×
27.02.2016
216.014.e8e4

Результат интеллектуальной деятельности: ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам обработки и коммутации СВЧ-сигналов на полупроводниковых приборах и предназначено для использования в телекоммуникационных системах, электрически управляемых устройствах СВЧ-электроники, таких как полосовые или селективные фильтры, антенны, перестраиваемые генераторы. Техническим результатом является создание волноводной СВЧ-структуры с электрически управляемыми характеристиками разрешенных и запрещенных зон при уменьшенных прямых потерях. Для этого в волноводную структуру с разрешенными и запрещенными зонами, содержащую диафрагму с рамочными элементами связи, расположенными по обе стороны диафрагмы, и полупроводниковый элемент с электрически управляемой проводимостью, введена по крайней мере в один рамочный элемент по крайней мере одна неоднородность типа «штырь с зазором», в зазор одной из которых помещен полупроводниковый элемент с электрически управляемой проводимостью. 5 ил.
Основные результаты: Array

Изобретение относится к устройствам обработки и коммутации СВЧ-сигналов на полупроводниковых приборах и предназначено для использования в телекоммуникационных системах, электрически управляемых устройствах СВЧ-электроники, таких как полосовые или селективные фильтры, антенны, перестраиваемые генераторы.

Известно устройство на основе диафрагмы и отрезков короткозамкнутых двухпроводных линий («Электроника СВЧ», №7, 1976 г., с.93-95), имеющее запрещенную и разрешенную зоны. Данное устройство может быть использовано в качестве широкополосного СВЧ-фильтра.

Однако данное устройство не может быть использовано в качестве перестраиваемого СВЧ-резонатора.

Известно устройство (см. патент РФ №2407114, МПК H01P1/00), представляющее собой отрезок волновода, содержащий частотно-селективный элемент и элемент для регулирования затухания. Частотно-селективный элемент выполнен в виде одномерного волноводного фотонного кристалла с нарушением периодичности в виде измененной толщины и/или диэлектрической проницаемости центрального слоя. После фотонного кристалла по направлению распространения электромагнитной волны включен элемент для регулирования затухания, выполненный в виде р-i-n-диодной структуры, подключенной к источнику питания с регулируемым напряжением. Выбором количества и параметров слоев в фотонном кристалле определяется ширина частотной области пропускания, выбором толщины или диэлектрической проницаемости достигается настройка центральной частоты этой области. Для реализации управления величиной пропускания в этой области используется р-i-n-диодная структура.

Однако данное устройство не позволяет осуществлять электрическую частотную перестройку резонансной моды колебаний (резонансной особенности).

Наиболее близким к предлагаемому решению является полупроводниковый СВЧ-модулятор с рамочным элементом связи («Электроника СВЧ», сер.1, №1, 1975 г., с.35-37), представляющий собой отрезок прямоугольного волновода, перегороженный диафрагмой с отверстием, в которое помещена полупроводниковая управляющая структура, например p-i-n-диод или диод с точечным контактом металл-полупроводник. По обе стороны диафрагмы располагаются рамочные элементы связи, соединенные с полупроводниковой управляющей структурой. Плоскости рамок совпадают с E-плоскостью, проходящей через середину широкой стенки волновода.

Однако в данной конструкции реализуется только инверсный режим электрического переключения передаваемой мощности СВЧ-сигнала, отсутствует возможность селективного управления выходным сигналом и прямые потери составляют более 4 дБ.

Задачей настоящего изобретения является создание волноводной СВЧ-структуры с электрически управляемыми характеристиками разрешенных и запрещенных зон при уменьшенных прямых потерях.

Техническим результатом изобретения является снижение прямых потерь, а также расширение функциональных возможностей, связанных с:

- созданием в запрещенной (разрешенной) зоне резонансной моды колебаний (резонансной особенности);

- возможностью «электрического» управления резонансной модой колебаний.

Поставленная задача достигается тем, что в волноводной структуре с разрешенными и запрещенными зонами, содержащей диафрагму с рамочными элементами связи, расположенными по обе стороны диафрагмы, и полупроводниковый элемент с электрически управляемой проводимостью, согласно решению по крайней мере в один рамочный элемент введена по крайней мере одна неоднородность типа «штырь с зазором», в зазор одной из которых помещен полупроводниковый элемент с электрически управляемой проводимостью.

Сущность изобретения заключается в том, что:

- создание в запрещенной (разрешенной) зоне резонансной моды колебаний (резонансной особенности) обеспечивается введением неоднородностей типа «штырь с зазором» в структуру на основе диафрагмы и системы связанных рамочных элементов;

- управление резонансной особенностью осуществляется изменением величины тока, протекающего через полупроводниковую n-i-p-i-n-структуру, помещенную в зазор между штырем и рамочным элементом.

