×
10.04.2016
216.015.2cb4

Результат интеллектуальной деятельности: РАДИОВОЛНОВЫЙ ФАЗОВЫЙ СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

№ охранного документа
0002579173
Дата охранного документа
10.04.2016
Аннотация: Использование: для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов. Сущность изобретения заключается в том, что одновременно излучают электромагнитные волны с частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, после этого одновременно излучают электромагнитные волны с другой частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, толщину диэлектрической пластины определяют по фазам φ и φ. Технический результат: обеспечение возможности повышения точности измерения. 1 ил.
Основные результаты: Радиоволновый фазовый способ измерения толщины диэлектрических материалов, заключающийся в том, что одновременно излучают электромагнитные волны с частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, отличающееся тем, что после этого одновременно излучают электромагнитные волны с другой частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, толщину диэлектрической пластины определяют по фазам φ и φ.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного и дистанционного определения толщины плоских диэлектрических материалов, таких как листовое стекло, полимерные и композитные материалы, защитные покрытия, в том числе и непосредственно во время технологического процесса изготовления.

Известны способы для дистанционного бесконтактного измерения толщины диэлектрических материалов, использующие фазовый метод измерения (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 34 с.).

Этот метод точнее амплитудного, поскольку не зависит от возможной нестабильности мощности СВЧ-генератора. Однако его реализация может приводить к большим погрешностям из-за необходимости постоянной подстройки нуля фазометра, которая возникает из-за того, что в производственных условиях расстояние до объекта измерения заранее точно не известно и кроме этого может меняться. Также на точность влияет вибрация прибора и технологической установки и перемещения контролируемого объекта.

Известно техническое решение - радиоволновый фазовый способ измерения толщины диэлектрических материалов, использующий многочастотный фазовый метод, по технической сущности наиболее близкое к предлагаемому способу и принятое в качестве прототипа (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989, 49-51 с.).

В данном способе формируются два измерительных канала за счет деления мощности на выходе СВЧ-генератора. Одна часть электромагнитных волн излучается в сторону поверхности диэлектрической пластины по нормали к ней напрямую, а другая часть предварительно преобразуется в умножителе частоты и тоже излучается в сторону поверхности диэлектрической пластины по нормали к ней. Сравнение фаз принимаемых отраженных волн осуществляется по отношению к опорному сигналу, частота которого получается путем соответствующего умножения частоты принятого антенной измерительного канала. Так как электрические длины распространения волны в измерительном и опорном канале равны друг другу, разность фаз между ними будет зависеть только от толщины диэлектрической пластины, вне зависимости от расстояния между ней и антеннами датчика. Благодаря этому снижается влияние на результат измерения перемещения контролируемого объекта относительно датчика, а также вибрации технологической установки.

Однако данный способ имеет существенный недостаток. Поскольку используется фазовый метод, то диапазон однозначного измерения толщины ограничен половиной длины волны электромагнитного колебания в материале, поделенной еще и на коэффициент умножения частоты k: где с - скорость света в вакууме, ε - относительная диэлектрическая проницаемость измеряемой пластины. Например, при F1=8 ГГц, k=4 м при диапазоне ε=1,1÷8. Это существенно снижает точность измерения при значительных изменениях в толщине пластины.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат в предлагаемом способе для измерения толщины диэлектрических пластин достигается тем, что одновременно излучают электромагнитные волны с частотой F1 и частотой в k раз выше kF1 в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ1 между принимаемой волной с частотой kF1 и волной с частотой F1, предварительно умноженной на k, после этого одновременно излучают электромагнитные волны с другой частотой F2 и частотой в k раз выше kF2 в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ2 между принимаемой волной с частотой kF2 и волной с частотой F2, предварительно умноженной на k, толщину диэлектрической пластины определяют по фазам φ1 и φ2.

Предлагаемый способ поясняется работой устройства, структурная схема которого приведена на чертеже.

