величину проводимости электролита по ионам металла, а крупные органические катионы второй соли, электрохимически стабильные при потенциалах осаждения лития, обладают способностью экранировать электрическое поле вокруг островков осажденного лития, препятствуя росту дендритов и способствуя равномерному заполнению поверхности при осаждении.

При концентрации первой соли менее 0,01 М и более 2 М проводимость электролита по ионам металла будет слишком низкой, что приведет к ухудшению характеристик аккумулятора.

Концентрация второй соли 0,001-2 М обеспечивает получение первой соли в растворе с концентрацией 0,01-2 М, при этом концентрация второй соли менее 0,001 М приведет к ухудшению характеристик аккумулятора в связи с очень малым содержанием катионов (ТВА+ или др.) в электролите, а концентрация второй соли выше 2 М не позволит растворить необходимое количество первой соли, обеспечивающее в растворе концентрацию первой соли 0,01-2 М.

Аккумулятор содержит корпус, выполненный с возможностью размещения в нем катода и анода, находящихся на расстоянии друг от друга и помещенных в электролит, которым заполняют корпус аккумулятора.

Пример 1

Для получения необходимого объема неводного жидкого электролита растворяют порошки солей LiClO4 и TBAClO4 в пропиленкарбонате, с получением 1 М концентрации LiClO4 и 1 М концентрации TBAClO4 в растворе. Полученный электролит используют в аккумуляторе с анодом из металлического Li. Из фиг. 1, на которой изображена циклическая вольтамперограмма, видно, что при содержании в аккумуляторе электролита, содержащего вышеуказанные соли, указанные соли электрохимически стабильны при потенциалах осаждения металлического лития, что приводит к снижению образования побочных продуктов и дендритов в аккумуляторе, а следовательно, к увеличению емкости и количества циклов перезарядки аккумулятора. По сравнению с фиг. 3, на которой изображена циклическая вольтамперограмма для электролита с 1 М раствором LiClO4, добавление второй соли в электролит приводит к увеличению электрохимической стабильности. Из фиг. 2 видно, что даже при малых концентрациях в электролите вышеуказанные соли способствуют снижению дендритообразования, по сравнению с электролитами, содержащими другие соли.

Пример 2

Для получения необходимого объема неводного жидкого электролита растворяют порошки солей LiClO4 и TBAClO4 в тетрагидрофуране, с получением 1 М концентрации LiClO4 и 1 М концентрации TBAClO4 в растворе. Полученный электролит используют в аккумуляторе с анодом из металлического Li.

Из фиг. 2, на которой изображена циклическая вольтамперограмма, видно, что при содержании в аккумуляторе электролита, содержащего вышеуказанные соли, указанные соли электрохимически стабильны при потенциалах осаждения металлического лития, что приводит к снижению образования побочных продуктов и дендритов в аккумуляторе, а следовательно, к увеличению емкости и срока службы аккумулятора.

Пример 3

Для получения необходимого объема неводного жидкого электролита растворяют порошки солей NaBF4 и TPeAPF6 в растворителе, содержащем пропиленкарбонат и диметоксиэтан в соотношении 7:1 по объему, соответственно, с получением 1,5 М концентрации NaBF4 и 0,5 М концентрации TPeAPF6 в растворе. Полученный электролит используют в аккумуляторе с анодом из металлического Na.

Из фиг. 4, на которой изображена циклическая вольтамперограмма, видно, что при содержании в аккумуляторе электролита, содержащего вышеуказанные соли, указанные соли электрохимически стабильны при потенциалах осаждения металлического лития, что приводит к снижению образования побочных продуктов и дендритов в аккумуляторе, а следовательно, к увеличению емкости и количества циклов перезарядки аккумулятора. Из фиг. 7 видно, что использование в аккумуляторе электролита, содержащего вышеуказанные соли, способствует снижению дендритообразования.

Пример 4

Для получения необходимого объема неводного жидкого электролита растворяют порошки солей Mg(BF4)2 и TMAPF6 в растворителе, содержащем пропиленкарбонат, дибутиловый эфир диэтиленгликоля и диметоксиэтан в соотношении 5:3:1 по объему, соответственно, с получением 0,01 М концентрации Mg(BF4)2 и 0,001 М концентрации TMAPF6 в растворе. Полученный электролит используют в аккумуляторе с анодом из металлического Mg.

Из фиг. 5, на которой изображена циклическая вольтамперограмма, видно, что при содержании в аккумуляторе электролита, содержащего вышеуказанные соли, указанные соли электрохимически стабильны при потенциалах осаждения металлического лития, что приводит к снижению образование побочных продуктов и дендритов в аккумуляторе, а следовательно, к увеличению емкости и количества циклов перезарядки аккумулятора. Из фиг. 8 видно, что использование в аккумуляторе электролита, содержащего вышеуказанные соли, способствует снижению дендритообразования.

Пример 5

Аккумулятор с анодом из металлического Li, катодом из ацетиленовой сажи и электролитом, содержащим 1 М LiClO4 и 1 М TBAClO4 в пропиленкарбонате, работает следующим образом. При разряде аккумулятора литиевый анод растворяется с образованием ионов Li+, которые переходят в электролит, содержащий 1 М LiClO4 и 1 М TBAClO4 в пропиленкарбонате. За счет наличия в электролите соли LiClO4 ионы Li+ внедряются в структуру катодного материала с образованием литий-содержащих фаз. При заряде ионы Li+ выходят из структуры катодного материала, поступают в электролит и затем равномерно осаждаются в виде металла на поверхность анода. Соль TBAClO4 препятствует росту дендритов, способствуя равномерному заполнению поверхности анода при осаждении.

