×
27.03.2016
216.014.c5d2

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиации. Устройство для улучшения вывода самолета из штопора представляет наплыв горизонтального оперения, выполненный в форме двух несущих поверхностей, установленных симметрично относительно продольной плоскости симметрии самолета в хвостовой части фюзеляжа и пристыкованных к горизонтальному оперению вблизи его корневых хорд. Максимальная ширина каждой несущей поверхности достигается в месте сопряжения ее с горизонтальным оперением. Угол стреловидности каждой несущей поверхности от середины длины до горизонтального оперения составляет 90°÷115°. Изобретение направлено на повышение безопасности эксплуатации самолета при отклонении всех органов управления в нейтральное положение. 9 ил.
Основные результаты: Устройство для улучшения вывода самолета из штопора, содержащее наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, отличающееся тем, что длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, причем максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

Изобретение относится к области авиации и может быть использовано для улучшения вывода из штопора учебно-тренировочного самолета и обеспечения возможности обучения пилотов выводу самолета из штопора различными методами.

Поиск научно-технических решений, направленных на улучшение характеристик вывода самолета из режима штопора, диктуется, прежде всего, необходимостью обеспечения безопасности эксплуатации самолетов. Известно, что по мировой статистике летных происшествий около пятидесяти процентов аварий и катастроф самолетов происходит именно на этих режимах («Аэродинамика самолетов на больших углах атаки. Библ. список», ОНТИ ЦАГИ, 1990; «Авиация общего назначения. Рекомендации для конструкторов», под ред. В.Г. Микеладзе, изд. ЦАГИ, 2001 г., стр. 213).

Проблемы улучшения характеристик вывода из штопора учебно-тренировочного самолета, кроме того, связаны с тем, что:

- с одной стороны, он может эксплуатироваться сравнительно слабоподготовленным пилотом;

- с другой стороны, на таком самолете, как правило, необходимо для обучения пилота иметь возможность демонстрировать все существующие методы вывода из штопора («Авиация общего назначения. Рекомендации для конструкторов», под ред. В.Г. Микеладзе, изд. ЦАГИ, 2001 г., стр. 276; патент РФ №2297364, 2007 г., МПК В64С 5/08, CN 201694385, 2011 г.; МПК В64С 17/00; В64С 3/00, патент US 5,575,442, 1996 г., МПК В64С 21/10; В64С 3/58).

Известно устройство в виде так называемого Λ-наплыва крыла, имеющего кромку обратной стреловидности в месте сочленения его с фюзеляжем (Ученые записки ЦАГИ, т. XXVII, №1-2, 1996 г., Вождаев Е.С., Головкин В.А., Головкин М.А., Долженко Н.Н.). Установка такого Λ-наплыва приводит к разделению вихревых жгутов, формирующихся на носовой части фюзеляжа и собственно на наплыве крыла. В результате при наличии скольжения под подветренным вихревым жгутом наплыва, распространяющимся вдоль подветренной консоли крыла, образуется меньшее разрежение и реализуется меньшая подъемная сила, приводящая к возникновению стабилизирующего момента крена, а, следовательно, улучшается характер сваливания самолета.

Недостатком такого устройства является невозможность его применения на самолете без наплыва крыла, а также неопределенность его влияния на характеристики вывода из штопора.

Наиболее близким из известных технических решений, принятым за прототип, является устройство, содержащее наплыв в виде двух треугольных несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных непосредственно вблизи корневых хорд горизонтального оперения. (Электронные адреса в Интернете: ml и www.embraerdefensesystems.com/english/content/combat/tucano_three_view.asp).

Установка перед горизонтальным оперением такого наплыва, как показывают проведенные эксперименты в вертикальной аэродинамической трубе, приводит к:

- появлению на больших углах атаки дополнительного момента на пикирование;

- увеличению демпфирования вращения;

- переводу самолета, как следствие двух указанных факторов, из режима плоского штопора, который реализуется при углах атаки α≈70°, в режим крутого штопора с углом атаки α≈50° с меньшей частотой вращения.

В результате хотя и улучшается вывод самолета из штопора, но с применением только так называемого усиленного метода пилотирования, при котором осуществляют отклонение вначале элеронов и руля направления полностью против штопора, затем через 0,5 витка - руля направления полностью вниз. Это устройство не обеспечивает вывод самолета из режима штопора другими методами, и, в частности, при отклонении всех органов управления в нейтральное положение одновременно и в правильной последовательности (одновременно руль направления и элероны в нейтральное положение, а через 0,5-1 виток - руль высоты).

Задачей данного изобретения является расширение возможностей вывода самолета из штопора, что особенно важно для учебно-тренировочного самолета, на котором, как правило, пилотов обучают всем методам вывода.

