×
20.03.2016
216.014.c7a7

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ

Вид РИД

Изобретение

Аннотация: Использование: для определения плотности путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения. Сущность изобретения заключается в том, что определяют плотность путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения, регистрации обратно рассеянного излучения, использования интенсивности счета детектора излучения и калибровочного графика, при этом измеряют интенсивность счета детектора излучения и интенсивность счета мониторного детектора при различной глубине погружения защитного экрана, определяют нормированную интенсивность счета детектора излучения, находят пространственное распределение плотности контролируемого вещества путем сравнения зависимости нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана с калибровочными графиками нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана, полученными для контролируемого вещества при различных распределениях его плотности по глубине. Технический результат: повышение точности измерения в случае веществ с переменной по глубине плотностью. 3 ил.
Основные результаты: Способ определения плотности путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения, регистрации обратно рассеянного излучения, использования интенсивности счета детектора излучения и калибровочного графика, отличающийся тем, что измеряют интенсивность счета детектора излучения и интенсивность счета мониторного детектора при различной глубине погружения защитного экрана, определяют нормированную интенсивность счета детектора излучения, находят пространственное распределение плотности контролируемого вещества путем сравнения зависимости нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана с калибровочными графиками нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана, полученными для контролируемого вещества при различных распределениях его плотности по глубине.

Изобретение относится к радиационным способам бесконтактного измерения плотности вещества с помощью электромагнитного (рентгеновского или гамма-) излучения и может быть использовано для повышения глубинности этих способов измерения, а также в установках, предназначенных для измерения плотности, анализа и сортировки веществ и материалов, измерения плотности и фазового состава текучих сред, определения пространственного распределения концентрации тяжелых элементов.

Плотность материала может быть определена путем анализа ослабления рентгеновского или гамма-излучения, проходящего через вещество. Искомый результат начального измерения представляет собой не массовую плотность, ρ, которая будет конечным произведением, а индекс электронной плотности, ρе, вещества. Индекс электронной плотности соотносится с массовой плотностью согласно формуле (1):

где Z - атомный номер вещества, А - его атомный вес.

Ослабление пучка излучения с энергией Е, интенсивностью I0(Е), проходящего через материал с толщиной l и плотностью ρе, может быть записано в виде (2):

где µm(Е) - массовый коэффициент ослабления вещества, I(E) - поток квантов излучения на детектор.

Для определения плотности измеряют I(E) и I0(Е), находят с помощью выражения (2) ρе, затем с помощью выражения (1) находят ρ. Получаемое значение плотности ρ представляет собой средневзвешенное значение плотностей на разных глубинах с весами, распределенными по экспоненте (чем больше глубина, тем меньше значение весового коэффициента).

Массовый коэффициент ослабления µm(Е) зависит от вещества. Чтобы измерить плотность вещества рассматриваемым способом часто проводят калибровочные испытания с известными веществами или их комбинациями. Таким образом, плотномеры, основанные на использовании рентгеновского или гамма-излучения, позволяют бесконтактно контролировать плотность. Они применяются, в частности, при измерении плотности:

- агрессивных, сильновязких, горячих и находящихся под большим давлением жидкостей;

- горных пород в скважинах;

- многофазных сред, протекающих по трубопроводам;

- сыпучих материалов и иногда газов.

Во многих случаях плотность материала пространственно изменяется. Это касается, в частности, сыпучих материалов и лесоматериалов. В случае сыпучего материала плотность вблизи его поверхности может отличаться от объемной вследствие, например, другой влажности, весового уплотнения или различного гранулометрического состава. Изменение плотности по глубине в случае лесоматериала связано с кольцевой структурой бревна и наличием различных дефектов. Знание изменения плотности бревна по глубине или величины плотности на определенной глубине позволяет отбраковывать поврежденные бревна или бревна, демонстрирующие слишком много сучков или являющиеся смолистыми, а также позволяет уточнить цену древесины. Плотность нефтепродуктов в трубопроводах также может быть пространственно зависимой вследствие разделения на фракции. Причем степень разделения зависит от режима течения и может изменяться во времени.