Оригинальность данного изобретения заключается в следующем:

- в качестве неоднородностей используются конструкции типа «штырь с зазором», изготовленные из медной проволоки диаметром 1 мм;

- в качестве управляющего элемента используется n-i-p-i-n-структура, помещенная в зазор между штырем и рамочным элементом.

Устройство поясняется чертежами:

на фиг. 1 представлен общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием запрещенной зоны;

на фиг. 2 а представлены амплитудно-частотные зависимости коэффициента отражения (кривая 1) и коэффициента прохождения (кривая 2) СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов, не содержащей неоднородности;

на фиг. 2 б представлены амплитудно-частотные зависимости коэффициента отражения (кривая 1) и коэффициента прохождения (кривая 2) СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов, содержащей неоднородности типа «штырь с зазором»;

на фиг. 3 представлены амплитудно-частотные характеристики коэффициента отражения вблизи пика пропускания запрещенной зоны СВЧ-элемента;

на фиг. 4 представлен общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием разрешенной зоны;

на фиг. 5 представлены амплитудно-частотные характеристики коэффициента прохождения исследуемого СВЧ-элемента в диапазоне частот 8-12 ГГц;

где

1 - отрезок волновода сечением 23 мм × 10 мм;

2 - металлическая диафрагма толщиной 0.3 мм;

3 - отверстие в диафрагме (диаметром 3.5 мм);

4 - рамочный элемент, изготовленный из медной проволоки диаметром 1 мм;

5 - неоднородность типа «штырь с зазором»;

6 - неоднородность типа «штырь с зазором»;

7 - неоднородность типа «штырь с зазором»;

8 - полупроводниковая n-i-p-i-n-структура;

9 - частотная зависимость коэффициента отражения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, не содержащей неоднородности;

10 - частотная зависимость коэффициента прохождения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, не содержащей неоднородности;

11 - частотная зависимость коэффициента отражения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, содержащей неоднородности типа «штырь с зазором»;

12 - частотная зависимость коэффициента прохождения волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, содержащей неоднородности типа «штырь с зазором»;

13 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=0 мА;

14 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=20 мА;

15 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=30 мА;

16 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=40 мА;

17 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=60 мА;

18 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=80 мА;

19 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=140 мА;

20 - амплитудно-частотная характеристика волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=320 мА;

21 - отрезок волновода сечением 23 мм × 10 мм;

22 - металлическая диафрагма толщиной 0.3 мм;

23 - отверстие в диафрагме (диаметром 3.5 мм);

24 - рамочный элемент, изготовленный из медной проволоки диаметром 1 мм;

25 - неоднородность типа «штырь с зазором»;

26 - полупроводниковая n-i-p-i-n-структура;

27 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I= 0 мА;

28 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=1 мА;

29 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=3 мА;

30 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=10 мА;

31 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=40 мА;

32 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=60 мА;

33 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=190 мА;

34 - амплитудно-частотная характеристика коэффициента прохождения вблизи пика запирания разрешенной зоны волноводной структуры с неоднородностью типа «штырь с зазором» и полупроводниковой n-i-p-i-n-структурой, для значения протекающего через нее тока - I=300 мА.

Ниже представлен пример технической реализации волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием запрещенной зоны.

Общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием запрещенной зоны, представлен на фиг. 1.

В отрезке волновода 1 сечением 23 мм × 10 мм, перпендикулярно направлению распространения электромагнитного излучения, расположена металлическая диафрагма 2 толщиной 0.3 мм. Через отверстие 3 (диаметром 3.5 мм) в диафрагме 2 проходит рамочный элемент 4, изготовленный из медной проволоки диаметром 1 мм, обеспечивающий в определенном диапазоне частот передачу электромагнитного излучения из «одного» плеча волноведущей системы в «другое» и наоборот. Центр отверстия 3 находится на расстоянии 11.5 мм от узкой и 8.2 мм от широкой стенок волновода. Система связанных рамочных элементов 4 состоит из двух рамок, расположенных в волноводе по обе стороны от диафрагмы с отверстием, таким образом, что один конец рамок является общим, а свободные концы соединены с металлической мембраной 2. Размеры рамок определяют диапазоны частот (см. фиг. 2, а) разрешенных и запрещенных для передачи электромагнитного излучения через диафрагму.

