×
10.04.2016
216.015.2b80

Результат интеллектуальной деятельности: КВАНТРОН ТВЕРДОТЕЛЬНОГО ЛАЗЕРА С ТЕРМОСТАБИЛИЗАЦИЕЙ ДИОДНОЙ НАКАЧКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к лазерной технике. Квантрон твердотельного лазера с термостабилизацией диодной накачки содержит размещенные в корпусе в виде многогранника: активный элемент, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы. Квантрон снабжен световодами, расположенными параллельно оси активного элемента, контур охлаждения матриц содержит термоинтерфейс, теплоотводы и элементы термостабилизации, размещенные в теплообменном модуле и теплообменниках. В качестве элементов термостабилизации используются нагреватели и элементы охлаждения. Технический результат заключается в обеспечении возможности упрощения системы охлаждения активного элемента. 2 ил.
Основные результаты: Квантрон твердотельного лазера с термостабилизацией диодной накачки, содержащий размещенные в корпусе в виде многогранника: активный элемент в виде стержня, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно и обращенные излучающей областью к активному элементу, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы, трубка выполнена из материала, прозрачного для излучения накачки, отличающийся тем, что снабжен световодами, расположенными параллельно оси активного элемента на каждой грани выступов, размещенных на внутренней поверхности корпуса, торцы активного элемента закреплены в прижимах, установленных в корпусе, входной, выходной коллекторы расположены в прижимах и соединены с кольцевым каналом, контур охлаждения матриц содержит термоинтерфейс, теплоотводы и элементы термостабилизации, размещенные в теплообменном модуле и теплообменниках, каждый выступ содержит отражающую диаметральную поверхность, обращенную к активному элементу и расположенную напротив каждой матрицы, одна из которых расположена на переходнике, а остальные - на теплообменниках, установленных на внешней поверхности корпуса, переходник закреплен на теплообменном модуле, установленном на внешней поверхности корпуса, теплообменники и теплообменный модуль связаны с помощью теплоотводов, термоинтерфейс размещен в местах соединения теплоотводов с теплообменниками и теплообменным модулем, в соединении переходника с теплообменным модулем и с матрицей, а также в соединении матриц с теплообменниками, в качестве элементов термостабилизации используются нагреватели и элементы охлаждения, при этом элементы охлаждения установлены только в теплообменном модуле, а теплообменники, теплоотводы, интерфейс и теплообменный модуль выполнены из материалов с большим коэффициентом теплопроводности.

Изобретение относится к твердотельным лазерам с диодной накачкой, в частности к элементам накачки и системам их охлаждения, и может быть использовано при изготовлении лазерной техники.

Известна оптическая усилительная головка (ОУГ) с диодной накачкой, состоящая из размещенных в корпусе в виде многогранника: активного элемента (АЭ) в виде стержня, элементов диодной накачки, расположенных вдоль активного элемента, и системы охлаждения, содержащей трубку, охватывающую активный элемент с образованием кольцевого канала, и каналы, расположенные в корпусе. Элементы диодной накачки выполнены в виде блоков линеек лазерных диодов и расположены под углом 90° к оси активного элемента на держателях. В элементах диодной накачки расположены каналы для охлаждающей жидкости. Устройство снабжено демпфирующими элементами, установленными на обоих торцах трубки, в качестве демпфирующих элементов использованы прокладки (патент США №6101208, H01S 3/0941, 1997 г.).

В этом устройстве охлаждение АЭ и элементов диодной накачки происходит за счет высокой скорости потока охлаждающей жидкости. Поддержание постоянной температуры теплоносителя позволяет обеспечить работоспособность и высокую эффективность оптической усилительной головки.

Однако неравномерное и неполное заполнение излучением накачки АЭ приводит к увеличению термомеханических напряжений внутри АЭ, что может привести к его выходу из строя. Неравномерность освещения АЭ приводит также к снижению эффективности накачки и качества выходного лазерного пучка. Расположение каналов в элементах диодной накачки не оптимально, так как расстояние от элементов накачки до каналов не минимально, как следствие этого, падает эффективность отвода тепла с нагретой поверхности элементов накачки. Это может привести к снижению качества охлаждения элементов накачки и падению мощности выходного лазерного пучка.