Радиационные методы и устройства, применяемые для бесконтактного измерения плотности вещества, характеризуются глубинностью, которая определяется толщиной исследуемого вещества, создающей 90% регистрируемого сигнала.

Известно «Измерение плотности с использованием обратно рассеяния гамма-излучения». Способ включает: размещение детектора гамма-излучения рядом с резервуаром; обнаружение гамма-излучения от источника гамма-излучения, рассеянного в обратном направлении текучей средой, детектором гамма-излучения; определение плотности текучей среды на основании интенсивности гамма-излучения, рассеянного в обратном направлении и воспринятого детектором гамма-излучения. Патент РФ №2386946, МПК: G01N 9/00, 2010 г. Аналог.

Недостатком аналога является неконтролируемое влияние на результаты измерения плотности находящихся на стенке отложений. Это обусловлено тем, что вклад в сигнал детектора от различных областей измеряемой среды падает по мере удаления от плоскости, в которой находятся источник и детектор гамма-излучения. Поэтому находящиеся на стенке отложения вносят наиболее существенный вклад в величину сигнала детектора.

Известен «Способ бесконтактного измерения плотности пустой породы в составе горной массы на ленточном конвейере». Сущность способа заключается в том, что выполняют облучение исследуемой горной массы потоком гамма-квантов источника излучения, регистрируют потоки гамма-излучения и определяют объемную плотность с учетом интенсивностей потоков гамма-излучения, при этом объемную плотность горной породы, размещенной на движущемся конвейере в составе горной массы, состоящей из полезного ископаемого и горной породы, определяют по разности сигналов постоянного напряжения, пропорциональных интенсивности прямого гамма-излучения, проходящего сквозь горную массу, и интенсивности рассеянного гамма-излучения после взаимодействия с полезным ископаемым, при этом поток гамма-квантов источника излучения направляют вертикально вверх по продольной оси конвейера. Патент РФ №2492454, МПК: G01N 23/00, 2013 г. Аналог.

Недостатками аналога являются:

- зависимость результатов измерений от степени разделения горной породы и полезного ископаемого по поперечному сечению конвейера, а в случае достаточно полного их разделения также от пространственного расположения фокуса рассеянного излучения, т.е. как от количества горной массы, так и от объемного соотношения полезного ископаемого и горной породы в данном сечении;

- необходимость для реализации метода предварительного разделения горной породы и полезного ископаемого на конвейере;

- необходимость расположения источника и детектора излучения по разные стороны от исследуемого объекта.

Известен «Способ и устройство для радиационного измерения плотности твердых тел» путем облучения контролируемого объекта потоком гамма-излучения, регистрации обратно рассеянного излучения и определения плотности по полученным данным, в котором обратно рассеянное излучение регистрируют одновременно в каждом из двух каналов детектора, аппроксимируют функцию плотности распределения радиусов вылета фотонов экспоненциальной зависимостью, по отношению к интенсивности счета в двух каналах детектора получают интегральную характеристику ослабления рассеянного излучения по радиусу, на основе которой по калибровочному графику зависимости интегральной характеристики от плотности при заданной энергии излучения устанавливают плотность объекта контроля. Патент РФ №2345353, МПК: G01N 23/06, G01N 9/24. 2009 г. Прототип.

Недостатками прототипа являются: невозможность регулирования глубинности способа и, как следствие, низкая точность измерения в случае вещества с переменной по глубине плотностью, что обуславливает ограниченность области применения способа веществами, плотность которых постоянна по всему объему.

Низкая точность измерения в случае вещества с переменной по глубине плотностью связана с тем, что плотность излучения, попадающего в детектор, практически экспоненциально зависит от пути, проходимого излучением от источника до детектора в контролируемом веществе. Поэтому основной вклад в сигнал детектора вносят области, прилегающие к поверхности контролируемого вещества между источником и детектором излучения и часто отличающиеся по плотности от остальной части контролируемого вещества.

