×
10.04.2016
216.015.2c52

СПОСОБ АКУСТИЧЕСКОГО КАРОТАЖА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики шумового акустического сигнала, излучаемого в массив. Способ включает возбуждение в скважине акустического сигнала и прием его после прохождения исследуемого участка околоскважинного массива в двух точках, расположенных симметрично выше и ниже точки излучения, измерении и совместной обработке параметров принятых сигналов. При этом возбуждают сигнал в виде стационарного случайного шума со средним равным нулю. Осуществляют его прием в точках, лежащих от точки излучения на расстоянии, не превышающем 0,3 радиуса корреляции излученного сигнала в ненарушенной горной породе. Измеряют коэффициент взаимной корреляции сигналов в точках приема и интервалы автокорреляции этих сигналов. При этом по коэффициенту взаимной корреляции судят о наличии и степени трещиноватости околоскважинного массива между точками приема, а по соотношению измеренных интервалов корреляции судят о расположении трещиноватой зоны относительно точки приема. Технический результат - повышение точности получаемых данных. 6 ил.
Основные результаты: Способ акустического каротажа, заключающийся в возбуждении в скважине акустического сигнала и приеме его после прохождения исследуемого участка околоскважинного массива в двух точках, расположенных симметрично выше и ниже точки излучения, измерении и совместной обработке параметров принятых сигналов, отличающийся тем, что возбуждают сигнал в виде стационарного случайного шума со средним равным нулю, осуществляют его прием в точках, лежащих от точки излучения на расстоянии, не превышающем 0,3 радиуса корреляции излученного сигнала в ненарушенной горной породе, измеряют коэффициент взаимной корреляции сигналов в точках приема и интервалы автокорреляции этих сигналов, при этом по коэффициенту взаимной корреляции судят о наличии и степени трещиноватости околоскважинного массива между точками приема, а по соотношению измеренных интервалов корреляции судят о расположении трещиноватой зоны относительно точки приема.
Реферат Свернуть Развернуть

Изобретение относится к геофизическим способам исследования околоскважинного пространства массива горных пород, преимущественно к акустическим способам выявления пересекаемых скважиной трещиноватых зон в породах кровли горных выработок.

Известен способ акустического каротажа, заключающийся в размещении в скважине трубки из хрупкого материала, жестко связанной со стенками скважины с помощью цементного раствора, непрерывном перемещении внутри трубки скважинного зонда, излучении и приеме с его помощью импульсных упругих колебаний, по изменению характеристик которых вдоль длины трубки судят о наличии и местоположении расслоений в прискважинной области массива [1] (Авторское свидетельство СССР №996972, кл. G01V 1/40, опубл. в БИ №6, 15.02.1983).

Недостатком известного способа является его низкая чувствительность по отношению к выявляемым расслоениям, раскрытие которых не меняется или мало меняется во времени. Это связано с тем, что такие расслоения не приводят к возникновению трещин в хрупком материале помещаемой в скважину трубки и, как следствие, значимым изменениям акустических характеристик принятого акустического сигнала, который распространяется преимущественно по стенкам трубки.

Известен способ акустического каротажа, заключающийся в возбуждении в скважине акустического сигнала и приеме его после прохождения исследуемого участка околоскважинного массива в двух точках, расположенных симметрично выше и ниже точки излучения, измерении и совместной обработке параметров принятых сигналов [2] (Авторское свидетельство СССР №437036, кл. G01V 1/40, опубл. в БИ №27, 25.07.1974).

В указанном способе осуществляют регистрацию двумя приемными преобразователями сигналов, отраженных от неоднородностей массива, вычитание этих сигналов и регистрацию разностного сигнала в виде зависимости времени прихода от глубины скважины.

Недостатком известного способа является невозможность с его помощью выявлять наличие и местоположение зон трещиноватости массива, пересекаемого скважиной, и степь трещиноватости горных пород в этих зонах.

Техническим результатом предлагаемого способа явится обеспечение возможности выявления наличия и местоположения зон трещиноватости массива, пересекаемого скважиной и степени трещиноватости горных пород в этих зонах.

Для достижения указанного технического результата в способе акустического каротажа, заключающемся в возбуждении в скважине акустического сигнала и приеме его после прохождения исследуемого участка околоскважинного массива в двух точках, расположенных симметрично выше и ниже точки излучения, измерении и совместной обработке параметров принятых сигналов, возбуждают сигнал в виде стационарного случайного шума со средним равным нулю, осуществляют его прием в точках, лежащих от точки излучения на расстоянии, не превышающем 0,3 радиуса корреляции излученного сигнала в ненарушенной горной породе, измеряют коэффициент взаимной корреляции сигналов в точках приема и интервалы автокорреляции этих сигналов, при этом по коэффициенту взаимной корреляции судят о наличии и степени трещиноватости околоскважинного массива между точками приема, а по отношению измеренных интервалов автокорреляции судят о расположении трещиноватой зоны относительно точки излучения.