Техническим результатом является создание дополнительного демпфирования и дополнительной нормальной силы, приводящей к увеличению пикирующего момента.

Решение поставленной задачи и технический результат достигаются тем, что в устройстве для улучшения вывода самолета из штопора, содержащем наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, а их максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, причем угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

Такая геометрия устройства и его положение выбраны на основе экспериментальных исследований, проведенных в вертикальной аэродинамической трубе на динамически подобной модели учебно-тренировочного самолета в режимах штопора, а также расчетных оценок влияния установки устройства на характеристики модели. При полете на сверхбольших углах атаки в сечениях фюзеляжа, где установлен наплыв у горизонтального оперения, реализуется дополнительная нормальная сила, приводящая к дополнительному пикирующему моменту. В результате штопор модели происходит на меньших углах атаки по сравнению с исходным вариантом. Кроме того, в режиме штопора, когда модель вращается, на наветренной стороне в двугранном углу, образованном стыком несущей поверхности, расположенной на наветренной стороне, с фюзеляжем создается дополнительное торможение потока. В результате сопротивление вращению, т.е. демпфирование возрастает и модель совершает вращение с меньшей угловой скоростью. Выбранные форма, размеры и угол стреловидности несущих поверхностей, образующих наплыв горизонтального оперения, приводят, в отличие от прототипа, к тому, что вихревое образование, формирующееся на боковой кромке наветренной несущей поверхности, не отдаляется от вертикального оперения, а проходит в непосредственной близости от него и создает скосы, способствующие созданию дополнительного демпфирования за счет вертикального оперения и соответственно дополнительному снижению угловой скорости вращения.

Сформированная геометрия предлагаемого устройства обеспечивает достаточные величины нормальной силы, реализующейся на наплыве у горизонтального оперения, а также дополнительного демпфирования вращения, обусловленного как торможением потока в двугранном углу, образованном стыком несущей поверхности, расположенной на наветренной стороне, с фюзеляжем, так и формирующимся на боковой кромке этой несущей поверхности вихревым образованием, которое благоприятно взаимодействует с вертикальным оперением.

На фиг. 1, 2 изображен общий вид предлагаемого устройства для улучшения вывода самолета из штопора в различных вариантах его исполнения.

На фиг. 3 показаны механизмы образования дополнительного пикирующего момента, приводящего к уменьшению угла атаки в штопоре, а также дополнительного демпфирующего вращение момента.

На фиг. 4 показано вихревое образование, формирующееся на боковой кромке наветренной несущей поверхности, способствующее благоприятной интерференции с вертикальным оперением, что приводит к формированию дополнительного демпфирующего вращение момента.

На фиг. 5 представлены результаты испытаний в вертикальной аэродинамической трубе свободно штопорящей динамически подобной модели учебно-тренировочного самолета с предлагаемым устройством при выводе из штопора усиленным методом пилотирования.

На фиг. 6 показаны результаты испытаний той же модели при выводе из штопора отклонением всех органов управления в нейтральное положение.

На фиг. 7 представлены результаты испытаний модели без предлагаемого устройства при выводе из штопора усиленным методом пилотирования.

На фиг. 8 показаны результаты испытаний модели с устройством-прототипом при выводе из штопора усиленным методом пилотирования.

На фиг. 9 представлены результаты испытаний модели с устройством-прототипом при выводе из штопора отклонением всех органов управления в нейтральное положение.

Устройство для улучшения вывода самолета из штопора (фиг. 1, 2) содержит наплыв у горизонтального оперения при виде в плане в форме двух несущих поверхностей 1 и 2, установленных в хвостовой части фюзеляжа 3 симметрично относительно продольной плоскости симметрии 4 самолета и пристыкованных к горизонтальному оперению 5 непосредственно вблизи его корневых хорд. Длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, где b - корневая хорда горизонтального оперения. Максимальная ширина каждой несущей поверхности достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

На фиг. 1а и 2а изображен вид устройства при виде сбоку.

Внешние обводы устройства при виде в плане могут иметь излом (фиг. 1б) или быть гладкими (фиг. 2б).