Техническим результатом изобретения является возможность регулирования глубинности способа и, как следствие, повышение точности измерения в случае веществ с переменной по глубине плотностью и расширение области применения.

Технический результат достигается тем, что в способе определения плотности путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения, регистрации обратно рассеянного излучения, использования интенсивности счета детектора излучения и калибровочного графика измеряют интенсивность счета детектора излучения и интенсивность счета мониторного детектора при различной глубине погружения защитного экрана, определяют нормированную интенсивность счета детектора излучения, находят пространственное распределение плотности контролируемого вещества путем сравнения зависимости нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана с калибровочными графиками нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана, полученными для контролируемого вещества при различных распределениях его плотности по глубине.

Сущность изобретения поясняется на Фиг. 1-3.

На Фиг. 1 показан пример одного из устройств, обеспечивающих реализацию способа, где: 1 - источник излучения, 2 - детектор излучения, 3 - защитный экран, 4 - контролируемое вещество, 5 - кванты излучения, 6 - мониторный детектор.

На Фиг. 2 и Фиг. 3 представлены зависимости относительного вклада в поток квантов излучения 5 на детектор 2 слоев контролируемого вещества 4 различной толщины, рассчитанные при условии, что: расстояние L между генератором 1 и детектором 2 составляет 20 см, а плотность контролируемого вещества 4 составляет 2,7 г/см3. Расчеты выполнены для различных источников электромагнитного излучения: генераторов рентгеновского излучения с напряжением на рентгеновской трубке соответственно 250 кВ и 400 кВ, а также изотопного источника 137Cs с энергией гамма-квантов 662 кэВ.

Зависимости, представленные на Фиг. 2 и 3, получены соответственно в отсутствие и при наличии защитного экрана 3, выполненного в виде пластины из вольфрама толщиной 1 см и введенного в контролируемое вещество 4 на глубину 2 см.

Устройство содержит: источник 1 излучения с мониторным детектором 6; детектор 2 излучения, расположенный на расстоянии L от генератора; защитный экран 3 и устройство для его погружения внутрь контролируемого вещества 4 (на Фиг. 1 не показано), расположенные между источником 1 и детектором 2. При измерении источник 1 и детектор 2 располагаются вблизи или на поверхности контролируемого вещества.

В качестве детектора 2 и мониторного детектора 6 могут быть использованы сцинтилляционные детекторы, например на основе сцинтиллятора в виде кристалла йодистого натрия (NaI:Tl), оптически сопряженного с фотоумножителем. Мониторный детектор 6 можно не использовать, в частности, в случае достаточно высокой стабильности выхода рентгеновского генератора.

Защитный экран 3 изготавливается из материала, эффективно ослабляющего рентгеновское излучение. Такими материалами, в частности, являются свинец и вольфрам. Размеры защитного экрана 3 должны быть достаточными, чтобы препятствовать попаданию квантов 5 напрямую от источника 1 на детектор 2, минуя контролируемое вещество 4, при любой глубине погружения защитного экрана. Толщина защитного экрана d определяется из соотношения:

L>d>>1/µ,

где: µ - коэффициент линейного ослабления излучения в материале защитного экрана, L - расстояние между источником излучения и детектором рентгеновского излучения.

Кванты 5, выходящие из источника 1 в сторону контролируемого вещества 4, частично входят в него. По мере удаления от источника 1 поток квантов 5 уменьшается из-за фотопоглощения и комптоновского рассеяния на атомах контролируемого вещества 4. Кванты 5, попадающие на защитный экран 3, поглощаются в нем. Доля квантов 5, дошедших до детектора 2, зависит от плотности ρ контролируемого вещества 4, расстояния L, а также от глубины погружения защитного экрана 3 в контролируемое вещество 4. Дошедшие до детектора 2 кванты 5 вызывают образование в нем электрических импульсов, количество которых пропорционально потоку квантов. Изменение глубины погружения защитного экрана 3 в контролируемое вещество 4 приводит к изменению толщины слоя контролируемого вещества 4, из которого кванты 5 могут попасть в детектор 2, и, следовательно, к изменению интенсивности возникающих в детекторе 2 электрических импульсов.

