×
10.04.2016
216.015.2cb4

Результат интеллектуальной деятельности: РАДИОВОЛНОВЫЙ ФАЗОВЫЙ СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

№ охранного документа
0002579173
Дата охранного документа
10.04.2016
Аннотация: Использование: для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Сущность изобретения заключается в том, что одновременно излучают электромагнитные волны с частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, после этого одновременно излучают электромагнитные волны с другой частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, толщину диэлектрической пластины определяют по фазам φ и φ. Технический результат: обеспечение возможности повышения точности измерения. 1 ил.
Основные результаты: Радиоволновый фазовый способ измерения толщины диэлектрических материалов, заключающийся в том, что одновременно излучают электромагнитные волны с частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, отличающееся тем, что после этого одновременно излучают электромагнитные волны с другой частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, толщину диэлектрической пластины определяют по фазам φ и φ.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов, таких как листовое стекло, полимерные и композитные материалы, защитные покрытия, в том числе и непосредственно во время технологического процесса изготовления.

Известны способы для дистанционного бесконтактного измерения толщины диэлектрических материалов, использующие фазовый метод измерения (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 34 с.).

Этот метод точнее амплитудного, поскольку не зависит от возможной нестабильности мощности СВЧ-генератора. Однако его реализация может приводить к большим погрешностям из-за необходимости постоянной подстройки нуля фазометра, которая возникает из-за того, что в производственных условиях расстояние до объекта измерения заранее точно не известно и кроме этого может меняться. Также на точность влияет вибрация прибора и технологической установки и перемещения контролируемого объекта.

Известно техническое решение - радиоволновый фазовый способ измерения толщины диэлектрических материалов, использующий многочастотный фазовый метод, по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 49-51 с.).

В данном способе формируются два измерительных канала за счет деления мощности на выходе СВЧ-генератора. Одна часть электромагнитных волн излучается в сторону поверхности диэлектрической пластины по нормали к ней напрямую, а другая часть предварительно преобразуется в умножителе частоты и тоже излучается в сторону поверхности диэлектрической пластины по нормали к ней. Сравнение фаз принимаемых отраженных волн осуществляется по отношению к опорному сигналу, частота которого получается путем соответствующего умножения частоты принятого антенной измерительного канала. Так как электрические длины распространения волны в измерительном и опорном канале равны друг другу, разность фаз между ними будет зависеть только от толщины диэлектрической пластины, вне зависимости от расстояния между ней и антеннами датчика. Благодаря этому снижается влияние на результат измерения перемещения контролируемого объекта относительно датчика, а также вибрации технологической установки.

Однако данный способ имеет существенный недостаток. Поскольку используется фазовый метод, то диапазон однозначного измерения толщины ограничен половиной длины волны электромагнитного колебания в материале, поделенной еще и на коэффициент умножения частоты k: где с - скорость света в вакууме, ε - относительная диэлектрическая проницаемость измеряемой пластины. Например, при F1=8 ГГц, k=4 м при диапазоне ε=1,1÷8. Это существенно снижает точность измерения при значительных изменениях в толщине пластины.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе для измерения толщины диэлектрических пластин достигается тем, что одновременно излучают электромагнитные волны с частотой F1 и частотой в k раз выше kF1 в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ1 между принимаемой волной с частотой kF1 и волной с частотой F1, предварительно умноженной на k, после этого одновременно излучают электромагнитные волны с другой частотой F2 и частотой в k раз выше kF2 в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ2 между принимаемой волной с частотой kF2 и волной с частотой F2, предварительно умноженной на k, толщину диэлектрической пластины определяют по фазам φ1 и φ2.

Предлагаемый способ поясняется работой устройства, структурная схема которого приведена на чертеже.

Устройство содержит СВЧ-генераторы - 1 и 2, переключатель - 3, делитель мощности - 4, первый циркулятор - 5, первую антенну - 6, первый умножитель частоты - 7, второй циркулятор - 8, вторую антенну - 9, второй умножитель частоты - 10, смеситель - 11, вычислительный блок - 12. Излучение антенн направлено по нормали к диэлектрической пластине 13.

Устройство работает следующим образом.

