×
10.03.2016
216.014.cb57

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ АЭРОГЕЛЕЙ НА ОСНОВЕ МНОГОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК

Вид РИД

Изобретение

Аннотация: Изобретение относится к области получения аэрогелей на основе многослойных углеродных нанотрубок в виде изделий с контролируемой формой, в частности шариков, кубиков, пластин, тетраэдров, торов, цилиндров, полиэдров, призм, которые могут использоваться для получения покрытий, поглощающих и/или отражающих электромагнитное излучение, звукопоглощающих композитов, а также носителей биологически активных объектов. Способ получения аэрогелей на основе многослойных углеродных нанотрубок характеризуется тем, что катализатор синтеза многослойных углеродных нанотрубок формуют и/или помещают в матрицу и обрабатывают углеродсодержащими реагентами в реакторе при температуре не выше 900°C, в результате чего получают трехмерную ажурную структуру на основе многослойных углеродных нанотрубок с плотностью менее 100 мг/см. В качестве катализатора синтеза многослойных углеродных нанотрубок применяют катализатор и/или смесь катализаторов, обеспечивающих получение нанотрубок разного диаметра, что приводит к созданию аэрогелей с полимодальным распределением по диаметру нанотрубок. Форму изделий аэрогеля на основе многослойных углеродных нанотрубок задают исходной геометрической формой катализатора. Технический результат - создание аэрогелей с заданными характеристиками на основе многослойных углеродных нанотрубок непосредственно в ходе их роста. 2 з.п. ф-лы, 2 табл., 6 ил., 9 пр.

Изобретение относится к области получения аэрогелей на основе многослойных углеродных нанотрубок (МУНТ) в виде изделий с контролируемой формой (в частности шариков, кубиков, пластин, тетраэдров, торов, цилиндров, полиэдров, призм, октаэдров и других желаемых форм). Полученные аэрогели могут использоваться для получения покрытий, поглощающих и/или отражающих электромагнитное излучение, звукопоглощающих композитов, а также носителей биологически активных объектов.

Аэрогели - материалы, представляющие собой гель, в котором жидкая фаза полностью замещена газообразной. Углеродные аэрогели - высокопористые материалы, состоящие из трехмерного каркаса, образованного различными протяженными формами углеродных наноматериалов (пенами из аморфизованного или графитизированного углерода, графенами, углеродными нанотрубками), характеризуются низкой плотностью (менее 100 мг/см3).

Известно несколько подходов получения углеродных аэрогелей. При этом наиболее распространены методы, базирующиеся на первоначальном получении 3D-полимерных матриц (по золь-гель технологии) с их последующей карбонизацией, а также методы, базирующиеся на использовании индивидуальных наноразмерных структур (фуллерены, углеродные нанотрубки, графен и т.д.). В частности, описаны способы получения углеродных аэрогелей по золь-гель технологии, выполненных по классической схеме путем трех последовательных технологических операций: (1) золь-гель полимеризации органических олигомеров (синтез органических аэрогелей), (2) сушки (субкритическая, сверхкритическая или сублимационная) и (3) высокотемпературной карбонизации полученного органического аэрогеля [R.W. Pekala, C.T. Alviso, X. Lu, J. Gross, J. Fricke, New organic aerogels based upon a phenolic-furfural reaction / J. Non-Cryst Solids, 1995, 188, 34-40].

Для получения углеродного аэрогеля через стадию золь-гель технологии используются различные органические матрицы на основе: резорцин-формальдегида, меламин-формальдегида, фенол-фурфурола, полиакрилонитрила и полиуретана [W. Li, G. Reichenauer, J. Fricke, Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors / Carbon, 2002, 40, 2955-2959]. В этом ряду наибольшее распространение получила система на основе резорцин-формальдегида. Использование различных приемов удаления растворителя (метод замены растворителей, субкритическая, сверхкритическая и сублимационная сушки) приводит к получению аэрогелей с различными свойствами и структурой [R. Zhang, Y. Lu, L. Zhan et al., Monolithic carbon aerogels from sol-gel polymerization of phenolic resoles and methylolated melamine / Carbon, 2002, 41, 1660-1663]. Большинство аэрогелей углерода, получаемых с использованием описанных подходов, имеют удельную поверхность в диапазоне от 500-800 м2/г. Данные методы имеют ряд недостатков, такие как многостадийность, необходимость использования дорогостоящих реактивов и оборудования.

