×
10.02.2016
216.014.ce86

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ СОЛЕВОГО ОТЛОЖЕНИЯ, ЗАГРЯЗНЕННОГО РАДИОНУКЛИДАМИ ПРИРОДНОГО ПРОИСХОЖДЕНИЯ, НА ВНУТРЕННИХ ПОВЕРХНОСТЯХ ТРУБОПРОВОДОВ НЕФТЕГАЗОДОБЫВАЮЩИХ МОРСКИХ ПЛАТФОРМ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике радиометрических измерений при обращении с радиоактивными веществами. Способ определения толщины солевого отложения, загрязненного радионуклидами природного происхождения, на внутренних поверхностях трубопроводов нефтегазодобывающих морских платформ, при котором определяют калибровочную зависимость коэффициента пропускания гамма-квантов от толщины солевого отложения в лабораторных условиях по заранее отобранным образцам трубопроводов разных моделей с солевыми отложениями разной толщины, измеряют скорость счета импульсов от фонового гамма-излучения на образце трубопровода без солевого отложения, измеряют скорости счета импульсов суммарного фонового гамма-излучения и гамма-излучения источника, определяют скорость счета импульсов от гамма-квантов источника, прошедших через образец трубопровода, измеряют скорости счета импульсов суммарного фонового гамма-излучения и гамма-излучения источника, определяют скорость счета импульсов от гамма-квантов источника, прошедших через исследуемый участок трубопровода, определяют коэффициент пропускания гамма-излучения исследуемого участка трубопровода, определяют толщину солевого отложения на исследуемом участке трубопровода по величине его коэффициента пропускания гамма-излучения и полученной калибровочной зависимости. Технический результат - повышение точности определения толщины солевого отложения на внутренней поверхности трубопровода, обеспечение контроля состояния трубопровода без отбора проб и без остановки технологического процесса добычи нефти, обеспечение возможности применения способа для нерадиоактивного солевого отложения. 1 з.п. ф-лы, 1 ил.

Изобретение относится к технике радиометрических измерений при обращении с радиоактивными веществами, а более конкретно, к способам определения толщины солевого отложения, загрязненного радионуклидами природного происхождения, образующегося при эксплуатации нефтегазодобывающих морских платформ, на внутренних поверхностях трубопроводов и оборудования.

Поскольку солевые отложения приводят к сужению проходных сечений эксплуатационных колонн насосно-компрессорных труб (НКТ) и, как следствие, к снижению дебита эксплуатационных скважин, то требуется удаление солеотложения в первую очередь из колонн НКТ и уже далее из трубопроводов и оборудования морских нефтегазодобывающих платформ. Кроме того, солевое отложение может содержать природные радионуклиды в количествах, превышающих допустимые значения удельной активности, что позволяет продукты солеотложения после удаления отнести к радиоактивным отходам.

Известны радиометрические способы для определения дефектов разнообразных материалов, таких, как трещины, раковины или включения инородного материала в промышленные изделия [1]. У этих способов есть существенные недостатки: аппаратура для гамма-дефектоскопии имеет достаточно большие габариты, поскольку использование мощных источников гамма-излучения требует крупногабаритной биологической защиты, что существенно затрудняет их использование на морских платформах.

Кроме того, гамма-дефектоскопы не предназначены для определения толщины солевого отложения внутри трубопроводов и оборудования. Использование гамма-дефектоскопов для этих целей требует разработки новых методов измерений, дополнительной аппаратуры и новых методик обработки показаний гамма-дефектоскопа. Все это приводит к достаточно высоким дополнительным затратам.

Существуют способы определения толщины отложений на внутренней поверхности трубопроводов с помощью измерения температурных характеристик на поверхности трубопровода. В частности, к такому способу можно отнести способ определения величины отложений на внутренней поверхности трубопровода [2], предполагающий измерение температуры поверхности трубопровода посредством его импульсного нагрева, определение изменения температуры на различных расстояниях от источника тепла с последующим расчетом толщины отложения.