При использовании шумового акустического сигнала необходимо учитывать следующие его особенности: случайная природа подобного сигнала позволяет в значительной степени избежать резонансных и интерференционных искажений, присущих периодическим сигналам; среднее значение шумового сигнала, равное нулю, обеспечивает величину коэффициента корреляции R=0 при некоррелированности исследуемых сигналов; стационарность процесса позволяет отказаться от жестких требований к времени интегрирования в корреляторе приемного устройства.

Предлагаемый способ базируется на установленных экспериментально и на основе компьютерного моделирования закономерностях изменения корреляционных характеристик шумового стационарного акустического сигнала со средним равным нулю при его распространении между точкой излучения и двумя симметричными точками приема в геосреде, содержащей и не содержащей зоны повышенной трещиноватости. Суть этих закономерностей заключается в следующем.

Во-первых, при распространении указанных сигналов в каждом конкретном типе горной породы, не содержащей зон повышенной трещиноватости, существует свой характерный радиус корреляции r. Это расстояние l, в пределах которого зарегистрированные акустические сигналы от одного источника коррелированы между собой (т.е. их коэффициент взаимной корреляции R>0,1), а при l>r эти сигналы независимы друг от друга и для них R<0,1. Учитывая природную неоднородность свойств однотипных горных пород даже при отсутствии в них зон повышенной трещиноватости, два сигнала могут быть независимы друг от друга уже на расстоянии 0,6 r. Таким образом, взаимные корреляционные измерения сигналов в двух точках приема, симметричных относительно точки излучения, имеют смысл только при условии, что они лежат от точки излучения на расстоянии l≤0,3 r.

Во-вторых, наличие зоны и степень трещиноватости горных пород между точками приема влияют на коэффициент R взаимной корреляции между зарегистрированными в этих точках сигналами. Если при отсутствии трещиноватости R→1, то с ее увеличением трещиноватость уменьшает взаимосвязь сигналов, зарегистрированных в точках приема. Физически это влияние вполне понятно, если учесть, что трещиноватость приводит как к уменьшению величины r, так и к различному изменению амплитудных, частотных и фазовых характеристик сигналов, регистрируемых в двух точках приема.

В-третьих, интервалы автокорреляции сигналов в точках приема тем меньше, чем больше нарушен трещиноватостью участок массива между точкой излучения и соответствующей точкой приема, а значит соотношение между указанными интервалами несет информацию о том, к какой из точек приема находится ближе трещиноватая зона.

Способ акустического каротажа иллюстрируется фиг. 1 - фиг. 6, где: на фиг. 1 представлена схема расположения ультразвукового зонда на глубине скважины H1 однородного массива, не содержащего зоны трещиноватости, пересекаемой скважиной; на фиг. 2 - схема расположения ультразвукового зонда на глубине Н2 массива, содержащего трещиноватую зону между точкой излучения и верхней точкой приема шумового акустического сигнала; на фиг. 3 - схема расположения ультразвукового зонда на глубине Н3 массива, содержащего трещиноватую зону, расположенную на одинаковом расстоянии от точек приема шумового акустического сигнала; на фиг. 4 - схема расположения ультразвукового зонда на глубине Н4 массива, содержащего трещиноватую зону, расположенную между точкой излучения и нижней точкой приема шумового акустического сигнала; на фиг. 5 - результаты измерения коэффициента R взаимной корреляции шумовых акустических сигналов в точках приема, а на фиг. 6 - отношения интервалов автокорреляции этих сигналов при расположении ультразвукового зонда на глубинах Н1, Н2, Н3 и Н4 соответственно.

Схемы, представленные на фиг. 1-4, включают скважину 1, в которой размещен ультразвуковой зонд 2, который дискретно перемещают в глубину скважины 1. Ультразвуковой зонд 2 содержит излучающий акустический преобразователь 3, верхний приемный акустический преобразователь 4, а также нижний приемный акустический преобразователь 5. Излучающий акустический преобразователь 3 подключен к выходу генератора 6 шумового стационарного сигнала со средним равным нулю. Верхний приемный акустический преобразователь 4 и нижний приемный акустический преобразователь 5 подключены ко входам корреляционного анализатора 7. Излучающий акустический преобразователь 3 контактирует со стенкой скважины 1 в точке 8 излучения, верхний приемный акустический преобразователь 4 - в точке 9 приема и нижний приемный акустический преобразователь 5 - в точке 10 приема. Точки 9, 10 приема симметричны относительно точки 8 излучения и находятся от нее на расстоянии, не превышающем 0,3 радиуса r корреляции излученного шумового акустического сигнала.