Другие методы получения аэрогелей базируются на использовании подходов связывания фрагментов наноструктурированных углеродных материалов дополнительными химическими веществами (фуллерены, углеродные нанотрубки, графен и т.д.). В частности, были описаны различные методики по получению углеродных аэрогелей за счет «склеивания» углеродных нанотрубок с использованием полимерных материалов (поливиниловый спирт, полиметилметакрилат и т.д), однако, это приводило к снижению проводимости и увеличению плотности углеродного аэрогеля [М.В. Bryning, D.E. Milkie, M.F. Islam et al., Carbon Nanotube Aerogels / Adv. Mater., 2007, 19, 661-664].

Величина поверхности аэрогелей, полученных путем склеивания наноструктурированных форм углерода, значительным образом зависит от плотности структурообразующего материала, от типа связующего материала и его количества [J. Liu, A.S. Karakoti, A. Kumar et al., Ultralight Multiwalled Carbon Nanotube Aerogel / ACS NANO, 2010, 4, 12, 7293-7302].

Ввиду наличия у многослойных углеродных трубок (МУНТ) уникальных механических, электрофизических свойств они являются перспективными материалами для использования в таких областях науки и техники, как наноэлектроника, альтернативная энергетика, аэрокосмическая, машиностроительная и строительная промышленность [Baughman R.Н., Zakhidov A.A., de Heer W.А. Carbon nanotubes - the route toward applications / Science, 2002, 297, 5582, 787-792].

Однако использование МУНТ в таких приложениях, как акустика (звукопоглощение), экранирование электромагнитного излучения, в качестве носителей катализаторов или биологических объектов затруднено ввиду высокой сыпучести и слабой формуемости исходных порошков МУНТ. Таким образом, для эффективного использования нанотрубок необходимо создание структурированных и жестких полупродуктов на их основе (формовка).

К настоящему моменту известен ряд публикаций [Y.Z. Guo, J. Shen, J. Wang. Carbon aerogels dried at ambient conditions / New Carbon, 2001, 16, 55-57] и патентов [EP 2111292 (B1), B01J 13/00, 2010-10-13], описывающих синтез углеродных аэрогелей из порошков исходных МУНТ [WO 2008000163 (A1), C01B 31/02, 2008-01-03]. Основным подходом для создания аэрогелей является сверхкритическая сушка дисперсий на основе нанотрубок [US 2011224376 (A1), C08F 230/08, 2011-09-15].

Основным недостатком подобных материалов признается их недостаточная прочность и эластичность [М.В. Bryning, D.E. Milkie, M.F. Islam, L.A. Hough, J.M. Kikkawa, A.G. Yodh, Carbon Nanotube Aerogels /Adv. Mater. 2007, 19, 661-664]. Для дополнительного упрочнения структуры материала в исходные порошки МУНТ в качестве связующего вводят различные полимеры, что приводит к значительному улучшению прочностных характеристик, но и повышает плотность материала [J. Zou, J. Liu, A.S. Karakoti, A. Kumar, D. Joung, Q. Li, S.I. Khondaker, S. Seal, L. Zhai, Ultralight Multiwalled Carbon Nanotube Aerogel / ACS NANO 2010, 4, №.12, 7293-7302].

Использование графена в качестве дополнительного связующего МУНТ позволяет улучшить эластичные свойства углеродного аэрогеля [Н. Sun, Z. Xu, С. Gao, Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels / Adv. Mater. 2013, 25, 2554-2560]. Для упрочнения структуры углеродных аэрогелей используют химическую сшивку МУНТ в местах контактов [US 6187823, C01B 31/02, 2001-02-13].