На первом этапе СВЧ-генератор 1 передает электромагнитные колебания с частотой F1 через переключатель 3, делитель мощности 4 и циркулятор 5 на антенну 6 и излучается по нормали к диэлектрической пластине 13. Принимаемая этой же антенной волна состоит из суммы двух волн, отраженных от передней и от задней поверхности диэлектрической пластины 13.

где τR=2R/c - время распространения электромагнитной волны до передней поверхности пластины и обратно; R - расстояние от антенны до пластины; c - скорость света в вакууме; A1 - амплитуда принимаемой волны от передней стороны пластины; - время распространения электромагнитной волны в пластине толщиной d и диэлектрической проницаемостью ε; A2 - амплитуда принимаемой волны от задней стороны пластины. После прохождения этой волны через циркулятор 5 и умножитель частоты 10 на вход смесителя 11 поступает сигнал:

где k - коэффициент умножения блока 7.

На второй вход смесителя 11 поступает сигнал, который от второго выхода делителя мощности 4 через умножитель частоты 7, циркулятор 8 и антенну 9 излучается по нормали к пластине 13, отражается от нее и возвращается обратно через эти же антенну и циркулятор:

Известно, что с ростом частоты СВЧ-генератора резко возрастает затухание в диэлектрических материалах. Это справедливо для частот, применяемых в радиолокации от 1,5÷2 ГГц и выше. При кратном повышении частоты затухание для многих практических материалов возрастает в десятки и сотни раз. Можно выбрать такую частоту F1 и коэффициент k, что в уравнении (3) в отличие от уравнения (2) можно пренебречь вторым слагаемым. В результате для смесителя 11 опорным будет сигнал B (см. формулу (2)), имеющий временную задержку τr.

На выходе смесителя 10 после перемножения сигналов A с B выделится и поступит на вход вычислительного блока 12 фазовый сигнал φ1, зависящий лишь от времени распространения электромагнитной волны в диэлектрической пластине и не зависящий от расстояния R:

Поскольку то через фазу этого сигнала можно выразить толщину пластины:

С учетом того, что измеряемая фаза повторяется через период 2π, диапазон однозначного измерения толщины составит или

где λ1=c/kF1 - длина волны электромагнитного колебания, N - целое число полуволн укладывающееся на расстоянии толщины диэлектрической пластины. Эта измеряемая величина не будет зависеть от расстояния между антеннами и пластиной, поскольку время распространения τR учитывается в опорном канале смесителя.

После вычисления и запоминания фазы φ1 в вычислительном блоке 12 на следующем этапе измерений с этого блока подается сигнал на переключатель 3, в результате чего электромагнитные колебания от генератора 2 с частотой F2 через переключатель 3, делитель мощности 4 и циркулятор 5 поступают на антенну 6 и излучается по нормали к диэлектрической пластине 13. Далее, согласно описанному выше процессу, получим в вычислительном блоке 12 фазу φ2. В результате можно записать соотношение:

где λ2=c/kF2 - длина волны электромагнитного колебания, N - то же самое целое число полуволн укладывающееся на расстоянии толщины диэлектрической пластины при соблюдении некоторого условия, описанного ниже.

Из уравнений (4) и (5) следует, что а толщина диэлектрической пластины равна:

Диапазон однозначного определения толщины будет зависеть от разности частот kF1 и kF2. Если максимальная толщина измеряемых диэлектрических пластин равна dm, что и является критерием однозначности, то в этом случае имеем:

Тогда отсюда:

Так, например, при F1=8 ГГц, F2=7,9 ГГц, k=4 будем иметь k(F1-F2)=0,4 ГГц, а диапазон однозначного определения толщины dm согласно формуле (7) будет равен

Вычисление толщины по формуле (6) с учетом ограничения (7) производится в вычислительном блоке 12, затем цикл измерения повторяется.

Таким образом, предлагаемый способ по сравнению с прототипом приобрел новое свойство - высокую точность определения толщин плоских диэлектрических материалов при значительно увеличенном пределе однозначности.

