×
27.03.2016
216.014.c5d2

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиации. Устройство для улучшения вывода самолета из штопора представляет наплыв горизонтального оперения, выполненный в форме двух несущих поверхностей, установленных симметрично относительно продольной плоскости симметрии самолета в хвостовой части фюзеляжа и пристыкованных к горизонтальному оперению вблизи его корневых хорд. Максимальная ширина каждой несущей поверхности достигается в месте сопряжения ее с горизонтальным оперением. Угол стреловидности каждой несущей поверхности от середины длины до горизонтального оперения составляет 90°÷115°. Изобретение направлено на повышение безопасности эксплуатации самолета при отклонении всех органов управления в нейтральное положение. 9 ил.
Основные результаты: Устройство для улучшения вывода самолета из штопора, содержащее наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, отличающееся тем, что длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, причем максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

Изобретение относится к области авиации и может быть использовано для улучшения вывода из штопора учебно-тренировочного самолета и обеспечения возможности обучения пилотов выводу самолета из штопора различными методами.

Поиск научно-технических решений, направленных на улучшение характеристик вывода самолета из режима штопора, диктуется, прежде всего, необходимостью обеспечения безопасности эксплуатации самолетов. Известно, что по мировой статистике летных происшествий около пятидесяти процентов аварий и катастроф самолетов происходит именно на этих режимах («Аэродинамика самолетов на больших углах атаки. Библ. список», ОНТИ ЦАГИ, 1990; «Авиация общего назначения. Рекомендации для конструкторов», под ред. В.Г. Микеладзе, изд. ЦАГИ, 2001 г., стр. 213).

Проблемы улучшения характеристик вывода из штопора учебно-тренировочного самолета, кроме того, связаны с тем, что:

- с одной стороны, он может эксплуатироваться сравнительно слабоподготовленным пилотом;

- с другой стороны, на таком самолете, как правило, необходимо для обучения пилота иметь возможность демонстрировать все существующие методы вывода из штопора («Авиация общего назначения. Рекомендации для конструкторов», под ред. В.Г. Микеладзе, изд. ЦАГИ, 2001 г., стр. 276; патент РФ №2297364, 2007 г., МПК В64С 5/08, CN 201694385, 2011 г.; МПК В64С 17/00; В64С 3/00, патент US 5,575,442, 1996 г., МПК В64С 21/10; В64С 3/58).

Известно устройство в виде так называемого Λ-наплыва крыла, имеющего кромку обратной стреловидности в месте сочленения его с фюзеляжем (Ученые записки ЦАГИ, т. XXVII, №1-2, 1996 г., Вождаев Е.С., Головкин В.А., Головкин М.А., Долженко Н.Н.). Установка такого Λ-наплыва приводит к разделению вихревых жгутов, формирующихся на носовой части фюзеляжа и собственно на наплыве крыла. В результате при наличии скольжения под подветренным вихревым жгутом наплыва, распространяющимся вдоль подветренной консоли крыла, образуется меньшее разрежение и реализуется меньшая подъемная сила, приводящая к возникновению стабилизирующего момента крена, а, следовательно, улучшается характер сваливания самолета.

Недостатком такого устройства является невозможность его применения на самолете без наплыва крыла, а также неопределенность его влияния на характеристики вывода из штопора.

Наиболее близким из известных технических решений, принятым за прототип, является устройство, содержащее наплыв в виде двух треугольных несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных непосредственно вблизи корневых хорд горизонтального оперения. (Электронные адреса в Интернете: ml и www.embraerdefensesystems.com/english/content/combat/tucano_three_view.asp).

Установка перед горизонтальным оперением такого наплыва, как показывают проведенные эксперименты в вертикальной аэродинамической трубе, приводит к:

- появлению на больших углах атаки дополнительного момента на пикирование;

- увеличению демпфирования вращения;

- переводу самолета, как следствие двух указанных факторов, из режима плоского штопора, который реализуется при углах атаки α≈70°, в режим крутого штопора с углом атаки α≈50° с меньшей частотой вращения.

В результате хотя и улучшается вывод самолета из штопора, но с применением только так называемого усиленного метода пилотирования, при котором осуществляют отклонение вначале элеронов и руля направления полностью против штопора, затем через 0,5 витка - руля направления полностью вниз. Это устройство не обеспечивает вывод самолета из режима штопора другими методами, и, в частности, при отклонении всех органов управления в нейтральное положение одновременно и в правильной последовательности (одновременно руль направления и элероны в нейтральное положение, а через 0,5-1 виток - руль высоты).