Таким образом, предлагаемое изобретение позволяет получить аккумулятор, имеющий более высокую емкость и количество циклов перезарядки аккумулятора.

Изобретение было раскрыто выше со ссылкой на конкретный вариант его осуществления. Для специалистов могут быть очевидны и иные варианты осуществления изобретения, не меняющие его сущности, как она раскрыта в настоящем описании. Соответственно, изобретение следует считать ограниченным по объему только нижеследующей формулой изобретения.

Me - Li+, Na+, K+, Mg+, Ca2+, Zn2+, Al3+, Fe2+.


ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
ЭЛЕКТРОЛИТ ДЛЯ ВТОРИЧНОГО АККУМУЛЯТОРА И АККУМУЛЯТОР С МЕТАЛЛИЧЕСКИМ АНОДОМ
Источник поступления информации: Роспатент

Showing 11-12 of 12 items.
25.08.2017
№217.015.caec

Электрохимическая ячейка для in situ спектроскопии

Изобретение относится к конструкции электрохимических ячеек для исследований электрохимических систем методами in situ спектроскопии и микроскопии. Герметичная электрохимическая ячейка состоит из содержащего сквозную полость для размещения электролита корпуса, рабочего электрода, по крайней...
Тип: Изобретение
Номер охранного документа: 0002620022
Дата охранного документа: 22.05.2017
26.08.2017
№217.015.e4da

Пористый литиевый анод

Изобретение относится к области создания отрицательных электродов (анодов) для литиевых вторичных химических источников тока (аккумуляторов). Пористый литиевый анод содержит токосъемник из металла, на поверхность которого нанесено многослойное покрытие, содержащее три слоя. Внутренний слой,...
Тип: Изобретение
Номер охранного документа: 0002626457
Дата охранного документа: 28.07.2017
Showing 11-17 of 17 items.
25.08.2017
№217.015.caec

Электрохимическая ячейка для in situ спектроскопии

Изобретение относится к конструкции электрохимических ячеек для исследований электрохимических систем методами in situ спектроскопии и микроскопии. Герметичная электрохимическая ячейка состоит из содержащего сквозную полость для размещения электролита корпуса, рабочего электрода, по крайней...
Тип: Изобретение
Номер охранного документа: 0002620022
Дата охранного документа: 22.05.2017
26.08.2017
№217.015.e4da

Пористый литиевый анод

Изобретение относится к области создания отрицательных электродов (анодов) для литиевых вторичных химических источников тока (аккумуляторов). Пористый литиевый анод содержит токосъемник из металла, на поверхность которого нанесено многослойное покрытие, содержащее три слоя. Внутренний слой,...
Тип: Изобретение
Номер охранного документа: 0002626457
Дата охранного документа: 28.07.2017
29.05.2018
№218.016.5517

Электрохимическая ячейка для рефлектометрических исследований

Использование: для исследования электрохимических систем методом нейтронного и рентгеновского рассеяния. Сущность изобретения заключается в том, что электрохимическая ячейка для исследований методами нейтронного и рентгеновского рассеяния содержит корпус, состоящий из двух частей, выполненных с...
Тип: Изобретение
Номер охранного документа: 0002654317
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5572

Электрохимическая ячейка с графеновым электродом для проведения in situ исследований электродных материалов и твердых или гелеобразных электролитов

Изобретение представляет собой электрохимическую ячейку для исследований электрохимических систем методами in situ спектроскопии и микроскопии. Электрохимическая ячейка для исследования твердых или гелеобразных диэлектрических материалов, обладающих ионной проводимостью, содержит токосъемники,...
Тип: Изобретение
Номер охранного документа: 0002654314
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5723

Способ получения наноструктурированного композитного материала для положительного электрода литий-серного аккумулятора, положительный электрод и литий-серная аккумуляторная батарея

Изобретение относится к химической и электротехнической промышленности и может быть использовано при изготовлении положительных электродов литий-серных аккумуляторов. Способ получения композиционного материала для формирования положительного электрода литий-серного аккумулятора, содержащего...
Тип: Изобретение
Номер охранного документа: 0002654856
Дата охранного документа: 23.05.2018
26.06.2019
№219.017.92bd

Электрохимическая ячейка для исследования электродных материалов методами спектроскопии поглощения рентгеновского излучения

Изобретение относится к области создания электрохимических ячеек для исследований химического состава и структуры электродных материалов методами спектроскопии поглощения рентгеновского излучения. Электрохимическая ячейка для исследований электродных материалов методом спектроскопии поглощения...
Тип: Изобретение
Номер охранного документа: 0002692407
Дата охранного документа: 24.06.2019
10.07.2019
№219.017.af20

Способ получения электропроводящей бумаги на основе нитевидных кристаллов ванадиевых бронз

Изобретение касается электропроводящей бумаги и способа ее получения (его варианта). Электропроводящая бумага состоит из нитевидных кристаллов состава BaVO длиной 0,5-3 мм и толщиной 0,1-10 мкм, переплетенных между собой в электропроводящую массу. Один из способов получения электропроводящей...
Тип: Изобретение
Номер охранного документа: 0002411319
Дата охранного документа: 10.02.2011
+ добавить свой РИД