Устройство содержит СВЧ-генераторы - 1 и 2, переключатель - 3, делитель мощности - 4, первый циркулятор - 5, первую антенну - 6, первый умножитель частоты - 7, второй циркулятор - 8, вторую антенну - 9, второй умножитель частоты - 10, смеситель - 11, вычислительный блок - 12. Излучение антенн направлено по нормали к диэлектрической пластине 13.

Устройство работает следующим образом.

На первом этапе СВЧ-генератор 1 передает электромагнитные колебания с частотой F1 через переключатель 3, делитель мощности 4 и циркулятор 5 на антенну 6 и излучается по нормали к диэлектрической пластине 13. Принимаемая этой же антенной волна состоит из суммы двух волн, отраженных от передней и от задней поверхности диэлектрической пластины 13.

где τR=2R/c - время распространения электромагнитной волны до передней поверхности пластины и обратно; R - расстояние от антенны до пластины; c - скорость света в вакууме; A1 - амплитуда принимаемой волны от передней стороны пластины; - время распространения электромагнитной волны в пластине толщиной d и диэлектрической проницаемостью ε; A2 - амплитуда принимаемой волны от задней стороны пластины. После прохождения этой волны через циркулятор 5 и умножитель частоты 10 на вход смесителя 11 поступает сигнал:

где k - коэффициент умножения блока 7.

На второй вход смесителя 11 поступает сигнал, который от второго выхода делителя мощности 4 через умножитель частоты 7, циркулятор 8 и антенну 9 излучается по нормали к пластине 13, отражается от нее и возвращается обратно через эти же антенну и циркулятор:

Известно, что с ростом частоты СВЧ-генератора резко возрастает затухание в диэлектрических материалах. Это справедливо для частот, применяемых в радиолокации от 1,5÷2 ГГц и выше. При кратном повышении частоты затухание для многих практических материалов возрастает в десятки и сотни раз. Можно выбрать такую частоту F1 и коэффициент k, что в уравнении (3) в отличие от уравнения (2) можно пренебречь вторым слагаемым. В результате для смесителя 11 опорным будет сигнал B (см. формулу (2)), имеющий временную задержку τr.

На выходе смесителя 10 после перемножения сигналов A с B выделится и поступит на вход вычислительного блока 12 фазовый сигнал φ1, зависящий лишь от времени распространения электромагнитной волны в диэлектрической пластине и не зависящий от расстояния R:

Поскольку то через фазу этого сигнала можно выразить толщину пластины:

С учетом того, что измеряемая фаза повторяется через период 2π, диапазон однозначного измерения толщины составит или

где λ1=c/kF1 - длина волны электромагнитного колебания, N - целое число полуволн укладывающееся на расстоянии толщины диэлектрической пластины. Эта измеряемая величина не будет зависеть от расстояния между антеннами и пластиной, поскольку время распространения τR учитывается в опорном канале смесителя.

После вычисления и запоминания фазы φ1 в вычислительном блоке 12 на следующем этапе измерений с этого блока подается сигнал на переключатель 3, в результате чего электромагнитные колебания от генератора 2 с частотой F2 через переключатель 3, делитель мощности 4 и циркулятор 5 поступают на антенну 6 и излучается по нормали к диэлектрической пластине 13. Далее, согласно описанному выше процессу, получим в вычислительном блоке 12 фазу φ2. В результате можно записать соотношение:

где λ2=c/kF2 - длина волны электромагнитного колебания, N - то же самое целое число полуволн укладывающееся на расстоянии толщины диэлектрической пластины при соблюдении некоторого условия, описанного ниже.

Из уравнений (4) и (5) следует, что а толщина диэлектрической пластины равна:

Диапазон однозначного определения толщины будет зависеть от разности частот kF1 и kF2. Если максимальная толщина измеряемых диэлектрических пластин равна dm, что и является критерием однозначности, то в этом случае имеем:

Тогда отсюда:

Так, например, при F1=8 ГГц, F2=7,9 ГГц, k=4 будем иметь k(F1-F2)=0,4 ГГц, а диапазон однозначного определения толщины dm согласно формуле (7) будет равен

Вычисление толщины по формуле (6) с учетом ограничения (7) производится в вычислительном блоке 12, затем цикл измерения повторяется.