Задачей данного изобретения является расширение возможностей вывода самолета из штопора, что особенно важно для учебно-тренировочного самолета, на котором, как правило, пилотов обучают всем методам вывода.

Техническим результатом является создание дополнительного демпфирования и дополнительной нормальной силы, приводящей к увеличению пикирующего момента.

Решение поставленной задачи и технический результат достигаются тем, что в устройстве для улучшения вывода самолета из штопора, содержащем наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, а их максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, причем угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

Такая геометрия устройства и его положение выбраны на основе экспериментальных исследований, проведенных в вертикальной аэродинамической трубе на динамически подобной модели учебно-тренировочного самолета в режимах штопора, а также расчетных оценок влияния установки устройства на характеристики модели. При полете на сверхбольших углах атаки в сечениях фюзеляжа, где установлен наплыв у горизонтального оперения, реализуется дополнительная нормальная сила, приводящая к дополнительному пикирующему моменту. В результате штопор модели происходит на меньших углах атаки по сравнению с исходным вариантом. Кроме того, в режиме штопора, когда модель вращается, на наветренной стороне в двугранном углу, образованном стыком несущей поверхности, расположенной на наветренной стороне, с фюзеляжем создается дополнительное торможение потока. В результате сопротивление вращению, т.е. демпфирование возрастает и модель совершает вращение с меньшей угловой скоростью. Выбранные форма, размеры и угол стреловидности несущих поверхностей, образующих наплыв горизонтального оперения, приводят, в отличие от прототипа, к тому, что вихревое образование, формирующееся на боковой кромке наветренной несущей поверхности, не отдаляется от вертикального оперения, а проходит в непосредственной близости от него и создает скосы, способствующие созданию дополнительного демпфирования за счет вертикального оперения и соответственно дополнительному снижению угловой скорости вращения.

Сформированная геометрия предлагаемого устройства обеспечивает достаточные величины нормальной силы, реализующейся на наплыве у горизонтального оперения, а также дополнительного демпфирования вращения, обусловленного как торможением потока в двугранном углу, образованном стыком несущей поверхности, расположенной на наветренной стороне, с фюзеляжем, так и формирующимся на боковой кромке этой несущей поверхности вихревым образованием, которое благоприятно взаимодействует с вертикальным оперением.

На фиг. 1, 2 изображен общий вид предлагаемого устройства для улучшения вывода самолета из штопора в различных вариантах его исполнения.

На фиг. 3 показаны механизмы образования дополнительного пикирующего момента, приводящего к уменьшению угла атаки в штопоре, а также дополнительного демпфирующего вращение момента.

На фиг. 4 показано вихревое образование, формирующееся на боковой кромке наветренной несущей поверхности, способствующее благоприятной интерференции с вертикальным оперением, что приводит к формированию дополнительного демпфирующего вращение момента.

На фиг. 5 представлены результаты испытаний в вертикальной аэродинамической трубе свободно штопорящей динамически подобной модели учебно-тренировочного самолета с предлагаемым устройством при выводе из штопора усиленным методом пилотирования.

На фиг. 6 показаны результаты испытаний той же модели при выводе из штопора отклонением всех органов управления в нейтральное положение.

На фиг. 7 представлены результаты испытаний модели без предлагаемого устройства при выводе из штопора усиленным методом пилотирования.

На фиг. 8 показаны результаты испытаний модели с устройством-прототипом при выводе из штопора усиленным методом пилотирования.

На фиг. 9 представлены результаты испытаний модели с устройством-прототипом при выводе из штопора отклонением всех органов управления в нейтральное положение.

Устройство для улучшения вывода самолета из штопора (фиг. 1, 2) содержит наплыв у горизонтального оперения при виде в плане в форме двух несущих поверхностей 1 и 2, установленных в хвостовой части фюзеляжа 3 симметрично относительно продольной плоскости симметрии 4 самолета и пристыкованных к горизонтальному оперению 5 непосредственно вблизи его корневых хорд. Длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, где b - корневая хорда горизонтального оперения. Максимальная ширина каждой несущей поверхности достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

На фиг. 1а и 2а изображен вид устройства при виде сбоку.

Внешние обводы устройства при виде в плане могут иметь излом (фиг. 1б) или быть гладкими (фиг. 2б).