Результаты измерения коэффициентов R взаимной корреляции, принимаемых шумовых акустических сигналов на фиг. 5, представлены: значением 12 этого коэффициента, полученного на глубине H1 расположения ультразвукового зонда 2 в скважине 1; значением 13, полученным на глубине Н2 расположения зонда 2 в скважине 1; значением 14, полученным на глубине Н3 расположения зонда 2 в скважине 1; значением 15, полученным на глубине Н4 расположения зонда 2 в скважине 1.

Результаты измерения относительно интервала автокорреляции сигнала, принятого в верхней точке 9 приема, и интервала автокорреляции сигнала, принятого в нижней точке 10 приема, представлены на фиг. 6 значениями этого отношения: 16, которое соответствует глубине H1 расположения ультразвукового зонда 2 в скважине 1; 17, которое соответствует глубине Н2 расположения ультразвукового зонда 2 в скважине 1; 18, которое соответствует глубине Н3 расположения ультразвукового зонда 2 в скважине 1; 19, которое соответствует глубине Н4 расположения ультразвукового зонда 2 в скважине 1.

Способ акустического каротажа скважин осуществляют следующим образом.

В кровле горной выработки бурят измерительную скважину 1, в которую помещают ультразвуковой зонд 2, содержащий излучающий акустический преобразователь 3 и симметричные ему верхний приемный акустический преобразователь 4 и нижний приемный акустический преобразователь 5. Расстояние l между излучающим акустическим преобразователем 3 и каждым из приемных акустических преобразователей 4 и 5 изменяют так, чтобы выполнялось условие l≤0,3 r, где r - радиус корреляции излучаемого акустического сигнала в ненарушенной горной породе. Значение г получают на основе предварительных измерений на образцах соответствующих горных пород, не содержащих нарушений в виде трещин.

Излучающий акустический преобразователь 3 подключают к выходу генератора 6 стационарного электрического шумового сигнала со средним равным нуля, а приемные акустические преобразователи - к соответствующим входам корреляционного анализатора 7.

Ультразвуковой зонд 2 дискретно перемещают вглубь скважины 1 с шагом ΔН и на каждом шаге обеспечивают надежные контактные условия излучающего акустического преобразователя 3 в точке 8 излучения, верхнего приемного акустического преобразователя 4 - в точке 9 приема и нижнего приемного акустического преобразователя 5 - в точке 10 приема.

На каждой дискретной глубине Hi измерительной скважины 1, на которой акустические преобразователи 3, 4, 5 контактируют с ее стенкой, измеряют с помощью корреляционного анализатора 7 коэффициент R взаимной корреляции шумовых акустических сигналов в точках 9, 10 приема и интервалы автокорреляции и указанных сигналов в этих точках. Затем определяют отношение / интервалов корреляции шумовых акустических сигналов, измеренных в верхней точке 9 приема и в нижней точке 10 приема.

В случае, если на базе 2l между верхней точкой 9 приема и нижней точкой 10 приема массив горных пород не содержит трещиноватой зоны 11, пересекающей измерительную скважину 1 (см. фиг. 1), изменения характеристик сигналов в точках 9 и 10 приема будут примерно одинаковы и незначительны. Как следствие, коэффициент взаимной корреляции R этих сигналов будет стремиться к 1 (R→1), что отражено значением 12 на фиг. 5. По тем же причинам в точках 9,10 приема будут близки также интервалы и автокорреляции принятых акустических сигналов, а значит отношение интервалов автокорреляции этих сигналов ( / ) имеет значение 16 на фиг. 6, т.е. стремится к 1.

При наличии трещиноватой зоны 11 между верхней точкой 9 приема и точкой 8 излучения (см. фиг. 2) декорреляция акустического сигнала в точке 9 приема будет существенно больше, чем акустического сигнала, регистрируемого в точке 10 приема. В результате измеренные на глубине Н2 значение 13 величины R<<1 и значение 18 отношения ( / )<<1. Причем и R и / будут тем меньше, чем больше трещиноватость в зоне 11.

При наличии и симметричном расположении трещиноватой зоны 11 относительно точек 9 и 10 приема (см. фиг 3) изменения характеристик шумовых акустических сигналов, регистрируемых в этих точках, будут примерно одинаковы и, как следствие, измеренные на глубине Н3 значение 14 величины R и значение 18 отношения / будут близки к 1 (см. фиг. 5 и фиг. 6). Однако, поскольку абсолютная симметрия трещиноватой зоны 11 относительно точек 9 и 10 приема на практике маловероятна, значения 14 величины R и 18 отношения ( / ) будут все же несколько меньше, чем в случае полного отсутствия трещиноватой зоны (см. фиг. 1).