Недостатком данного способа определения толщины отложений на внутренних поверхностях трубопроводов является то, что данный способ не пригоден:

а) для определения в трубопроводе толщины солевого отложения, имеющего толщину от сотен мкм до десятков мм (и более);

б) для контроля трубопровода с солевым отложением, загрязненным радионуклидами природного происхождения.

Помимо этого существует способ определения толщины солеотложения [3] путем измерения сопротивления цепи постоянного тока при наличии и отсутствии солевого отложения в трубопроводе и по измеренной величине общего сопротивления последующее вычисление толщины солевого отложения.

К недостатку этого способа можно отнести то, что данный способ требует нарушения целостности трубопровода перфорацией в нем отверстия для определения толщины солевого отложения, а также не позволяет оценивать распределение толщины солевого отложения вдоль контролируемого трубопровода.

Кроме того, измерением общего сопротивления в трубопроводе невозможно осуществлять контроль трубопроводов, загрязненных радионуклидами природного происхождения.

Известен также способ определения толщины солевого отложения на внутренней поверхности трубопроводов или оборудования морских платформ с использованием методов спектрометрии и дозиметрии гамма-излучения [4], принятый за прототип, при реализации которого:

- отбирают пробу солевого отложения на исследуемом участке трубы путем демонтажа участка трубы;

- измеряют удельную активность радионуклидов в отобранной пробе солевого отложения;

- вычисляют калибровочную зависимость мощности гамма-излучения солевого отложения от его толщины, при этом распределение солевого отложения по трубе принимают равномерным;

- проводят измерение фоновой мощности дозы гамма-излучения на исследуемом участке трубы при отсутствии солевого отложения (дозиметрическим оборудованием) перед началом эксплуатации;

- проводят измерение мощности дозы гамма-излучения на исследуемом участке трубы с солевым отложением;

- рассчитывают мощность дозы гамма-излучения солевого отложения на исследуемом участке трубы путем вычитания фоновой мощности дозы гамма-излучения при отсутствии солевого отложения из мощности дозы гамма-излучения с солевым отложением;

- определяют толщину солевого отложения на исследуемом участке трубы по рассчитанной мощности дозы гамма-излучения солевого отложения и полученной калибровочной зависимости.

К недостаткам прототипа - способа для определения толщины солевого отложения на внутренних поверхностях трубопроводов морских нефтегазодобывающих платформ, можно отнести:

- сложность выполнения, обусловленная необходимостью разборки исследуемого участка трубопровода и включения в него специальных средств отбора пробы, что приводит к остановке технологического процесса добычи нефти и соответственно большим затратам;

- невозможность определения толщины солевого отложения с малым содержанием (или отсутствием) в них радионуклидов природного происхождения;

- отсутствие экранирования дозиметрического датчика от фонового гамма-излучения, что приводит к значительному увеличению погрешности определения толщины солевого отложения и в пределе невозможности получения результата измерения;

- низкую точность определения толщины солевого отложения по причине значительной погрешности при измерении гамма-излучения, а также погрешности из-за неравномерности распределения источников гамма-излучения солевого отложения внутри трубопровода.

Задачей предлагаемого способа является повышение точности определения толщины солевого отложения на внутренней поверхности трубопровода, загрязненного радионуклидами природного происхождения, обеспечение контроля состояния трубопровода без отбора проб и без остановки технологического процесса добычи нефти, обеспечение возможности применения способа для нерадиоактивного солевого отложения.