Рассмотрим работу устройства (фиг. 1, 2) для улучшения вывода самолета из штопора. Работа заключается в следующем. При полете самолета на больших, закритических углах атаки в режиме штопора в сечениях фюзеляжа, где установлено предлагаемое устройство, на фюзеляже и самом устройстве осуществляется дополнительный подпор - торможение потока. В результате в продольной плоскости симметрии реализуется дополнительная нормальная сила ΔN (фиг. 3а), способствующая созданию дополнительного пикирующего момента ΔMz и снижению угла атаки α самолета. В режиме штопора, т.е. при наличии угловой скорости вращения ω реализуется обтекание с суммарным вектором скорости W, равным векторной сумме скорости V и линейной скорости ωrsinα от углового вращения самолета, где r - текущее расстояние от центра масс модели до сечения А-А (фиг. 3б). В итоге в двугранном углу - стыке наветренной несущей поверхности с фюзеляжем создается дополнительное торможение потока и реализуется сила P1 и демпфирующий вращение момент Мд1 (фиг. 3а). В результате самолет совершает движение с меньшей угловой скоростью. Выбранные размеры и угол стреловидности несущих поверхностей, образующих наплыв у горизонтального оперения, приводят, в отличие от прототипа, к тому, что вихревое образование Г, формирующееся на боковой кромке наветренной несущей поверхности, не отдаляется от вертикального оперения (фиг. 4а), а проходит в непосредственной близости от него. Это вихревое образование создает индуктивные скорости υi (фиг. 4б), способствующие созданию на вертикальном оперении силы Р2 и дополнительного демпфирующего вращение момента Мд2 и соответственно снижению угловой скорости вращения ω. Сформированная геометрия предлагаемого устройства обеспечивает достаточные по величине отмеченные выше положительные эффекты от его установки.

Устройство для улучшения вывода самолета из штопора испытано на динамически подобных свободно штопорящих моделях самолетов в вертикальной аэродинамической трубе.

На фиг. 5, 6 показано, что в результате средний угол атаки модели самолета α(t) в свободном штопоре составляет α≈45°, частота вращения ω=6,5 1/с, т.е. ϖ≈360°/с, ψ(t), где t - время, ψ - угол поворота модели относительно вертикали, α - угол атаки, β - угол скольжения, δ - угол отклонения органов управления; здесь введены также следующие сокращения: Р.Н. - руль направления, Р.В. - руль высоты, Элерон (Пр.) - означает, что указано отклонение правого элерона. Это позволяет производить вывод учебно-тренировочного самолета из штопора усиленным методом за ~0,5 витка, т.е. значение ψ(t)≈180° после срабатывания всех рулей против штопора (фиг. 5), и в течение ~2,5 витков (фиг. 6) после срабатывания всех рулей, даже путем отклонения всех органов управления в нейтральное положение, что в конечном счете обеспечивает существенное повышение безопасности эксплуатации самолета. На фиг. 7 для сравнения приведены результаты испытаний исходной модели самолета, без предлагаемого устройства. Видно, что средний угол атаки в штопоре исходной модели составляет α≈71°, частота вращения ω=10 1/с, причем модель не выходит из штопора (не уменьшает угол атаки до приемлемых значений ~15÷20°) даже за ~5 витков в последовательности срабатывания органов, соответствующей так называемому усиленному методу вывода. На фиг. 8, 9 для сравнения с фиг. 5, 6 приведены результаты испытаний модели с устройством-прототипом. Видно, что штопор модели самолета происходит при среднем значении угла атаки α≈50°, частота вращения ω=6,8 1/с. Значение этих параметров заметно хуже, чем у модели с предлагаемым устройством. Модель с устройством-прототипом выходит из штопора усиленным методом (фиг. 8), но, как можно видеть из фиг. 9, модель не выходит из штопора после срабатывания рулей в нейтральное положение. Многочисленные эксперименты показали, что модель с устройством-прототипом выходила из штопора только с применением усиленного метода пилотирования, что для учебно-тренировочного самолета, предназначенного для обучения пилотов, недостаточно.

Эффективность предложенного устройства подтверждена математическим моделированием и испытаниями динамически подобных свободно штопорящих моделей самолетов в вертикальной аэродинамической трубе. Достигнутый при этом технический результат обеспечивает существенное повышение безопасности эксплуатации самолетов.