Наиболее близким аналогом заявляемого изобретения, выбранным в качестве прототипа, является ОУГ с диодной накачкой, содержащая размещенные в корпусе в виде многогранника: АЭ в виде стержня, матрицы лазерных диодов (МЛД), расположенные вокруг и вдоль АЭ равномерно и обращенные излучающей областью к АЭ, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения АЭ и МЛД, контур охлаждения АЭ содержит трубку, охватывающую АЭ с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы, трубка выполнена из материала, прозрачного для излучения накачки (патент РФ №2498467, МПК H01S 3/0933, 3/042, опубл. 2013 г.). На обоих торцах трубки установлены демпфирующие элементы в виде сильфонов, МЛД расположены на держателях, размещенных на внешней поверхности каждой грани корпуса. ОУГ снабжена входным и выходным патрубками, соединенными с входным и выходным коллекторами, из которых выходят каналы, соединенные с каналами, выполненными в каждом держателе и МЛД. Контур охлаждения МЛД снабжен дополнительными входным и выходным патрубками.

Расположение МЛД равномерно вокруг АЭ позволяет равномерно заполнить АЭ излучением накачки, что уменьшает в нем термические напряжения, а также повышает эффективность накачки. Выполнение системы охлаждения из двух независимых контуров охлаждения позволяет независимо регулировать и поддерживать оптимальную температуру для МЛД и АЭ.

Однако ОУГ с двумя контурами охлаждения содержит большое число деталей, что существенно сказывается на массогабаритных характеристиках. Значительная часть излучения накачки не поглощается, т.к. диаметр АЭ меньше излучающей области МЛД, что снижает кпд доставки излучения накачки, а следовательно, и мощности лазерного излучения, а применение сильфонов в качестве демпфирующих элементов снижает прочность и устойчивость конструкции к ударным и вибрационным нагрузкам. А конструкция системы охлаждения не допускает эксплуатацию ОУГ в условиях климатических воздействий.

Задача, на решение которой направлено изобретение, - повышение эффективности накачки, оптимизация массогабаритных характеристик, системы охлаждения и термостабилизации, обеспечение жесткости конструкции, создание конструктивно обособленного и удобного при эксплуатации устройства, устойчивого к ударным, тепловым и вибрационным нагрузкам.

Технический результат, получаемый при использовании предлагаемого технического решения, - упрощение системы охлаждения активного элемента и термостабилизация элементов накачки, увеличение кпд и мощности излучения, обеспечение устойчивости конструкции к вибрационным, ударным и тепловым воздействиям.

Указанный технический результат достигается тем, что в квантроне твердотельного лазера с термостабилизацией диодной накачки, содержащем размещенные в корпусе в виде многогранника: активный элемент в виде стержня, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно и обращенные излучающей областью к активному элементу, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы, трубка выполнена из материала, прозрачного для излучения накачки, особенность заключается в том, что квантрон снабжен световодами, расположенными параллельно оси активного элемента на каждой грани выступов, размещенных на внутренней поверхности корпуса, торцы активного элемента закреплены в прижимах, установленных в корпусе, входной, выходной коллекторы расположены в прижимах и соединены с кольцевым каналом, контур охлаждения матриц содержит термоинтерфейс, теплоотводы и элементы термостабилизации, размещенные в теплообменном модуле и теплообменниках, каждый выступ содержит отражающую диаметральную поверхность, обращенную к активному элементу и расположенную напротив каждой матрицы, одна из которых расположена на переходнике, а остальные - на теплообменниках, установленных на внешней поверхности корпуса, переходник закреплен на теплообменном модуле, установленном на внешней поверхности корпуса, теплообменники и теплообменный модуль связаны с помощью теплоотводов, термоинтерфейс размещен в местах соединения теплоотводов с теплообменниками и теплообменным модулем, в соединении переходника с теплообменным модулем и с матрицей, а также в соединении матриц с теплообменниками, в качестве элементов термостабилизации используются нагреватели и элементы охлаждения, при этом элементы охлаждения установлены только в теплообменном модуле, а теплообменники, теплоотводы, интерфейс и теплообменный модуль выполнены из материалов с большим коэффициентом теплопроводности.