Таким образом, предлагаемый способ по сравнению с прототипом приобрел новое свойство - высокую точность определения толщин плоских диэлектрических материалов при значительно увеличенном пределе однозначности.

Радиоволновый фазовый способ измерения толщины диэлектрических материалов, заключающийся в том, что одновременно излучают электромагнитные волны с частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, отличающееся тем, что после этого одновременно излучают электромагнитные волны с другой частотой F и частотой в k раз выше kF в сторону поверхности диэлектрической пластины по нормали к ней, принимают отраженные волны, вычисляют разность фаз φ между принимаемой волной с частотой kF и волной с частотой F, предварительно умноженной на k, толщину диэлектрической пластины определяют по фазам φ и φ.
РАДИОВОЛНОВЫЙ ФАЗОВЫЙ СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Showing 151-160 of 276 items.
29.12.2017
№217.015.f863

Способ определения концентрации компонента в двухкомпонентной газовой смеси

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в...
Тип: Изобретение
Номер охранного документа: 0002639740
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00b8

Пьезоэлектрический подводный движитель

Изобретение относится к области приводов и может быть использовано для приведения в движение небольших подводных объектов. Пьезоэлектрический подводный движитель содержит пьезоэлектрические элементы с обратным пьезоэффектом плоской формы в виде мембран, который обеспечивает изгиб мембран в две...
Тип: Изобретение
Номер охранного документа: 0002629736
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0ba6

Привязной тепловой аэростат с подогревом по электрическому кабелю с земли

Изобретение относится к области воздухоплавательных аппаратов легче воздуха. Привязной тепловой аэростат содержит оболочку с теплоизолирующим слоем, нагреватель с вентилятором, датчиками температуры, электрически управляемый клапан сброса теплого воздуха в верхней части оболочки и систему...
Тип: Изобретение
Номер охранного документа: 0002632551
Дата охранного документа: 05.10.2017
20.01.2018
№218.016.1123

Устройство анализа результатов тестирования для локализации двукратных неисправностей

Изобретение относится к области тестирования дискретных объектов большой размерности. Технический результат заключается в повышении кратности неисправностей при их локализации. Устройство анализа результатов тестирования для локализации двукратных неисправностей содержит m m-разрядных...
Тип: Изобретение
Номер охранного документа: 0002633908
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1153

Способ встречного разгона и столкновения нейтральных микрочастиц

Изобретение относится к способам встречного разгона нейтральных микрочастиц. При вращении ротора 1 внутри неподвижного статора 8, 10 исследуемые образцы (жидкость или газ) поступают во входные окна 18 и затем проходят через зазоры, образованные зубцами статора 10 и ротора 7. При этом движение...
Тип: Изобретение
Номер охранного документа: 0002633964
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.115d

Устройство для встречного разгона нейтральных микрочастиц

Изобретение относится к устройствам для встречного разгона нейтральных микрочастиц. Устройство содержит систему управления и состоит из коаксиально установленных двух ускорителей, направленных суженной стороной навстречу друг другу, с зазором и вращающихся относительно друг друга ротора 1 и...
Тип: Изобретение
Номер охранного документа: 0002633994
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1166

Способ перистальтического нагнетания текучих сред на основе пьезоэлектрических элементов

Изобретение относится к способам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. В способе нагнетания текучих сред используют бегущую волну деформаций замкнутого объема...
Тип: Изобретение
Номер охранного документа: 0002633975
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1aee

Устройство для распознавания степени научности опубликованных построений

Изобретение относится к вычислительной технике и может быть использовано для распознавания степени научности опубликованных построений (ОП) в случаях необходимости определения ненаучного, протонаучного и научного исследования. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002635882
Дата охранного документа: 16.11.2017
Showing 151-160 of 181 items.
29.12.2017
№217.015.f863