Поставленная задача решается предложенным способом, при котором определяют калибровочную зависимость коэффициента пропускания гамма-квантов от толщины солевого отложения в лабораторных условиях по заранее отобранным образцам трубопроводов разных моделей с солевыми отложениями разной толщины, производят измерение скорости счета импульсов от фонового гамма-излучения с помощью детектора на образце трубопровода без солевого отложения в непосредственной близости с исследуемым участком трубопровода, устанавливают источник гамма-излучения на упомянутый образец трубопровода с противоположной стороны от расположения детектора, производят измерение скорости счета импульсов суммарного фонового гамма-излучения и гамма-излучения источника на упомянутом образце трубопровода, определяют скорость счета импульсов от гамма-квантов источника, прошедших через упомянутый образец трубопровода путем вычисления разности скорости счета импульсов суммарного гамма-излучения и скорости счета импульсов фонового гамма-излучения, устанавливают детектор на исследуемый участок трубопровода и производят измерение скорости счета импульсов от фонового гамма-излучения на исследуемом участке трубопровода, устанавливают источник гамма-излучения на исследуемый участок трубопровода с противоположной стороны от детектора и производят измерение скорости счета импульсов суммарного фонового гамма-излучения и гамма-излучения источника на исследуемом участке трубопровода, определяют скорость счета импульсов от гамма-квантов источника, прошедших через исследуемый участок трубопровода путем вычисления разности скорости счета импульсов суммарного гамма-излучения и скорости счета импульсов фонового гамма-излучения на исследуемом участке трубопровода, определяют коэффициент пропускания гамма-излучения исследуемого участка трубопровода путем вычисления отношения скорости счета импульсов от гамма-квантов источника, прошедших через исследуемый участок трубопровода с солевым отложением, к скорости счета импульсов от гамма-квантов источника, прошедших через упомянутый образец трубопровода без солевого отложения, определяют толщину солевого отложения на исследуемом участке трубопровода по величине его коэффициента пропускания гамма-излучения и полученной калибровочной зависимости.

Для повышения точности измерений в предложенном способе измерения скорости счета импульсов производят в определенном энергетическом интервале, например, в области, соответствующей максимальной энергии гамма-квантов радионуклида талий-208, испускаемого источником.

Предложенный способ реализуется известным устройством, содержащим источник гамма-излучения, имеющий защиту из свинца, и радиометрическую аппаратуру, включающую блок детектирования с кольцевой свинцовой цилиндрической защитой (детектор) и пересчетный блок импульсов, снабженный таймером, позволяющий обеспечить высокую точность определения толщины солевого отложения, загрязненного радионуклидами природного происхождения, и определять толщину солевого отложения без остановки технологического процесса добычи нефти и без вскрытия трубопровода для отбора пробы.

Сущность изобретения поясняется фиг. 1, на которой представлена схема устройства, реализующего предлагаемый способ определения толщины солевого отложения на внутренней поверхности трубопровода, загрязненного радионуклидами природного происхождения.

На Фиг. 1 изображены продольное сечение трубы контролируемого трубопровода 1, на внутренней поверхности которого образовалось солевое отложение 2, загрязненное радионуклидами природного происхождения, блоки и элементы устройства, размещаемые на этом трубопроводе.

Устройство включает источник гамма-излучения 3, расположенный внутри противорадиационной защиты из свинца 4, установленный на внешней поверхности трубы трубопровода 1. В диаметральной плоскости трубопровода 1 напротив торца источника 3 с противоположной стороны на внешней поверхности трубопровода 1 установлен блок детектирования 5, который состоит из последовательно соединенных элементов: сцинтилляционного кристалла 6, фотоумножителя 7, усилителя электрических импульсов 8 и амплитудного дискриминатора импульсов 9, имеющего два порога, которые определяют выбранный энергетический интервал.

В месте расположения сцинтилляционного кристалла 6 блока детектирования 5 установлена свинцовая кольцевая цилиндрическая защита 10, которая ослабляет фоновое гамма-излучение, а также служит для коллимации гамма-излучения источника 3.

Выход амплитудного дискриминатора 9 блока детектирования 5 связан с входом пересчетного блока 11, длительность работы которого обеспечивается таймером 12. Выход пересчетного блока 11 соединен с контроллером 13 для вычисления толщины солевого отложения 2. Выход контроллера 12 по линии 14 связан с компьютером центрального поста управления и контроля морской платформы (не показан).