Совмещение в конструкции выступов корпуса функции контротражателя диодной накачки и световода, обеспечение контура охлаждения матриц элементами термостабилизации с теплоотводами, позволяющими охлаждать МЛД только одним теплообменным модулем, а также применение прижимов для уплотнения и центрирования АЭ в корпусе, позволяет упростить систему охлаждения АЭ и термостабилизации МЛД, а также увеличить кпд и мощность излучения, обеспечивая при этом устойчивость конструкции квантрона к вибрационным, ударным и тепловым воздействиям. Таким образом решили задачу повышения эффективности накачки, оптимизировали массогабаритные характеристики и систему охлаждения и термостабилизации, обеспечили жесткость конструкции квантрона и создали конструктивно обособленное и удобное при эксплуатации устройство, устойчивое к ударным, тепловым и вибрационным нагрузкам.

При проведении анализа уровня техники, включающего поиск по патентным и научно-техническим источникам информации, и выявлении источников, содержащих сведения об аналогах заявленного изобретения, не обнаружено аналогов, характеризующихся признаками, тождественными всем существенным признакам данного изобретения. Определение из перечня выявленных аналогов прототипа как наиболее близкого по совокупности существенных признаков аналога позволило выявить совокупность существенных отличительных признаков от прототипа, изложенных в формуле изобретения.

Следовательно, заявленное изобретение соответствует условию «новизна».

Для проверки соответствия заявленного изобретения условию «изобретательский уровень» заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного устройства. В результате поиска не выявлены технические решения с этими признаками. На этом основании можно сделать вывод о соответствии заявляемого изобретения условию «изобретательский уровень».

На фиг. 1 представлен продольный разрез квантрона.

На фиг. 2 - поперечный разрез квантрона.

Квантрон твердотельного лазера с термостабилизацией диодной накачки (фиг. 1, 2) содержит выполненный в виде многогранника (например, в виде шестигранника) корпус 1, в котором установлен активный элемент (АЭ) 2 в виде стержня, торцы которого закреплены в прижимах 3, 4, установленных в корпусе. Квантрон также содержит матрицы лазерных диодов (МЛД) 5, световоды 6 и систему охлаждения. МЛД 5 расположены вокруг и вдоль АЭ равномерно и обращены к АЭ излучающей областью.

На внутренней поверхности корпуса размещены выступы 7, на каждой грани которых параллельно оси АЭ расположены световоды 6 в виде плоских полированных металлических поверхностей. Угол β наклона металлических поверхностей световода 6 получается расчетным путем. Каждый выступ 7 содержит контротражатель 9 - отражающую диаметральную поверхность, обращенную к АЭ и расположенную напротив каждой матрицы.

Система охлаждения выполнена в виде двух независимых контуров для охлаждения АЭ и МЛД. Контур охлаждения АЭ содержит трубку 10, охватывающую АЭ с образованием кольцевого канала шириной δ, и размещенные в прижимах 3 входной и выходной коллекторы 11, из которых выходят каналы a. Входной и выходной коллекторы 11 соединены с кольцевым каналом δ, который формирует слой охлаждающей жидкости (ОЖ), охлаждающий АЭ и образован стенкой трубки 10 и АЭ 2.

Трубка 10 выполнена из материала, оптически прозрачного для излучения накачки (например, стекло, плавленый кварц, лейкосапфир и т.д.). Диаметр и толщина трубки 10 рассчитываются, исходя из требуемой фокусировки излучения накачки. Прижимы 3 применены - для герметизации трубки 10, а прижимы 4 для герметизации АЭ и центрирования его в корпусе квантрона относительно трубки 10.