Для создания запрещенной зоны размеры рамочных элементов выбирают кратными целому числу полуволн распространяющегося в волноводе электромагнитного излучения.

Для создания в запрещенной зоне исследуемой системы резонансной особенности в виде окна прозрачности (см. фиг. 2, б) вводятся неоднородности типа «штырь с зазором» (позиции 5-7 на фиг. 1), выполненные из медной проволоки диаметром 1 мм.

Контактные площадки прямоугольной формы, размером 2 мм × 1 мм каждая, напаивались на обе стороны зазора конструкции типа «штырь с зазором», расположенной на расстоянии 14 мм справа от плоскости диафрагмы. Полупроводниковая n-i-p-i-n-структура (позиция 8 на фиг. 1) механически зажималась между контактными площадками (см. фиг. 1). Подключение источника питания к n-i-p-i-n-структуре осуществлялось с помощью тонкого проволочного вывода через отверстие в узкой стенке волновода.

Высокочастотные характеристики исследуемого СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов исследовались с помощью векторного анализатора цепей Agilent PNA-L Network Analyzer N5230A.

На фиг. 3 представлены амплитудно-частотные характеристики коэффициента отражения вблизи пика пропускания запрещенной зоны СВЧ-элемента для такой конструкции.

Таким образом, полученные зависимости показывают возможность эффективного управления характеристиками резонансной особенности в запрещенной зоне исследуемой структуры с использованием n-i-p-i-n-структуры.

Рассмотрим пример технической реализации волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием разрешенной зоны.

Общий вид волноводной структуры на основе диафрагмы и системы связанных рамочных элементов, характеризующихся наличием разрешенной зоны, представлен на фиг. 4.

В отрезке волновода 21 сечением 23 мм × 10 мм, перпендикулярно направлению распространения электромагнитного излучения, расположена металлическая диафрагма 22 толщиной 0.3 мм. Через отверстие 23 (диаметром 3.5 мм) в диафрагме 22 проходит рамочный элемент 24, изготовленный из медной проволоки диаметром 1 мм, обеспечивающий в определенном диапазоне частот передачу электромагнитного излучения из «одного» плеча волноведущей системы в «другое» и наоборот. Центр отверстия 3 находится на расстоянии 11.5 мм от узкой и 8.2 мм от широкой стенок волновода. Система связанных рамочных элементов 24 состоит из двух рамок, расположенных в волноводе по обе стороны от диафрагмы с отверстием, таким образом, что один конец рамок является общим, а свободные концы соединены с металлической мембраной 22. Размеры рамок определяют диапазоны частот, разрешенных и запрещенных для передачи электромагнитного излучения через диафрагму.

Для создания разрешенной зоны размеры рамочных элементов выбирают кратными целому нечетному числу λ/4 распространяющегося в волноводе электромагнитного излучения.

Для создания в запрещенной зоне исследуемой системы резонансной особенности в виде окна прозрачности вводится неоднородность типа «штырь с зазором» (позиция 25 на фиг. 4), выполненная из медной проволоки диаметром 1 мм.

Контактные площадки прямоугольной формы, размером 2 мм × 1 мм каждая, напаивались на обе стороны зазора конструкции типа «штырь с зазором», расположенной на расстоянии 20 мм справа от плоскости диафрагмы. Полупроводниковая n-i-p-i-n-структура механически зажималась между контактными площадками (см. фиг.4). Подключение источника питания к n-i-p-i-n-структуре осуществлялось с помощью тонкого проволочного вывода через отверстие в узкой стенке волновода.

Высокочастотные характеристики исследуемого СВЧ-элемента на основе диафрагмы и системы связанных рамочных элементов исследовались с помощью векторного анализатора цепей Agilent PNA-L Network Analyzer N5230A.

Реализованная конструкция обеспечивает возникновение разрешенной зоны в диапазоне частот 8.67-11.12 ГГц.

На фиг. 5 представлены амплитудно-частотные характеристики коэффициента прохождения вблизи пика запирания разрешенной зоны исследуемого СВЧ-элемента для различных значений тока, протекающего через n-i-p-i-n-структуру.

На вставке фиг. 5 представлены амплитудно-частотные характеристики коэффициента прохождения исследуемого СВЧ-элемента в диапазоне частот 8-12 ГГц.

Как следует из полученных результатов, изменение величины протекающего тока от 0.0 до 300.0 мА при изменении напряжения смещения от 0.0 В до 0.9 В n-i-p-i-n-структуры приводит к изменению коэффициента прохождения от -25,0 дБ до -1,5 дБ на частоте 9.644 ГГц, при этом положение пика запирания изменялось от 10.079 ГГц до 9.644 ГГц.