Устройство для улучшения вывода самолета из штопора, содержащее наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, отличающееся тем, что длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, причем максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
Источник поступления информации: Роспатент

Showing 41-50 of 277 items.
20.02.2014
№216.012.a1be

Скоростной винтокрыл

Изобретение относится к авиационной технике, а именно к летательным аппаратам вертикального взлета и посадки. Скоростной винтокрыл содержит фюзеляж с хвостовой балкой и килем, две консоли крыла и два несущих винта, расположенных на консолях крыла и установленных с перекрытием, при этом несущие...
Тип: Изобретение
Номер охранного документа: 0002507121
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab7d

Способ смазки внутренней поверхности гильзы-трубы

Изобретение предназначено для повышения качества внутренней поверхности трубы, увеличения стойкости оправок в трубопрокатном производстве и может быть использовано при продольной прокатке труб на оправке с технологическими смазками, нанесенными на внутреннюю поверхность трубы. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002509616
Дата охранного документа: 20.03.2014
10.05.2014
№216.012.c0e2

Стенд для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе

Изобретение относится к экспериментальному оборудованию для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе, в том числе вблизи экрана. Стенд содержит модель с тензовесами, установленную на стойке со штоком, и механизм ее перемещений. Также...
Тип: Изобретение
Номер охранного документа: 0002515127
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c33b

Способ контроля работоспособности многоточечной измерительной системы с входной коммутацией датчиков

Изобретение относится к измерительной технике и может применяться для исследования измерительных характеристик и контроля точности работы измерительного устройства многоточечных измерительных систем с входной коммутацией датчиков. Предлагается способ контроля работоспособности многоточечной...
Тип: Изобретение
Номер охранного документа: 0002515738
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c720

Гиперзвуковой прямоточный воздушно-реактивный двигатель и способ организации горения

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит воздухозаборник, топливную форсунку, расположенную в носовой части перед воздухозаборником по его оси и соединенную с ним пилонами, камеру сгорания, воспламенитель и сопло. Топливная форсунка выполнена в виде газоструйного...
Тип: Изобретение
Номер охранного документа: 0002516735
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cbc8

Способ поверки датчика силы и устройство для его осуществления

Изобретения относятся к области измерительной техники и могут быть использованы для поверки датчиков силы, используемых для испытаний авиационных конструкций. Способ позволяет проводить поверку датчика силы непосредственно на месте его использования. Устройство для осуществления способа...
Тип: Изобретение
Номер охранного документа: 0002517939
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d4bd

Способ разработки метангидратов и устройство для его реализации

Изобретение относится к техническим средствам освоения ресурсов Мирового океана и может быть применено для добычи метангидратов. Способ разработки залежей метангидратов основан на их дроблении струями воды при температуре выше 285К со скоростью более 1 м/с в пульсирующем режиме с частотой в...
Тип: Изобретение
Номер охранного документа: 0002520232
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d6de

Способ организации детонационного режима горения в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя

Способ организации детонационного режима горения в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя включает сжатие воздуха в системе внешних и внутренних скачков уплотнения, возникающих на фиксированных и регулируемых элементах фюзеляжа и силовой установки, подачу...
Тип: Изобретение
Номер охранного документа: 0002520784
Дата охранного документа: 27.06.2014
20.08.2014
№216.012.ed23

Аэродинамическая труба

Изобретение относится к экспериментальной аэродинамике, в частности к аэродинамическим установкам (трубам), и может быть использовано для испытаний моделей лопастей воздушных винтов. Устройство содержит входной тракт с задвижкой и дросселем для ввода сжатого воздуха, форкамеру, пульсатор,...
Тип: Изобретение
Номер охранного документа: 0002526515
Дата охранного документа: 20.08.2014
27.09.2014
№216.012.f7f0

Дозвуковой пассажирский самолет

Дозвуковой пассажирский самолет содержит низко расположенное механизированное стреловидное крыло с удлинением λ≥11,5. Стреловидность крыла по линии четверти хорд выполнена в диапазоне от χ=25° до χ=30°. Установочные углы стапельной крутки сверхкритических опорных профилей крыла выполнены...
Тип: Изобретение
Номер охранного документа: 0002529309
Дата охранного документа: 27.09.2014
Showing 41-50 of 153 items.
20.02.2014
№216.012.a1be