Реализация способа происходит следующим образом:

Источник гамма-излучения 3 испускает гамма-кванты в направлении внешней поверхности стенки трубы контролируемого трубопровода 1. Пучок гамма-квантов источника 3 проходит в направлении блока детектирования 5 через трубопровод 1 и солевое отложение 2 на внутренней поверхности рассматриваемого трубопровода. Гамма-кванты источника взаимодействуют с атомами вещества трубопровода 1 и солевого отложения 2, вследствие чего происходит выбывание из пучка части гамма-квантов. С противоположной стороны трубопровода 1 прошедший без взаимодействия с атомами солевого отложения и трубы пучок гамма-квантов попадает в блок детектирования 5 на торец его первого элемента - сцинтилляционного кристалла 6, который преобразует акты взаимодействия гамма-квантов с атомами сцинтилляционного кристалла 6 в последовательность световых импульсов. Второй элемент блока детектирования - фотоумножитель 7 выполняет преобразование последовательности световых импульсов в последовательность электрических импульсов. Третий элемент блока детектирования 5 - усилитель электрических импульсов 8 обеспечивает усиление последовательности электрических импульсов для функционирования четвертого элемента блока детектирования 5 - амплитудного дискриминатора импульсов 9, который выделяет гамма-излучение источника 3 и фоновое гамма-излучение в выбранном энергетическом интервале в виде стандартизованной последовательности импульсов. С выхода амплитудного дискриминатора 9 стандартизованная последовательность импульсов регистрируется в пересчетном блоке 11 за определенное время, задаваемое таймером 12. Зарегистрированное в пересчетном блоке 11 число импульсов, деленное на время, задаваемое таймером 12, является результатом измерения скорости счета импульсов от фонового гамма-излучения или гамма-излучения источника, которое пропорционально плотности потока гамма-квантов в выбранном энергетическом интервале, прошедшего через трубопровод 1 с солевым отложением 2.

Способ определения толщины солевого отложения 2 в трубопроводе 1 с использованием описанного выше устройства включает следующие операции:

1) установка в блоке детектирования 5 порогов амплитудного дискриминатора 9, соответствующих границам выбранного энергетического интервала, в котором расположен пик полного поглощения энергии (фотопик) гамма-квантов источника 3. Для рассматриваемого устройства выбран энергетический интервал в области энергии гамма-квантов, равной 2.614 МэВ;

2) определение в лабораторных условиях калибровочной зависимости коэффициента пропускании гамма-излучения от толщины солевого отложения для заранее отобранного образца трубопровода, соответствующего контролируемому трубопроводу, при наличии в нем скважинной продукции в виде К=f(h). Ввод калибровочной зависимости К=f(h) в память контроллера 13;

3) измерение с использованием отрезка чистой трубы без отложения, соответствующей по своим параметрам трубе, которую необходимо контролировать (либо, например, до начала эксплуатации, когда в трубопроводе 1 нет солевых отложений) скорости счета импульсов фонового гамма-излучения окружающей среды nф1 и измерение скорости счета импульсов от гамма-излучения при наличии источника nи1. Передача измеренных величин скорости счета nф1 и nи1 в память контроллера 13 для вычисления их разности nист1= nи1-nф1 и запоминания;

4) монтаж и подготовка устройства на контролируемом трубопроводе 1 для измерений в процессе эксплуатации;

5) измерение в процессе эксплуатации скорости счета импульсов от гамма-излучения источника 3 при возможном наличии в трубопроводе солевого отложения nи2. Передача измеренной величины nи2 в память контроллера 13;

6) измерение скорости счета импульсов фонового гамма-излучения окружающей среды nф2 при возможном наличии в трубе солевого отложения (в отсутствие источника 3). Передача измеренной величины nф2 в память контроллера 13;

7) вычисление контроллером 13 разности nист2=nи2-nф2 и запоминание в памяти;

8) вычисление на основе результатов выполненных измерений и запоминание контроллером 13 величины коэффициента пропускания гамма-излучения Кх в виде отношения:

9) определение толщины солевого отложения hx в трубопроводе 1 в соответствии с вычисленным значением величины коэффициента пропускания Кх по калибровочной зависимости коэффициента пропускания гамма-излучения К=f(h) осуществляет контроллер 13.