Контур охлаждения матриц содержит термоинтерфейс 12, теплоотводы 13 и элементы термостабилизации 14, размещенные в отверстиях b и с теплообменного модуля 15 и теплообменников 16. В качестве элементов термостабилизации 14 используются нагреватели (в отверстиях b) и элементы охлаждения (в отверстиях с), при этом элементы охлаждения установлены только в теплообменном модуле 15. Теплоотводы 13 при необходимости могут быть заменены контурными либо пластинчатыми тепловыми трубами.

Одна из матриц расположена на переходнике 17, а остальные на теплообменниках 16, установленных на внешней поверхности корпуса. Переходник 17 закреплен на теплообменном модуле 15, который установлен на внешней поверхности корпуса, а теплообменники 16 и теплообменный модуль 15 связаны с помощью тееплоотводов 13. Термоинтерфейс 12 размещен в местах соединения теплоотводов 13 с теплообменниками 16 и теплообменным модулем 15, а также в соединении переходника 17 и теплообменного модуля 15. Термоинтерфейс 12 может быть выполнен, например из галия или галистана. Также термоинтерфейс 12 размещен в соединении переходника 17 с матрицей и в соединении матриц с теплообменниками 16 и может быть выполнен из низкотемпературного припоя (например, сплава Розе или Вуда).

В качестве материала для деталей, участвующих в теплообмене (теплообменники, теплоотводы, термоинтерфейс, теплообменный модуль), применены материалы с большим коэффициентом теплопроводности.

Устройство работает следующим образом. На МЛД 5 (фиг. 1, 2) подается ток накачки с заданной амплитудой, при этом возникает излучение накачки, проходящее сквозь трубку 10 и ОЖ кольцевого канала δ, при этом большая часть излучения поглощается АЭ 2, часть поглощенной энергии накачки идет на тепловые потери. Оставшаяся доля излучения, не поглотившаяся в АЭ на первом проходе, отражается от контротражателей 9 и вновь направляется в АЭ 2. Одновременно боковые лучи МЛД падают на световоды 8 и, многократно отразившись, направляются к АЭ 2.

Охлаждение АЭ 2 происходит либо прокачкой теплоносителя, либо стационарно следующим образом. ОЖ закачивается по каналу а прижима 3 (фиг. 1), поступает во входной коллектор 11, затем попадает в кольцевой канал шириной δ охлаждения АЭ 2. Поток ОЖ протекает вдоль всей поверхности АЭ и контактирует с ней. Таким образом происходит охлаждение кристалла АЭ. На выходе из кольцевого канала δ противоположного конца АЭ ОЖ в обратном порядке собирается в выходной коллектор 11, затем через каналы а прижима 3 выводится из квантрона либо герметизируется в нем.

Для обеспечения заданных режимов работы квантрона в заданных условиях эксплуатации может возникнуть необходимость термостабилизации МЛД. При этом обеспечение выхода на температурный рабочий режим элементов накачки обеспечивается следующим образом. Нагреватели, установленные в отверстиях b теплообменного модуля 15 и теплообменников 16 (фиг. 1. 2), повышают температуру МЛД 5 от исходной до температуры выхода на рабочий режим. Теплоотводы 13 обеспечивают сброс тепла, образованного внешними климатическими условиями эксплуатации и в процессе работы элементов накачки, с теплообменников 16 на корпус теплообменного модуля 15. Элементы охлаждения, установленные в отверстии с, обеспечивают отвод тепла на любую теплоотводящую поверхность, при этом термоинтерфейс 12 обеспечивает высокую теплопроводность между элементами конструкции, участвующими в теплообмене. Таким образом снижается температура матриц до рабочей и происходит термостабилизация элементов накачки.