Однако, несмотря на значительные успехи в создании аэрогелей из порошков исходных нанотрубок, для реализации данного похода необходимо использование дорогостоящего оборудования для проведения операции сушки материала в сверхкритических условиях, что существенно увеличивает стоимость конечных продуктов. Поэтому более перспективным подходом является синтез аэрогелей нанотрубок непосредственно (in situ) в ходе проведения роста МУНТ. Подобный поход был реализован в ряде работ через газофазное напыление катализатора в ходе роста нанотрубок [В.Х. Gui, J. Wei, K. Wang, А. Cao, Н. Zhu, Y. Jia, Q. Shu, D. Wu, Carbon Nanotube Sponges / Advanced Materials, 2010, 22, 617-621] или введение «разориентирующего» агента при синтезе ориентированных массивов МУНТ [М. Xu, D.N. Futaba, Т. Yamada, М. Yumura, K. Hata, Carbon Nanotubes with Temperature-Invariant Viscoelasticity from - 196 to 1000°C / Science, 2010, 330, 1364-1368].

Изобретение решает задачу по одностадийному синтезу аэрогелей с заданными характеристиками в условиях, аналогичных производству МУНТ в промышленных установках. Изобретение решает задачу получения аэрогелей на основе МУНТ в виде объектов с контролируемой формой, в частности шариков, кубиков, пластин, тетраэдров, торов, цилиндров, полиэдров, призм и других желаемых форм.

Задача решается способом получения аэрогелей на основе многослойных углеродных нанотрубок МУНТ, в котором катализатор синтеза многослойных углеродных нанотрубок формуют и/или помещают в матрицу и обрабатывают углеродсодержащими реагентами в реакторе при температуре не выше 900°C, в результате чего получают трехмерную ажурную структуру на основе многослойных углеродных нанотрубок с плотностью менее 100 мг/см3.

В качестве катализатора синтеза многослойных углеродных нанотрубок применяют катализатор и/или смесь катализаторов, обеспечивающих получение нанотрубок разного диаметра, что приводит к созданию аэрогелей с полимодальным распределением по диаметру нанотрубок.

Форму изделий аэрогеля на основе многослойных углеродных нанотрубок задают исходной геометрической формой катализатора.

Задача решается путем первоначального формования и/или помещения в объемную матрицу порошка катализатора синтеза МУНТ, состоящего из высокодисперсных частиц оксидных матриц, содержащих множественные центры роста МУНТ или их предшественники, и его последующей обработкой углеродсодержащими газами в реакторе для производства многослойных углеродных нанотрубок. В качестве активного компонента катализатор может содержать соединения на основе Fe, Co, Ni, Mo, Mn, W или их комбинаций, а также Al2O3, MgO, CaCO3, CaO или их комбинации - в качестве носителей.

Одним из способов получения МУНТ является каталитический пиролиз углеводородов или оксида углерода [Т.W. Ebbesen // Carbon nanotubes: Preparation and properties, CRC Press, 1997, p. 139-161].

В предлагаемом способе для демонстрации возможности структурирования материала аэрогели получают для четырех типов многослойных углеродных нанотрубок МУНТ, синтезированных на катализаторах Fe-Co/Al2O3, Fe-Co/MgO, Со-Mn/MgAlOx и Fe-Co/CaCO3. В частности в присутствии катализатора Fe-Co/CaCO3 получают МУНТ со средними внешними диаметрами - 15-25 нм (Sуд=80±30 м2/г). Значение кажущейся плотности углеродного аэрогеля составляет 50-100 мг/см3. Объем пор аэрогелей составляет от 90 до 98% (из них микро- и мезопоры не более 2%) от общего объема образца.

Полученные образцы характеризуют методом просвечивающей электронной микроскопии, растровой электронной микроскопии, а также путем измерения удельной поверхности по методу БЭТ и пористой структуры по изотермам адсорбции азота (метод BJH).

Настоящее изобретение предлагает способ приготовления углеродного аэрогеля на основе многослойных углеродных нанотрубок для создания композитных материалов различного назначения.

Сущность изобретения иллюстрируется следующими таблицами, примерами и иллюстрациями.

На Фиг. 1 представлена предлагаемая схема образования и стабилизации структуры аэрогеля МУНТ: А. Фрагмент частиц сформованного катализатора; Б. Катализатор после активации (восстановления), содержащий активные металлические частицы (черные кружки); В. Рост МУНТ за счет каталитического пиролиза углеродсодержащих молекул приводит к их расталкиванию и перепутыванию, сопровождающихся резким увеличением объема материала по сравнению с объемом сформованного катализатора.

На Фиг. 2 представлены фотографии образцов аэрогелей МУНТ (шаровой формы) с диаметрами 4, 9, 14 мм.