Если определять глубинность способа измерения плотности как слоя контролируемого вещества толщиной, определяющей 90% от всего потока квантов 5 на детектор 2, то, как видно из Фиг. 2 и Фиг. 3, при использовании рентгеновских генераторов с напряжением на рентгеновской трубке 250 кВ и 400 кВ введение защитного экрана 3 внутрь контролируемого вещества 4 на 2 см приводит к увеличению глубинности способа соответственно с ≈7,5 см до ≈9 см и с ≈8,5 см до ≈10 см. В случае изотопного источника 137Cs введение защитного экрана 3 не приводит к увеличению глубинности способа, но, как и в случае рентгеновских генераторов, обеспечивает измерение плотности в более удаленных от поверхности областях контролируемого вещества 4. Из Фиг. 3 видно, что слой контролируемого вещества 4 толщиной 2 см (глубина, на которую введен защитный экран 3) не вносит вклад в поток квантов 5 на детектор 2. Таким образом, изменяя глубину погружения защитного экрана 3, можно изменять толщину слоя контролируемого вещества 4, для которой производится измерение плотности.

Способ реализуют следующим образом.

Размещают устройство и защитный экран 3 на поверхности контролируемого вещества 4.

Включают питание электронных устройств: источника 1 (при использовании рентгеновского генератора), детектора 2 и мониторного детектора 6.

Облучают контролируемое вещество 4 потоком электромагнитного излучения. Излучение источника 1 частично входит в контролируемое вещество 4, проходит по нему и выходит на детектор 2. Защитный экран 3 препятствует попаданию квантов 5 напрямую от источника 1 на детектор 2, минуя контролируемое вещество 4.

Измеряют интенсивность счета электрических импульсов, полученных с помощью детектора 2 и мониторного детектора 6.

Находят отношение интенсивности счета детектора 2 к интенсивности счета мониторного детектора 6, получая нормированную интенсивность счета детектора 2.

Повторно находят нормированную интенсивность счета детектора 2 при различной глубине погружения защитного экрана 3 внутрь контролируемого вещества 4.

Строят зависимость нормированной интенсивности счета детектора 2 от глубины погружения защитного экрана 3.

Получают набор калибровочных графиков для данного вещества при различных распределениях его плотности по глубине по результатам численного моделирования (Патент RU №2386946, МПК G01N 9/00, 2010 г.) и/или с помощью измерения тестовых образцов (ГОСТ 23061-90. Грунт. Методы радиоизотопных измерений плотности. ОКСТУ 2009 и патент RU №2249836, МПК: G01V 5/12, 2005 г.).

Сравнивают полученную зависимость нормированной интенсивности счета с калибровочными графиками из набора.

Определяют пространственное распределение плотности контролируемого вещества 4 по калибровочному графику, максимально соответствующему экспериментально полученной зависимости нормированной интенсивности счета детектора 2, с использованием одного из критериев теории вероятностей.

Способ определения плотности путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения, регистрации обратно рассеянного излучения, использования интенсивности счета детектора излучения и калибровочного графика, отличающийся тем, что измеряют интенсивность счета детектора излучения и интенсивность счета мониторного детектора при различной глубине погружения защитного экрана, определяют нормированную интенсивность счета детектора излучения, находят пространственное распределение плотности контролируемого вещества путем сравнения зависимости нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана с калибровочными графиками нормированной интенсивности счета детектора излучения от глубины погружения защитного экрана, полученными для контролируемого вещества при различных распределениях его плотности по глубине.
СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ПЛОТНОСТИ
Источник поступления информации: Роспатент