Полученные данные о толщине солевого отложения hx, загрязненного радионуклидами природного происхождения, контроллер 13 по линии связи 14 оперативно передает на центральный пост управления системы управления и контроля морской нефтегазодобывающей платформы.

Преимущество заявляемого способа определения толщины солевого отложения в трубопроводе по сравнению с прототипом заключается еще и в том, что предлагаемый способ и устройство, его реализующие, пригодны для определения толщины солевого отложения при отсутствии в нем радионуклидов, а также возможно определение толщины грязепарафиновых отложений в трубопроводе.

Таким образом, предложенный способ для определения толщины солевого отложения позволяет повысить точность определения толщины солевого отложения на внутренней поверхности трубопровода, загрязненного радионуклидами природного происхождения, без демонтажа трубопровода и остановки технологического процесса добычи нефти, существенно расширить область возможного применения известного устройства и обеспечить возможность оперативной передачи полученных данных о толщине солевого отложения на пост управления и контроля нефтегазодобывающей морской платформы.

Источники информации

1. А.Н. Майоров, С.В. Мамиконян и др. "Радиоизотопная дефектоскопия" М.: Атомиздат, 1976, 208 стр.

2. Патент Российской Федерации. RU 2439491 С1, МПК G01B 21/02 (2006, 01), 18.06.2013 г.

3. Патент Российской Федерации. RU 2387950 С2, МПК G01B 7/06 (2006, 01), 27.04.2010 г.

4. С.И. Емельянов, Н.Л. Кучин, С.П. Малышев, А.Ж. Сутеева. Технология оценки интенсивности загрязненных природными радионуклидами солеотложений на внутренних поверхностях трубопроводов и оборудовании морских платформ и терминалов. Труды Крыловского государственного научного центра, вып. 77 (361), с. 120, 2013 г.


СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ СОЛЕВОГО ОТЛОЖЕНИЯ, ЗАГРЯЗНЕННОГО РАДИОНУКЛИДАМИ ПРИРОДНОГО ПРОИСХОЖДЕНИЯ, НА ВНУТРЕННИХ ПОВЕРХНОСТЯХ ТРУБОПРОВОДОВ НЕФТЕГАЗОДОБЫВАЮЩИХ МОРСКИХ ПЛАТФОРМ
Источник поступления информации: Роспатент

Showing 51-55 of 55 items.
01.05.2019
№219.017.47b8

Чехол контейнера для транспортировки и хранения отработавшего ядерного топлива

Изобретение относится к ядерной энергетике, а именно устройствам, в которых размещаются тепловыделяющие сборки с отработавшим ядерным топливом во время их транспортировки и хранения. Чехол контейнера для транспортировки и хранения отработавшего ядерного топлива включает литой корпус с влитыми...
Тип: Изобретение
Номер охранного документа: 0002686476
Дата охранного документа: 29.04.2019
20.06.2019
№219.017.8d47

Способ комбинированной выработки механической, тепловой энергии и получения твердого диоксида углерода

Изобретение относится к области стационарной и транспортной теплоэнергетики, а именно к поршневым, газо- и паротурбинным установкам, работающим на криогенных углеводородных топливах, и может быть использовано при получении диоксида углерода в стационарных и транспортных энергетических...
Тип: Изобретение
Номер охранного документа: 0002691869
Дата охранного документа: 18.06.2019
14.05.2020
№220.018.1cbc

Эпоксидная композиция для адгезионного слоя и армирующий наполнитель на его основе

Изобретение относится к области создания эпоксидных полимерных композиций, применяемых в качестве адгезионного слоя для армирующих наполнителей, и армирующему наполнителю, используемых при изготовлении деталей и конструкций для авиа-, судо-, вертолето-, автомобилестроения и ветроэнергетики из...
Тип: Изобретение
Номер охранного документа: 0002720782
Дата охранного документа: 13.05.2020
24.06.2020
№220.018.2a55