Скоростной винтокрыл

Изобретение относится к авиационной технике, а именно к летательным аппаратам вертикального взлета и посадки. Скоростной винтокрыл содержит фюзеляж с хвостовой балкой и килем, две консоли крыла и два несущих винта, расположенных на консолях крыла и установленных с перекрытием, при этом несущие...
Тип: Изобретение
Номер охранного документа: 0002507121
Дата охранного документа: 20.02.2014
20.03.2014
№216.012.ab7d

Способ смазки внутренней поверхности гильзы-трубы

Изобретение предназначено для повышения качества внутренней поверхности трубы, увеличения стойкости оправок в трубопрокатном производстве и может быть использовано при продольной прокатке труб на оправке с технологическими смазками, нанесенными на внутреннюю поверхность трубы. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002509616
Дата охранного документа: 20.03.2014
10.05.2014
№216.012.c0e2

Стенд для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе

Изобретение относится к экспериментальному оборудованию для определения вращательных производных аэродинамических сил и моментов модели в аэродинамической трубе, в том числе вблизи экрана. Стенд содержит модель с тензовесами, установленную на стойке со штоком, и механизм ее перемещений. Также...
Тип: Изобретение
Номер охранного документа: 0002515127
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c33b

Способ контроля работоспособности многоточечной измерительной системы с входной коммутацией датчиков

Изобретение относится к измерительной технике и может применяться для исследования измерительных характеристик и контроля точности работы измерительного устройства многоточечных измерительных систем с входной коммутацией датчиков. Предлагается способ контроля работоспособности многоточечной...
Тип: Изобретение
Номер охранного документа: 0002515738
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c720

Гиперзвуковой прямоточный воздушно-реактивный двигатель и способ организации горения

Гиперзвуковой прямоточный воздушно-реактивный двигатель содержит воздухозаборник, топливную форсунку, расположенную в носовой части перед воздухозаборником по его оси и соединенную с ним пилонами, камеру сгорания, воспламенитель и сопло. Топливная форсунка выполнена в виде газоструйного...
Тип: Изобретение
Номер охранного документа: 0002516735
Дата охранного документа: 20.05.2014
10.06.2014
№216.012.cbc8

Способ поверки датчика силы и устройство для его осуществления

Изобретения относятся к области измерительной техники и могут быть использованы для поверки датчиков силы, используемых для испытаний авиационных конструкций. Способ позволяет проводить поверку датчика силы непосредственно на месте его использования. Устройство для осуществления способа...
Тип: Изобретение
Номер охранного документа: 0002517939
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d4bd

Способ разработки метангидратов и устройство для его реализации

Изобретение относится к техническим средствам освоения ресурсов Мирового океана и может быть применено для добычи метангидратов. Способ разработки залежей метангидратов основан на их дроблении струями воды при температуре выше 285К со скоростью более 1 м/с в пульсирующем режиме с частотой в...
Тип: Изобретение
Номер охранного документа: 0002520232
Дата охранного документа: 20.06.2014
27.06.2014
№216.012.d6de

Способ организации детонационного режима горения в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя

Способ организации детонационного режима горения в камере сгорания гиперзвукового прямоточного воздушно-реактивного двигателя включает сжатие воздуха в системе внешних и внутренних скачков уплотнения, возникающих на фиксированных и регулируемых элементах фюзеляжа и силовой установки, подачу...
Тип: Изобретение
Номер охранного документа: 0002520784
Дата охранного документа: 27.06.2014
20.08.2014
№216.012.ed23

Аэродинамическая труба

Изобретение относится к экспериментальной аэродинамике, в частности к аэродинамическим установкам (трубам), и может быть использовано для испытаний моделей лопастей воздушных винтов. Устройство содержит входной тракт с задвижкой и дросселем для ввода сжатого воздуха, форкамеру, пульсатор,...
Тип: Изобретение
Номер охранного документа: 0002526515
Дата охранного документа: 20.08.2014
27.09.2014
№216.012.f7f0

Дозвуковой пассажирский самолет

Дозвуковой пассажирский самолет содержит низко расположенное механизированное стреловидное крыло с удлинением λ≥11,5. Стреловидность крыла по линии четверти хорд выполнена в диапазоне от χ=25° до χ=30°. Установочные углы стапельной крутки сверхкритических опорных профилей крыла выполнены...
Тип: Изобретение
Номер охранного документа: 0002529309
Дата охранного документа: 27.09.2014
+ добавить свой РИД