Showing 161-170 of 198 items.
20.01.2018
№218.016.1c36

Способ изготовления серебряно-кислородно-цезиевого фотокатода

Изобретение относится к электровакуумной технике, в частности к изготовлению полупрозрачных серебряно-кислородно-цезиевых фотокатодов в случаях, где конструктивно нежелательно проведение высокочастотного разряда для окисления основного слоя серебра, а также в целях предотвращения окисления...
Тип: Изобретение
Номер охранного документа: 0002640402
Дата охранного документа: 09.01.2018
04.04.2018
№218.016.363b

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в расчете условия...
Тип: Изобретение
Номер охранного документа: 0002646177
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.3b3b

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине, например, из полупроводниковых, керамических и стеклообразных материалов. Осуществляют разделение лазерного пучка на два и воздействие на обе стороны пластины пучками с равной плотностью энергии....
Тип: Изобретение
Номер охранного документа: 0002647387
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.4197

Компактное широкополосное четырёхкомпонентное приёмное антенное устройство

Устройство относится к радиоприемной технике и может быть использовано в области радиопеленгации, радионавигации и радиомониторинга. Устройство дополнительно к известному решению содержит четвертый симметрирующий трансформатор, четвертый разъем, четвертые экранированные линии связи, приемную...
Тип: Изобретение
Номер охранного документа: 0002649037
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.41aa

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Техническим результатом изобретения являются исключение разрушения пластин термоупругими напряжениями в процессе...
Тип: Изобретение
Номер охранного документа: 0002649054
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.41ab

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Техническим результатом изобретения является исключение разрушения пластин термоупругими напряжениями в процессе...
Тип: Изобретение
Номер охранного документа: 0002649238
Дата охранного документа: 30.03.2018
10.05.2018
№218.016.4539

Конструкционная термостойкая боросодержащая композиция и способ её изготовления

Изобретение относится к области композиционных материалов, содержащих карбид бора, и предназначено для изготовления конструкционных элементов изделий для защиты от тепловых нейтронов. Композиция содержит фенолформальдегидную смолу новолачного типа в количестве 20-28 мас.%, гексаметилентетрамин...
Тип: Изобретение
Номер охранного документа: 0002650140
Дата охранного документа: 09.04.2018
10.05.2018
№218.016.453e

Генератор электромагнитных импульсов

Изобретение относится к технике генерации мощных электромагнитных импульсов и может быть использовано в импульсной радиолокации и при испытаниях технических средств на воздействие мощных импульсных электромагнитных полей. Технический результат - увеличение плотности излучаемой мощности ЭМИ,...
Тип: Изобретение
Номер охранного документа: 0002650103
Дата охранного документа: 09.04.2018
10.05.2018
№218.016.47e8

Радиационный монитор и способ определения мощности эквивалентной дозы гамма-излучения

Группа изобретений относится к области измерительной техники, а именно к радиометрии фотонов, и может быть использована при обнаружении ядерных и радиоактивных материалов на контрольно-пропускных пунктах предприятий, где используются, хранятся или (и) перерабатываются радиоактивные нуклиды....
Тип: Изобретение
Номер охранного документа: 0002650726
Дата охранного документа: 17.04.2018
29.05.2018
№218.016.5648

Электромагнитный привод

Изобретение относится к области электротехники, в частности к электромагнитным приводам постоянного тока для передачи угловых перемещений, и может быть использовано для создания двухпозиционных электромагнитных реле или устройств с поворотом подвижного элемента на некоторый ограниченный угол и...
Тип: Изобретение
Номер охранного документа: 0002654498
Дата охранного документа: 21.05.2018
Showing 161-170 of 179 items.
20.01.2018
№218.016.1c36

Способ изготовления серебряно-кислородно-цезиевого фотокатода

Изобретение относится к электровакуумной технике, в частности к изготовлению полупрозрачных серебряно-кислородно-цезиевых фотокатодов в случаях, где конструктивно нежелательно проведение высокочастотного разряда для окисления основного слоя серебра, а также в целях предотвращения окисления...
Тип: Изобретение
Номер охранного документа: 0002640402
Дата охранного документа: 09.01.2018
04.04.2018
№218.016.363b