Таким образом, из полученных результатов следует, что динамический диапазон изменения коэффициента пропускания на резонансной частоте составляет 23.5 дБ. Рассматриваемый диапазон изменения удельной электропроводности соответствует электрическим характеристикам n-i-p-i-n-структуры (типа 2А505), используемой в эксперименте.


ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ
ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ
ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ
ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ
ВОЛНОВОДНАЯ СТРУКТУРА С РАЗРЕШЕННЫМИ И ЗАПРЕЩЕННЫМИ ЗОНАМИ
Источник поступления информации: Роспатент

Showing 11-20 of 76 items.
27.06.2013
№216.012.4f3e

Способ измерения внутриглазного давления

Изобретение относится к области медицины, в частности к области офтальмологии для измерений внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером. Далее преобразуют отраженный сигнал в автодинный сигнал,...
Тип: Изобретение
Номер охранного документа: 0002485879
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5819

Устройство перестановок и сдвигов битов данных в микропроцессорах

Изобретение относится к средствам перестановок и сдвигов битов данных в микропроцессорах. Технический результат заключается в увеличении скорости выполнения операций. Устройство содержит n-разрядный вход данных X-X, n-разрядный выход данных Y-Y, n-разрядный вход битов маскирования F-F,...
Тип: Изобретение
Номер охранного документа: 0002488161
Дата охранного документа: 20.07.2013
10.09.2013
№216.012.690c

Миниатюрное устройство намагничивания и термостабилизации ферритовых свч резонаторов

Изобретение относится к радиотехнике и может быть использовано в интегральных СВЧ схемах, элементом которых является пленочный ферритовый резонатор. Технический результат состоит в повышении динамической устойчивости частоты резонатора при резких изменениях температуры окружающей среды и...
Тип: Изобретение
Номер охранного документа: 0002492539
Дата охранного документа: 10.09.2013
10.01.2014
№216.012.93aa

Гранулированный модифицированный наноструктурированный сорбент, способ его получения и состав для его получения

Группа изобретений относится к сорбентам, используемым при очистке водных сред от техногенных загрязнителей. Состав для приготовления гранулированного наноструктурированного сорбента включает, мас.%: глауконит - 20-50, интеркалированный графит, представляющий собой бисульфат графита, - 1-5,...
Тип: Изобретение
Номер охранного документа: 0002503496
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9cdf

Способ моделирования развития мелкоочаговых мозговых геморрагий в коре головного мозга у новорожденных крыс

Изобретение относится к экспериментальной медицине и касается моделирования мелкоочаговых мозговых геморрагий у новорожденных крыс. Для этого новорожденных крыс в возрасте 3-х дней помещают в камеру и подвергают воздействию звука силой 70 дБ, частотой 110 Гц, на протяжении 60 минут. Способ...
Тип: Изобретение
Номер охранного документа: 0002505865
Дата охранного документа: 27.01.2014
20.02.2014
№216.012.a32c

Способ определения амплитуды нановибраций по сигналу лазерного автодина

Изобретение относится к измерительной технике и предназначено для измерений вибраций. Способ измерения амплитуды нановибраций ξ заключается в том, что освещают объект лазерным излучением, преобразуют отраженное от него излучение в электрический (автодинный) сигнал, раскладывают сигнал в...
Тип: Изобретение
Номер охранного документа: 0002507487
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3ea

Частотно-избирательное устройство для обработки сигналов на поверхностных акустических волнах

Изобретение относится к радиотехнике и акустоэлектронике и может быть использовано в устройствах измерительной техники и в радиосвязи. Достигаемый технический результат - повышение разрешающей способности частотно-избирательного устройства для обработки сигналов на ПАВ в процессе...
Тип: Изобретение
Номер охранного документа: 0002507677
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.aabc

Способ скрытой передачи информации

Изобретение относится к радиотехнике и передаче информации и может найти применение в системах связи для помехоустойчивой передачи цифровой информации, в том числе с высокой степенью конфиденциальности. Задачей настоящего изобретения является усовершенствование способа скрытой передачи...
Тип: Изобретение
Номер охранного документа: 0002509423
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.b086

Способ оценки фото-, кино- и видеоматериалов, содержащих нежелательное изображение (варианты)

Изобретение относится к средствам анализа содержимого изображений. Техническим результатом является повышение эффективности оценки содержимого изображений. В способе просматривают объект оценки и выявляют признаки нежелательного изображения первой группы - динамические признаки и второй группы...
Тип: Изобретение
Номер охранного документа: 0002510905
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c52f