Способ определения концентрации компонента в двухкомпонентной газовой смеси

Предлагаемый способ относится к области информационно-измерительной техники и может быть использован для предотвращения пожаров на объектах энергетики и других отраслей промышленности. Предложен способ определения концентрации компонента в двухкомпонентной газовой смеси, помещенной в...
Тип: Изобретение
Номер охранного документа: 0002639740
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.00ab

Способ измерения уровня вещества в емкости

Изобретение может быть использовано для измерения уровня различных веществ в емкостях, в частности уровня жидкого металла в технологических емкостях металлургического производства. Техническим результатом настоящего изобретения является повышение быстродействия и точности измерения. Способ...
Тип: Изобретение
Номер охранного документа: 0002629706
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00b8

Пьезоэлектрический подводный движитель

Изобретение относится к области приводов и может быть использовано для приведения в движение небольших подводных объектов. Пьезоэлектрический подводный движитель содержит пьезоэлектрические элементы с обратным пьезоэффектом плоской формы в виде мембран, который обеспечивает изгиб мембран в две...
Тип: Изобретение
Номер охранного документа: 0002629736
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0ba6

Привязной тепловой аэростат с подогревом по электрическому кабелю с земли

Изобретение относится к области воздухоплавательных аппаратов легче воздуха. Привязной тепловой аэростат содержит оболочку с теплоизолирующим слоем, нагреватель с вентилятором, датчиками температуры, электрически управляемый клапан сброса теплого воздуха в верхней части оболочки и систему...
Тип: Изобретение
Номер охранного документа: 0002632551
Дата охранного документа: 05.10.2017
20.01.2018
№218.016.1123

Устройство анализа результатов тестирования для локализации двукратных неисправностей

Изобретение относится к области тестирования дискретных объектов большой размерности. Технический результат заключается в повышении кратности неисправностей при их локализации. Устройство анализа результатов тестирования для локализации двукратных неисправностей содержит m m-разрядных...
Тип: Изобретение
Номер охранного документа: 0002633908
Дата охранного документа: 19.10.2017
20.01.2018
№218.016.1153

Способ встречного разгона и столкновения нейтральных микрочастиц

Изобретение относится к способам встречного разгона нейтральных микрочастиц. При вращении ротора 1 внутри неподвижного статора 8, 10 исследуемые образцы (жидкость или газ) поступают во входные окна 18 и затем проходят через зазоры, образованные зубцами статора 10 и ротора 7. При этом движение...
Тип: Изобретение
Номер охранного документа: 0002633964
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.115d

Устройство для встречного разгона нейтральных микрочастиц

Изобретение относится к устройствам для встречного разгона нейтральных микрочастиц. Устройство содержит систему управления и состоит из коаксиально установленных двух ускорителей, направленных суженной стороной навстречу друг другу, с зазором и вращающихся относительно друг друга ротора 1 и...
Тип: Изобретение
Номер охранного документа: 0002633994
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1166

Способ перистальтического нагнетания текучих сред на основе пьезоэлектрических элементов

Изобретение относится к способам для нагнетания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. В способе нагнетания текучих сред используют бегущую волну деформаций замкнутого объема...
Тип: Изобретение
Номер охранного документа: 0002633975
Дата охранного документа: 20.10.2017
20.01.2018
№218.016.118c

Устройство для измерения физических свойств вещества в потоке

Использование: для контроля потоков неоднородных диэлектрических веществ. Сущность изобретения заключатся в том, что устройство для измерения физических свойств вещества в потоке содержит на измерительном участке волноводный резонатор, через сквозные отверстия в противоположных торцах которого...
Тип: Изобретение
Номер охранного документа: 0002634090
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1aee

Устройство для распознавания степени научности опубликованных построений

Изобретение относится к вычислительной технике и может быть использовано для распознавания степени научности опубликованных построений (ОП) в случаях необходимости определения ненаучного, протонаучного и научного исследования. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002635882
Дата охранного документа: 16.11.2017
+ добавить свой РИД