Таким образом, представленные данные свидетельствуют о выполнении при использовании заявляемого изобретения следующей совокупности условии:

- средство, воплощающее заявленное устройство при его осуществлении, предназначено для использования в электронной и оптико-механической промышленности при изготовлении лазерных устройств с повышенной мощностью;

- для заявляемого устройства в том виде, в котором оно охарактеризовано в формуле изобретения, подтверждена возможность его осуществления.

Следовательно, заявляемое изобретение соответствует условию «промышленная применимость».

Квантрон твердотельного лазера с термостабилизацией диодной накачки, содержащий размещенные в корпусе в виде многогранника: активный элемент в виде стержня, матрицы лазерных диодов, расположенные вокруг и вдоль активного элемента равномерно и обращенные излучающей областью к активному элементу, и систему охлаждения, выполненную в виде двух независимых контуров для охлаждения активного элемента и матриц, контур охлаждения активного элемента содержит трубку, охватывающую активный элемент с образованием кольцевого канала шириной δ, и входной, выходной коллекторы, из которых выходят каналы, трубка выполнена из материала, прозрачного для излучения накачки, отличающийся тем, что снабжен световодами, расположенными параллельно оси активного элемента на каждой грани выступов, размещенных на внутренней поверхности корпуса, торцы активного элемента закреплены в прижимах, установленных в корпусе, входной, выходной коллекторы расположены в прижимах и соединены с кольцевым каналом, контур охлаждения матриц содержит термоинтерфейс, теплоотводы и элементы термостабилизации, размещенные в теплообменном модуле и теплообменниках, каждый выступ содержит отражающую диаметральную поверхность, обращенную к активному элементу и расположенную напротив каждой матрицы, одна из которых расположена на переходнике, а остальные - на теплообменниках, установленных на внешней поверхности корпуса, переходник закреплен на теплообменном модуле, установленном на внешней поверхности корпуса, теплообменники и теплообменный модуль связаны с помощью теплоотводов, термоинтерфейс размещен в местах соединения теплоотводов с теплообменниками и теплообменным модулем, в соединении переходника с теплообменным модулем и с матрицей, а также в соединении матриц с теплообменниками, в качестве элементов термостабилизации используются нагреватели и элементы охлаждения, при этом элементы охлаждения установлены только в теплообменном модуле, а теплообменники, теплоотводы, интерфейс и теплообменный модуль выполнены из материалов с большим коэффициентом теплопроводности.
КВАНТРОН ТВЕРДОТЕЛЬНОГО ЛАЗЕРА С ТЕРМОСТАБИЛИЗАЦИЕЙ ДИОДНОЙ НАКАЧКИ
КВАНТРОН ТВЕРДОТЕЛЬНОГО ЛАЗЕРА С ТЕРМОСТАБИЛИЗАЦИЕЙ ДИОДНОЙ НАКАЧКИ
КВАНТРОН ТВЕРДОТЕЛЬНОГО ЛАЗЕРА С ТЕРМОСТАБИЛИЗАЦИЕЙ ДИОДНОЙ НАКАЧКИ
Источник поступления информации: Роспатент

Showing 431-440 of 693 items.
07.06.2019
№219.017.7530

Способ получения пористого изделия из урана

Изобретение относится к изготовлению пористого изделия из урана. Способ включает загрузку исходного порошка гидрида урана в форму из водородостойкого материала, размещение формы в реакционной камере, вакуумирование и термическое разложение гидрида урана с последующим спеканием. Загрузку...
Тип: Изобретение
Номер охранного документа: 0002690764
Дата охранного документа: 05.06.2019
07.06.2019
№219.017.7561

Устройство уничтожения кристалла микросхемы памяти

Изобретение относится к области защиты конфиденциальной информации от несанкционированного доступа, а именно к устройствам уничтожения электронных носителей информации. Технический результат заключается в обеспечении надежного предотвращения доступа к носителю информации за счет экстренного...
Тип: Изобретение
Номер охранного документа: 0002690781
Дата охранного документа: 05.06.2019
08.06.2019
№219.017.7577