Способ определения электропроводности и энергии активации примесных центров полупроводниковых слоев

Изобретение относится к измерительной технике, а именно к способу определения электропроводности и толщины слоя полупроводника на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Предложенный способ включает...
Тип: Изобретение
Номер охранного документа: 0002516238
Дата охранного документа: 20.05.2014
Showing 11-20 of 116 items.
20.06.2013
№216.012.4b4e

Способ повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи и, в частности, при низкоинтенсивной лазерной и фотодинамической терапии. Облучают поверхность кожи световым пучком на длине волны 575 нм при полуширине спектра не более 5 нм. Способ...
Тип: Изобретение
Номер охранного документа: 0002484860
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4b4f

Способ локального повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи, в частности при низкоинтенсивной лазерной и фотодинамической терапии. Определяют глубину нахождения патологического участка дермы. При глубине меньше 0.22 мм облучение световым пучком...
Тип: Изобретение
Номер охранного документа: 0002484861
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4f3e

Способ измерения внутриглазного давления

Изобретение относится к области медицины, в частности к области офтальмологии для измерений внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером. Далее преобразуют отраженный сигнал в автодинный сигнал,...
Тип: Изобретение
Номер охранного документа: 0002485879
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5819

Устройство перестановок и сдвигов битов данных в микропроцессорах

Изобретение относится к средствам перестановок и сдвигов битов данных в микропроцессорах. Технический результат заключается в увеличении скорости выполнения операций. Устройство содержит n-разрядный вход данных X-X, n-разрядный выход данных Y-Y, n-разрядный вход битов маскирования F-F,...
Тип: Изобретение
Номер охранного документа: 0002488161
Дата охранного документа: 20.07.2013
10.09.2013
№216.012.690c

Миниатюрное устройство намагничивания и термостабилизации ферритовых свч резонаторов

Изобретение относится к радиотехнике и может быть использовано в интегральных СВЧ схемах, элементом которых является пленочный ферритовый резонатор. Технический результат состоит в повышении динамической устойчивости частоты резонатора при резких изменениях температуры окружающей среды и...
Тип: Изобретение
Номер охранного документа: 0002492539
Дата охранного документа: 10.09.2013
10.01.2014
№216.012.93aa

Гранулированный модифицированный наноструктурированный сорбент, способ его получения и состав для его получения

Группа изобретений относится к сорбентам, используемым при очистке водных сред от техногенных загрязнителей. Состав для приготовления гранулированного наноструктурированного сорбента включает, мас.%: глауконит - 20-50, интеркалированный графит, представляющий собой бисульфат графита, - 1-5,...
Тип: Изобретение
Номер охранного документа: 0002503496
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9cdf

Способ моделирования развития мелкоочаговых мозговых геморрагий в коре головного мозга у новорожденных крыс

Изобретение относится к экспериментальной медицине и касается моделирования мелкоочаговых мозговых геморрагий у новорожденных крыс. Для этого новорожденных крыс в возрасте 3-х дней помещают в камеру и подвергают воздействию звука силой 70 дБ, частотой 110 Гц, на протяжении 60 минут. Способ...
Тип: Изобретение
Номер охранного документа: 0002505865
Дата охранного документа: 27.01.2014
20.02.2014
№216.012.a32c

Способ определения амплитуды нановибраций по сигналу лазерного автодина

Изобретение относится к измерительной технике и предназначено для измерений вибраций. Способ измерения амплитуды нановибраций ξ заключается в том, что освещают объект лазерным излучением, преобразуют отраженное от него излучение в электрический (автодинный) сигнал, раскладывают сигнал в...
Тип: Изобретение
Номер охранного документа: 0002507487
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3ea

Частотно-избирательное устройство для обработки сигналов на поверхностных акустических волнах

Изобретение относится к радиотехнике и акустоэлектронике и может быть использовано в устройствах измерительной техники и в радиосвязи. Достигаемый технический результат - повышение разрешающей способности частотно-избирательного устройства для обработки сигналов на ПАВ в процессе...
Тип: Изобретение
Номер охранного документа: 0002507677
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.aabc

Способ скрытой передачи информации

Изобретение относится к радиотехнике и передаче информации и может найти применение в системах связи для помехоустойчивой передачи цифровой информации, в том числе с высокой степенью конфиденциальности. Задачей настоящего изобретения является усовершенствование способа скрытой передачи...
Тип: Изобретение
Номер охранного документа: 0002509423
Дата охранного документа: 10.03.2014
+ добавить свой РИД