Устройство защиты от разрушения опорных зон опытных образцов из полимерных композиционных материалов при их статических испытаниях на сжатие

Изобретение относится к области испытательной техники, предназначено для использования в отраслях промышленности, применяющих высокопрочные полимерные композиционные материалы (ПКМ). Устройство содержит пару металлических наконечников, оснащенных фиксатором из пластичного металла для защиты...
Тип: Изобретение
Номер охранного документа: 0002724123
Дата охранного документа: 22.06.2020
04.07.2020
№220.018.2f57

Способ ремонта диффузионного отделителя водорода

Изобретение относится к водородной энергетике, в частности к мембранным технологиям получения особо чистого водорода из газовых смесей, содержащих водород. При этом для получения особо чистого водорода предпочтительно используют тонкие плоские мембраны из палладия и его сплавов, скрепленные с...
Тип: Изобретение
Номер охранного документа: 0002725405
Дата охранного документа: 02.07.2020
Showing 51-56 of 56 items.
11.03.2019
№219.016.da7e

Пусковая установка ракетного комплекса

Изобретение относится к военной технике, к пусковым установкам зенитных комплексов ближнего действия. Пусковая установка содержит пусковой кронштейн, закрепленный на башне, и установленный на направляющей контейнер. На пусковом кронштейне закреплен привод, кинематически связанный с...
Тип: Изобретение
Номер охранного документа: 0002367878
Дата охранного документа: 20.09.2009
11.03.2019
№219.016.dc6a

Механизм сцепки ракетно-пушечного комплекса

Изобретение относится к военной технике, в частности к зенитным комплексам, имеющим на вооружении автоматические пушки и зенитные ракеты. Механизм сцепки ракетно-пушечного комплекса закреплен на качающейся части башни, содержит жесткий упор и подпружиненный фиксатор, взаимодействующие со...
Тип: Изобретение
Номер охранного документа: 0002401405
Дата охранного документа: 10.10.2010
29.04.2019
№219.017.3e37

Корпус контейнера для транспортировки и хранения отработавшего ядерного топлива

Изобретение может использоваться в ядерной энергетике для хранения и транспортировки отработавшего ядерного топлива и других радиоактивных материалов. Корпус контейнера для транспортировки и хранения отработавшего ядерного топлива включает литой корпус с внутренней посадочной поверхностью под...
Тип: Изобретение
Номер охранного документа: 0002686457
Дата охранного документа: 26.04.2019
01.05.2019
№219.017.47b8

Чехол контейнера для транспортировки и хранения отработавшего ядерного топлива

Изобретение относится к ядерной энергетике, а именно устройствам, в которых размещаются тепловыделяющие сборки с отработавшим ядерным топливом во время их транспортировки и хранения. Чехол контейнера для транспортировки и хранения отработавшего ядерного топлива включает литой корпус с влитыми...
Тип: Изобретение
Номер охранного документа: 0002686476
Дата охранного документа: 29.04.2019
17.01.2020
№220.017.f680

Двухцелевой контейнер для транспортировки и хранения отработавшего ядерного топлива

Изобретение относится к ядерной энергетике. Двухцелевой контейнер для транспортировки и хранения отработавшего ядерного топлива включает литой корпус, нейтронную защиту. В стенку литого корпуса влит образующий сплошную стенку нейтронно-защитный барьер из материала с температурой плавления выше...
Тип: Изобретение
Номер охранного документа: 0002711078
Дата охранного документа: 15.01.2020
17.02.2020
№220.018.034d

Способ эндоскопического лигирования варикозно расширенных вен пищевода

Изобретение относится к медицине, а именно к эндоскопии. Латексные кольца накладывают по спирали, по 1 кольцу на 1 варикозно расширенную вену, не затрагивают верхней трети пищевода. В зависимости от количества варикозно расширенных вен накладывают 3-4 латексных кольца. Вмешательство...
Тип: Изобретение
Номер охранного документа: 0002714393
Дата охранного документа: 14.02.2020
+ добавить свой РИД