Способ измерения энергии сверхширокополосного электромагнитного излучения

Изобретение относится к области техники измерений характеристик сверхширокополосного (СШП) электромагнитного излучения (ЭМИ) и может быть использовано для оценки эффективности новых типов генераторов данного вида излучения. Технический результат - повышение точности измерения, а также...
Тип: Изобретение
Номер охранного документа: 0002690858
Дата охранного документа: 06.06.2019
09.06.2019
№219.017.7bec

Исполнительное коммутирующее устройство

Изобретение относится к исполнительным коммутирующим устройствам пороговых датчиков физических параметров для систем автоматики взрывоопасных технических объектов, которые могут подвергаться аварийным воздействиям. Техническим результатом является повышение безопасности, а именно сохранение...
Тип: Изобретение
Номер охранного документа: 0002367050
Дата охранного документа: 10.09.2009
09.06.2019
№219.017.7c1c

Устройство для хранения и выдачи предметов

Устройство предназначено для использования в охранных системах, для хранения в контейнерах предметов, например ключей, пропусков, носителей информации, денег, драгоценностей. Устройство содержит корпус с ячейками, в которые вставляются контейнеры для хранения предметов. Каждая ячейка содержит...
Тип: Изобретение
Номер охранного документа: 0002366789
Дата охранного документа: 10.09.2009
09.06.2019
№219.017.7f2d

Способ экспериментального определения динамического коэффициента внешнего трения

Изобретение относится к области механических испытаний материалов, в частности к определению динамического коэффициента трения при взаимном перемещении образцов. Сущность: определяют динамический коэффициент внешнего трения между двумя расположенными друг на друге и совершающими относительное...
Тип: Изобретение
Номер охранного документа: 0002444000
Дата охранного документа: 27.02.2012
09.06.2019
№219.017.7fb9

Способ изготовления композиционного термостойкого материала

Изобретение относится к области технологии изготовления термостойких материалов. Способ изготовления композиционного термостойкого материала заключается в приготовлении концентрата, в котором в качестве связующего используют эпоксикремнийорганическую смолу, изометилтетрагидрофталиевый ангидрид...
Тип: Изобретение
Номер охранного документа: 0002461587
Дата охранного документа: 20.09.2012
13.06.2019
№219.017.80e6

Аккумулятор давления

Изобретение относится к военной технике, а более конкретно к конструкции порохового аккумулятора давления, предназначенного для приведения в действие аэродинамических поверхностей летательных аппаратов. Аккумулятор давления состоит из последовательно расположенных в корпусе 1 воспламенителя 2,...
Тип: Изобретение
Номер охранного документа: 0002691267
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.80f5

Гидростатический включатель

Изобретение относится к области приборостроения, в частности для использования в системах автоматики технических объектов, имеющих в своем составе гидравлические системы или погружаемых в водную среду. Гидростатический включатель содержит корпус с закрепленной упругой мембраной,...
Тип: Изобретение
Номер охранного документа: 0002691158
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.811c

Способ автономной навигации маловысотных летательных аппаратов

Изобретение относится к области радиолокационной техники и может быть использовано при построении радиолокационных рельефометрических систем, предназначенных для определения местоположения летательных аппаратов в соответствии с корреляционно-экстремальным принципом навигации. Достигаемый...
Тип: Изобретение
Номер охранного документа: 0002691124
Дата охранного документа: 11.06.2019
Showing 261-261 of 261 items.
29.05.2018
№218.016.5700

Способ герметизации блока охлаждения активного элемента в твердотельном лазере

Изобретение относится к лазерной технике. Способ герметизации блока охлаждения активного элемента в твердотельном лазере включает два этапа: установку трубки для активного элемента и установку активного элемента в трубку, на первом этапе устанавливают трубку с прижимами и уплотнениями, на...
Тип: Изобретение
Номер охранного документа: 0002655045
Дата охранного документа: 23.05.2018
+ добавить свой РИД