На Фиг. 3 представлены фотографии образцов катализаторов и аэрогелей, получающихся из них, демонстрирующие возможность влияния на форму аэрогеля (справа А, С) путем изменения формы катализатора (слева А, В).

На Фиг. 4 представлены фотографии образцов аэрогелей МУНТ, сохраняющих форму при погружении в растворитель (А) и при массе более чем в 2500 раз превосходящей собственную (В).

На Фиг. 5 представлены микрофотографии растровой электронной микроскопии образцов углеродных аэрогелей, демонстрирующие ажурную структуру, образованную из спутанных МУНТ, с высокой долей макропор.

На Фиг. 6 представлены: А - типичная изотерма адсорбции азота на аэрогель МУНТ (Относительно малый размер петли гистерезиса свидетельствует об относительно низкой доле микро- и мезопор в структуре материала), В - типичное распределение пор для аэрогелей МУНТ, рассчитанное по адсорбционной кривой БЭТ общая доля детектируемых пор в объеме материала (d<120 нм) составляет 1.5%.

Пример 1.

Навеску катализатора 40%Fe-Co/CaO (RU 2373995, B01J 37/00, 27.11.2009) в 50 мг помещают в трубчатый кварцевый реактор (Т=670°C). После термостатирования в реактор подают смесь Ar/C2H4 (400 см3/мин, 1:1). Время синтеза составляет 15 мин. После окончания реакции образец охлаждают в токе инертного газа. В результате получаются 619 мг аэрогеля на основе МУНТ (средний диаметр 22 нм) с кажущейся плотностью 72 мг/см3.

Пример 2.

Аналогично примеру 1, отличающийся тем, что время синтеза составляет 1 час. В результате получаются 1429 мг аэрогеля на основе МУНТ (средний диаметр 22 нм) с кажущейся плотностью 92 мг/см3.

Пример 3.

Аналогично примеру 1, отличающийся тем, что реакцию проводят в атмосфере N2/C2H4/(C3H8-C4H10) (200/10/200 см3/мин соответственно) при температуре 750°C. В результате получаются 341 мг аэрогеля на основе МУНТ (средний диаметр 22 нм).

Пример 4.

Аналогично примеру 1, отличающийся тем, что реакцию проводят в атмосфере N2/C2H2 (400 см3/мин, 70:30) при температуре 650°C. В результате получаются 714 мг аэрогеля на основе МУНТ (средний диаметр 21 нм).

Пример 5.

Аналогично примеру 1, отличающийся тем, что в качестве катализатора используется смесь порошков 40%Fe-Co/CaO и 40%Fe-Co/Al2O3 (RU 2373995, B01J 37/00, 27.11.2009) в массовом соотношении 1 к 1. В результате получаются 548 мг аэрогеля на основе МУНТ (бимодальное распределение трубок, средние диаметры 21 и 10 нм).

Пример 6.

Аналогично примеру 1, отличающийся тем, что в качестве катализатора используется смесь порошков 40%Fe-Co/CaO и 40%Fe-Co/Al2O3 (RU 2373995, B01J 37/00, 27.11.2009) в массовом соотношении 1 к 2. В результате получаются 828 мг аэрогеля на основе МУНТ (бимодальное распределение трубок, средние диаметры 21 и 10 нм).

Пример 7.

Аналогично примеру 1, отличающийся тем, что в качестве катализатора используется порошок 40%Fe-Co/MgO (патент RU 2373995, B01J 37/00, 27.11.2009). В результате получаются 423 мг аэрогеля на основе МУНТ (средний диаметр 14 нм).

Пример 8.

Аналогично примеру 1, отличающийся тем, что в качестве катализатора используется порошок 76%Co-Mn/MgAlOx. В результате получаются 544 мг аэрогеля на основе МУНТ (средний диаметр 18 нм).

Пример 9.

Аналогично примеру 1, отличающийся тем, что навеску катализатора помещают в пористую кварцевую ячейку цилиндрической формы, а затем помещают в реактор. Полученный аэрогель имеет форму, совпадающую с внутренней полостью ячейки.

Технический результат - создание аэрогелей на основе многослойных углеродных нанотрубок непосредственно в ходе их роста.