Способ лазерной обработки неметаллических материалов

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига или легирования полупроводниковых, керамических и стеклообразных материалов. Способ лазерной обработки неметаллических материалов согласно изобретению заключается в расчете условия...
Тип: Изобретение
Номер охранного документа: 0002646177
Дата охранного документа: 01.03.2018
09.08.2018
№218.016.7a37

Позиционно чувствительный детектор излучений

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании позиционно чувствительных детекторов. Сущность изобретения заключается в том, что позиционно чувствительный детектор излучений содержит сцинтиллятор, при этом сцинтиллятор выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002663307
Дата охранного документа: 07.08.2018
01.03.2019
№219.016.cc0d

Рентгеновский анализатор

Изобретение относится к регистрации рентгеновского и гамма-излучений, к определению их энергетического спектра, к медицинской рентгеновской томографии, к неразрушающему контролю материалов и изделий радиографическим и томографическим методами, к обнаружению источников ионизирующих излучений, к...
Тип: Изобретение
Номер охранного документа: 0002388015
Дата охранного документа: 27.04.2010
01.03.2019
№219.016.ce1b

Газовый детектор

Изобретение относится к мониторингу, радиационному контролю и может быть использовано в ядерной физике, атомной энергетике, в системах контроля и обеспечения безопасности энергетических ядерных реакторов. Технический результат - уменьшение ослабления излучения люминесцирующей газовой среды при...
Тип: Изобретение
Номер охранного документа: 0002421756
Дата охранного документа: 20.06.2011
11.03.2019
№219.016.d85f

Мишенный блок нейтронного генератора

Изобретение относится к мишеням для ядерных реакций для получения интенсивных потоков быстрых монохроматических нейтронов, в частности к нейтронным генераторам. В нейтронном генераторе, в мишенной камере дополнительно на подложке расположена дейтериевая мишень с системой вращения и охлаждения....
Тип: Изобретение
Номер охранного документа: 0002393557
Дата охранного документа: 27.06.2010
11.03.2019
№219.016.d930

Мишенный блок нейтронного генератора

Изобретение относится к получению нейтронов, к мишеням для ядерных реакций, а именно к получению интенсивных потоков быстрых монохроматических нейтронов, в частности к нейтронным генераторам. Технический результат - упрощение конструкции, повышение интенсивности пучка нейтронов. На подложке...
Тип: Изобретение
Номер охранного документа: 0002388014
Дата охранного документа: 27.04.2010
25.04.2019
№219.017.3b0e

Способ импульсного нейтрон-нейтронного каротажа

Использование: для импульсного нейтрон-нейтронного каротажа. Сущность изобретения заключается в том, что облучают породу импульсным потоком быстрых нейтронов, регистрируют временные распределения потоков тепловых и эпитепловых нейтронов, регистрируют заряд, образованный по крайней мере в одном...
Тип: Изобретение
Номер охранного документа: 0002685762
Дата охранного документа: 23.04.2019
29.05.2019
№219.017.69ba

Датчик быстрых нейтронов

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок. Сущность изобретения заключается в том, что датчик быстрых нейтронов содержит источник заряженных частиц, возникающих под...
Тип: Изобретение
Номер охранного документа: 0002469356
Дата охранного документа: 10.12.2012
29.05.2019
№219.017.69be

Нейтронный детектор

Изобретение относится к области измерительной техники, а именно к метрологии излучения нейтронного излучения в присутствии фоновых излучений и электромагнитных наводок. Сущность изобретения заключается в том, что нейтронный датчик содержит источник заряженных частиц, возникающих под действием...
Тип: Изобретение
Номер охранного документа: 0002469352
Дата охранного документа: 10.12.2012
+ добавить свой РИД