Радиоволновый фазовый способ измерения толщины диэлектрических материалов, заключающийся в том, что одновременно излучают электромагнитные волны с частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, отличающееся тем, что после этого одновременно излучают электромагнитные волны с другой частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, толщину диэлектрической пластины определяют по фазам φ и φ.
РАДИОВОЛНОВЫЙ ФАЗОВЫЙ СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Showing 251-260 of 276 items.
18.12.2019
№219.017.ee63

Привязной коптер

Изобретение относится к области авиации, в частности к авиационным системам передачи информации с помощью летательных аппаратов. Привязной коптер содержит каркас с размещенными на нем электродвигателями с автоматами перекоса винтов, системой управления с гироскопом и радиоэлектронной...
Тип: Изобретение
Номер охранного документа: 0002709083
Дата охранного документа: 13.12.2019
21.01.2020
№220.017.f789

Устройство для электропитания привязного летательного аппарата

Устройство для электропитания привязного летательного аппарата содержит источник электроэнергии и наземный преобразователь, размещенные на наземном объекте, размещенные на борту летательного аппарата бортовой преобразователь и резервную аккумуляторную батарею, кабель-трос. Наземный...
Тип: Изобретение
Номер охранного документа: 0002711325
Дата охранного документа: 16.01.2020
08.02.2020
№220.018.006c

Автономный необитаемый подводный аппарат-амфибия

Изобретение относится к области подводной робототехники, в частности к автономным необитаемым подводным аппаратам (АНПА), и может быть применено в разного рода операциях и исследованиях под водой, на водной поверхности и на суше. Автономный необитаемый подводный аппарат-амфибия содержит корпус...
Тип: Изобретение
Номер охранного документа: 0002713494
Дата охранного документа: 06.02.2020
02.03.2020
№220.018.07b7

Способ непрерывной высотной телекоммутационной связи

Изобретение относится к области передачи информации с помощью высотной телекоммутационной связи. Технический результат состоит в обеспечении непрерывной высотной телекоммутационной связи без ограничения высоты подъема воздушной высотной платформы. Для этого способ формирования беспроводных...
Тип: Изобретение
Номер охранного документа: 0002715420
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.07d1

Свч - мостовой измеритель температуры

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. Заявлен СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты,...
Тип: Изобретение
Номер охранного документа: 0002715496
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0827

Инвертирующий масштабный усилитель с регулируемой степенью

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования инвертирующего усилителя на операционных усилителях с ограниченными частотными свойствами за счет...
Тип: Изобретение
Номер охранного документа: 0002715471
Дата охранного документа: 28.02.2020
04.03.2020
№220.018.085f

Устройство для внутрипластового горения

Изобретение относится к устройствам для извлечения смеси углеводородов, в частности смеси тяжелых углеводородов, из подземного пласта путем внутрипластового горения. Устройство для внутрипластового горения содержит измельчитель алюминиевой стружки, сепаратор и датчик температуры, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002715572
Дата охранного документа: 02.03.2020
14.05.2020
№220.018.1c54

Способ организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного р-ичного гиперкуба

Изобретение относится к способу организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного p-ичного гиперкуба для многопроцессорных систем с сотнями абонентов-процессоров. Техническим результатом изобретения является повышение отказоустойчивости системной сети,...
Тип: Изобретение
Номер охранного документа: 0002720553
Дата охранного документа: 12.05.2020
15.07.2020
№220.018.3249

Способ определения покомпонентного расхода газожидкостной среды

Изобретение относится к измерительной технике и может использоваться для контроля расхода и определения массы компонента газожидкостной среды (ГЖС), извлекаемой, например, из буровой скважины. Способ определения покомпонентного расхода газожидкостной среды характеризуется тем, что периодически...
Тип: Изобретение
Номер охранного документа: 0002726304
Дата охранного документа: 13.07.2020
15.07.2020
№220.018.3295

Устройство для диагностики состояния высоковольтных изоляторов

Изобретение относится к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных изоляторов. Технический результат: упрощение процесса диагностики. Сущность: устройство для диагностики состояния высоковольтных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002726305
Дата охранного документа: 13.07.2020
Showing 181-181 of 181 items.
18.10.2019
№219.017.d7e6

Измеритель вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - увеличение точности измерения достигается тем, что устройство измерения перемещения...
Тип: Изобретение
Номер охранного документа: 0002703281
Дата охранного документа: 16.10.2019
+ добавить свой РИД