СПОСОБ ПОЛУЧЕНИЯ АЭРОГЕЛЕЙ НА ОСНОВЕ МНОГОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК
СПОСОБ ПОЛУЧЕНИЯ АЭРОГЕЛЕЙ НА ОСНОВЕ МНОГОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК
СПОСОБ ПОЛУЧЕНИЯ АЭРОГЕЛЕЙ НА ОСНОВЕ МНОГОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК
СПОСОБ ПОЛУЧЕНИЯ АЭРОГЕЛЕЙ НА ОСНОВЕ МНОГОСЛОЙНЫХ УГЛЕРОДНЫХ НАНОТРУБОК
Источник поступления информации: Роспатент

Showing 21-30 of 99 items.
20.11.2014
№216.013.089f

Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана

Изобретение относится к катализаторам, используемым в реакции паровой конверсии диметоксиметана, а именно к катализатору для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды. Предлагаемый катализатор является бифункциональным и содержит на поверхности...
Тип: Изобретение
Номер охранного документа: 0002533608
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0905

Способ получения метана из атмосферного диоксида углерода

Изобретение относится к способу получения метана из атмосферного диоксида углерода. Способ характеризуется тем, что используют механическую смесь термически регенерируемого сорбента - поглотителя диоксида углерода, который представляет собой карбонат калия, закрепленный в порах диоксида титана,...
Тип: Изобретение
Номер охранного документа: 0002533710
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0dfb

Способ приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы

Изобретение относится к способу приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы на основе пеноникеля. Предложенный способ заключается в электролитическом осаждении цинка на пеноникель и термообработке в инертной среде. При этом термообработку...
Тип: Изобретение
Номер охранного документа: 0002534996
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfc

Способ приготовления катализатора гидроочистки углеводородного сырья

Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, который включает в свой состав кобальт, никель, молибден, алюминий и кремний. При этом на носитель, содержащий оксид алюминия и аморфный алюмосиликат, наносят одновременно два биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534997
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfd

Катализатор гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Описан катализатор, включающий в свой состав кобальт, никель, молибден, алюминий и кремний, при этом кобальт, никель и молибден содержатся в форме биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534998
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfe

Способ гидроочистки углеводородного сырья

Изобретение относится к способу гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Изобретение касается способа гидроочистки, в котором осуществляют превращение углеводородного сырья с высоким содержанием серы при температуре 340-375°C, давлении 3,5-6,0 МПа,...
Тип: Изобретение
Номер охранного документа: 0002534999
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e28

Способ очистки газовых потоков от сероводорода

Изобретение относится к нефтехимической и газовой промышленности и может быть использовано при освоении скважин на месторождениях природных углеводородных газов. Сероводород и меркаптаны окисляют (Р-1) в присутствии катализатора с получением элементарной серы и диоксида серы. Полученный газ...
Тип: Изобретение
Номер охранного документа: 0002535041
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.13de

Каталитический реактор для переработки осадков сточных вод и способ их переработки (варианты)

Изобретение относится к способам переработки сточных осадков, содержащих органические вещества, перед их утилизацией или захоронением. Каталитический реактор содержит корпус с расширением в верхней части, патрубок подачи осадка сточных вод, расположенный на уровне соединения нижней и верхней...
Тип: Изобретение
Номер охранного документа: 0002536510
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1429

Катализатор, способ его приготовления и процесс гидроизомеризации дизельного топлива

Изобретение относится к катализаторам для гидроизомеризации дизельного топлива, способам приготовления катализаторов и процессам получения дизельного топлива с низкой температурой застывания. Описан катализатор гидроизомеризации, включающий в свой состав цеолит типа ZSM-23, бор, палладий и...
Тип: Изобретение
Номер охранного документа: 0002536585
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1df9

Биокатализатор, способ его приготовления и способ переэтерификации растительных масел с использованием этого биокатализатора

Заявленная группа изобретений относится к области биотехнологии. Заявлен биокатализатор для переэтерификации растительных масел, содержащий в качестве ферментативно-активной субстанции частично разрушенные клетки или клеточные лизаты рекомбинантного штамма-продуцента r/lip, носитель, состоящий...
Тип: Изобретение
Номер охранного документа: 0002539101
Дата охранного документа: 10.01.2015
Showing 21-30 of 99 items.
20.11.2014
№216.013.089f

Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана

Изобретение относится к катализаторам, используемым в реакции паровой конверсии диметоксиметана, а именно к катализатору для получения обогащенной по водороду газовой смеси взаимодействием диметоксиметана и паров воды. Предлагаемый катализатор является бифункциональным и содержит на поверхности...
Тип: Изобретение
Номер охранного документа: 0002533608
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0905

Способ получения метана из атмосферного диоксида углерода

Изобретение относится к способу получения метана из атмосферного диоксида углерода. Способ характеризуется тем, что используют механическую смесь термически регенерируемого сорбента - поглотителя диоксида углерода, который представляет собой карбонат калия, закрепленный в порах диоксида титана,...
Тип: Изобретение
Номер охранного документа: 0002533710
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0dfb

Способ приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы

Изобретение относится к способу приготовления скелетного катализатора гидродеоксигенации продуктов переработки растительной биомассы на основе пеноникеля. Предложенный способ заключается в электролитическом осаждении цинка на пеноникель и термообработке в инертной среде. При этом термообработку...
Тип: Изобретение
Номер охранного документа: 0002534996
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfc

Способ приготовления катализатора гидроочистки углеводородного сырья

Изобретение относится к способу приготовления катализатора гидроочистки углеводородного сырья, который включает в свой состав кобальт, никель, молибден, алюминий и кремний. При этом на носитель, содержащий оксид алюминия и аморфный алюмосиликат, наносят одновременно два биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534997
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfd

Катализатор гидроочистки углеводородного сырья

Изобретение относится к катализаторам гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Описан катализатор, включающий в свой состав кобальт, никель, молибден, алюминий и кремний, при этом кобальт, никель и молибден содержатся в форме биметаллических...
Тип: Изобретение
Номер охранного документа: 0002534998
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0dfe

Способ гидроочистки углеводородного сырья

Изобретение относится к способу гидроочистки углеводородного сырья с получением продуктов с низким содержанием серы. Изобретение касается способа гидроочистки, в котором осуществляют превращение углеводородного сырья с высоким содержанием серы при температуре 340-375°C, давлении 3,5-6,0 МПа,...
Тип: Изобретение
Номер охранного документа: 0002534999
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0e28

Способ очистки газовых потоков от сероводорода

Изобретение относится к нефтехимической и газовой промышленности и может быть использовано при освоении скважин на месторождениях природных углеводородных газов. Сероводород и меркаптаны окисляют (Р-1) в присутствии катализатора с получением элементарной серы и диоксида серы. Полученный газ...
Тип: Изобретение
Номер охранного документа: 0002535041
Дата охранного документа: 10.12.2014
27.12.2014
№216.013.13de

Каталитический реактор для переработки осадков сточных вод и способ их переработки (варианты)

Изобретение относится к способам переработки сточных осадков, содержащих органические вещества, перед их утилизацией или захоронением. Каталитический реактор содержит корпус с расширением в верхней части, патрубок подачи осадка сточных вод, расположенный на уровне соединения нижней и верхней...
Тип: Изобретение
Номер охранного документа: 0002536510
Дата охранного документа: 27.12.2014
27.12.2014
№216.013.1429

Катализатор, способ его приготовления и процесс гидроизомеризации дизельного топлива

Изобретение относится к катализаторам для гидроизомеризации дизельного топлива, способам приготовления катализаторов и процессам получения дизельного топлива с низкой температурой застывания. Описан катализатор гидроизомеризации, включающий в свой состав цеолит типа ZSM-23, бор, палладий и...
Тип: Изобретение
Номер охранного документа: 0002536585
Дата охранного документа: 27.12.2014
10.01.2015
№216.013.1df9

Биокатализатор, способ его приготовления и способ переэтерификации растительных масел с использованием этого биокатализатора

Заявленная группа изобретений относится к области биотехнологии. Заявлен биокатализатор для переэтерификации растительных масел, содержащий в качестве ферментативно-активной субстанции частично разрушенные клетки или клеточные лизаты рекомбинантного штамма-продуцента r/lip, носитель, состоящий...
Тип: Изобретение
Номер охранного документа: 0002539101
Дата охранного документа: 10.01.2015
+ добавить свой РИД