Для случая, представленного на фиг. 4, когда трещиноватая зона 11 находится между излучающим акустическим преобразователем 8 и нижним приемным акустическим преобразователем 10, декорреляция акустического сигнала в точке 10 приема будет существенно больше, чем в точке 9 приема. В результате, измеренные на глубине H4 значение 15 величины R<<1, а значение 19 отношения ( / )>1.

Описанный способ испытывался в лабораторных условиях. В кубическом блоке известняка со стороной 400 мм пробуривалось сквозное отверстие диаметром 42 мм. С помощью аппаратуры телевизионного каротажа производилось обследование стенок пробуренной скважины, которое показало, что на глубине 230 мм существует зона повышенной трещиноватости, пересекающая исследуемую скважину. Далее в скважину помещался каротажный зонд, состоящий из одного излучающего акустического преобразователя и двух размещенных на равном расстоянии по разные стороны от него приемных акустических преобразователей. Резонансная частота всех преобразователей составляла 150 кГц, добротность - 10. На вход излучающего преобразователя с шумового генератора ГШ-1 подавался электрический шумовой сигнал в полосе частот 10-500 кГц со средним равным нулю. Электрические сигналы с приемных акустических преобразователей поступали на двухканальный АЦП с частотой дискретизации 1 МГц, подключенный к персональному компьютеру, на котором программным путем вычислялись коэффициенты корреляции R и отношение интервалов автокорреляции / . Для вычисления радиуса корреляции r в блоке известняка производилось пошаговое увеличение расстояния l между излучающим и приемными акустическими преобразователями. Экспериментально установлено, что при достижении значением l величины в 180 мм коэффициент корреляции R падает ниже значения 0,1. Таким образом, для дальнейших исследований расстояние l было принято равным 50 мм.

Описанный каротажный зонд перемещался вглубь скважины так, чтобы при первом измерении трещиноватая зона оказалась вне каротажного зонда (см. фиг. 1), при втором - трещиноватая зона оказалась между верхним приемным преобразователем и излучателем (см. фиг. 2), при третьем - трещиноватая зона оказалась совмещена по координате с излучателем (см. фиг. 3), при четвертом - трещиноватая зона оказалась между излучателем и нижним приемным акустическим преобразователем (см. фиг. 4). В каждом из случаев производилось вычисление коэффициента корреляции R и отношения интервалов корреляции ( / ).

По результатам измерений было установлено, что для случая первого измерения R=0,86 и / =0,90, для второго случая R=0,23 и ( / )=0,31, для третьего случая R=0,71 и / =0,84, для последнего случая R=0,21 и / =1,48.

Таким образом, предложенный способ обеспечивает технический результат, заключающийся в обеспечении возможности выявления наличия и местоположения зон трещиноватости массива, пересекаемого скважиной, и степени трещиноватости горных пород в этих зонах.

Способ акустического каротажа, заключающийся в возбуждении в скважине акустического сигнала и приеме его после прохождения исследуемого участка околоскважинного массива в двух точках, расположенных симметрично выше и ниже точки излучения, измерении и совместной обработке параметров принятых сигналов, отличающийся тем, что возбуждают сигнал в виде стационарного случайного шума со средним равным нулю, осуществляют его прием в точках, лежащих от точки излучения на расстоянии, не превышающем 0,3 радиуса корреляции излученного сигнала в ненарушенной горной породе, измеряют коэффициент взаимной корреляции сигналов в точках приема и интервалы автокорреляции этих сигналов, при этом по коэффициенту взаимной корреляции судят о наличии и степени трещиноватости околоскважинного массива между точками приема, а по соотношению измеренных интервалов корреляции судят о расположении трещиноватой зоны относительно точки приема.
СПОСОБ АКУСТИЧЕСКОГО КАРОТАЖА
СПОСОБ АКУСТИЧЕСКОГО КАРОТАЖА
СПОСОБ АКУСТИЧЕСКОГО КАРОТАЖА
СПОСОБ АКУСТИЧЕСКОГО КАРОТАЖА
СПОСОБ АКУСТИЧЕСКОГО КАРОТАЖА
СПОСОБ АКУСТИЧЕСКОГО КАРОТАЖА
Источник поступления информации: Роспатент

Showing 11-20 of 331 items.
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
Showing 11-20 of 189 items.
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
+ добавить свой РИД