Рассмотрим работу устройства (фиг. 1, 2) для улучшения вывода самолета из штопора. Работа заключается в следующем. При полете самолета на больших, закритических углах атаки в режиме штопора в сечениях фюзеляжа, где установлено предлагаемое устройство, на фюзеляже и самом устройстве осуществляется дополнительный подпор - торможение потока. В результате в продольной плоскости симметрии реализуется дополнительная нормальная сила ΔN (фиг. 3а), способствующая созданию дополнительного пикирующего момента ΔMz и снижению угла атаки α самолета. В режиме штопора, т.е. при наличии угловой скорости вращения ω реализуется обтекание с суммарным вектором скорости W, равным векторной сумме скорости V и линейной скорости ωrsinα от углового вращения самолета, где r - текущее расстояние от центра масс модели до сечения А-А (фиг. 3б). В итоге в двугранном углу - стыке наветренной несущей поверхности с фюзеляжем создается дополнительное торможение потока и реализуется сила P1 и демпфирующий вращение момент Мд1 (фиг. 3а). В результате самолет совершает движение с меньшей угловой скоростью. Выбранные размеры и угол стреловидности несущих поверхностей, образующих наплыв у горизонтального оперения, приводят, в отличие от прототипа, к тому, что вихревое образование Г, формирующееся на боковой кромке наветренной несущей поверхности, не отдаляется от вертикального оперения (фиг. 4а), а проходит в непосредственной близости от него. Это вихревое образование создает индуктивные скорости υi (фиг. 4б), способствующие созданию на вертикальном оперении силы Р2 и дополнительного демпфирующего вращение момента Мд2 и соответственно снижению угловой скорости вращения ω. Сформированная геометрия предлагаемого устройства обеспечивает достаточные по величине отмеченные выше положительные эффекты от его установки.

Устройство для улучшения вывода самолета из штопора испытано на динамически подобных свободно штопорящих моделях самолетов в вертикальной аэродинамической трубе.

На фиг. 5, 6 показано, что в результате средний угол атаки модели самолета α(t) в свободном штопоре составляет α≈45°, частота вращения ω=6,5 1/с, т.е. ϖ≈360°/с, ψ(t), где t - время, ψ - угол поворота модели относительно вертикали, α - угол атаки, β - угол скольжения, δ - угол отклонения органов управления; здесь введены также следующие сокращения: Р.Н. - руль направления, Р.В. - руль высоты, Элерон (Пр.) - означает, что указано отклонение правого элерона. Это позволяет производить вывод учебно-тренировочного самолета из штопора усиленным методом за ~0,5 витка, т.е. значение ψ(t)≈180° после срабатывания всех рулей против штопора (фиг. 5), и в течение ~2,5 витков (фиг. 6) после срабатывания всех рулей, даже путем отклонения всех органов управления в нейтральное положение, что в конечном счете обеспечивает существенное повышение безопасности эксплуатации самолета. На фиг. 7 для сравнения приведены результаты испытаний исходной модели самолета, без предлагаемого устройства. Видно, что средний угол атаки в штопоре исходной модели составляет α≈71°, частота вращения ω=10 1/с, причем модель не выходит из штопора (не уменьшает угол атаки до приемлемых значений ~15÷20°) даже за ~5 витков в последовательности срабатывания органов, соответствующей так называемому усиленному методу вывода. На фиг. 8, 9 для сравнения с фиг. 5, 6 приведены результаты испытаний модели с устройством-прототипом. Видно, что штопор модели самолета происходит при среднем значении угла атаки α≈50°, частота вращения ω=6,8 1/с. Значение этих параметров заметно хуже, чем у модели с предлагаемым устройством. Модель с устройством-прототипом выходит из штопора усиленным методом (фиг. 8), но, как можно видеть из фиг. 9, модель не выходит из штопора после срабатывания рулей в нейтральное положение. Многочисленные эксперименты показали, что модель с устройством-прототипом выходила из штопора только с применением усиленного метода пилотирования, что для учебно-тренировочного самолета, предназначенного для обучения пилотов, недостаточно.

Эффективность предложенного устройства подтверждена математическим моделированием и испытаниями динамически подобных свободно штопорящих моделей самолетов в вертикальной аэродинамической трубе. Достигнутый при этом технический результат обеспечивает существенное повышение безопасности эксплуатации самолетов.

Устройство для улучшения вывода самолета из штопора, содержащее наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, отличающееся тем, что длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, причем максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
Источник поступления информации: Роспатент

Showing 211-220 of 277 items.
09.06.2019
№219.017.7b93

Устройство для измерения угловых зависимостей спектральных коэффициентов инфракрасного излучения материалов

Изобретение относится к измерительной технике. Устройство содержит цилиндрическую вакуумную камеру с размещенными в ней охлаждаемым экраном, исследуемым образцом материала с нагревателем, закрепленными на вращающейся подвеске, и оптическую измерительную систему, состоящую из монохроматора,...
Тип: Изобретение
Номер охранного документа: 0002339921
Дата охранного документа: 27.11.2008
09.06.2019
№219.017.7c01

Стенд для измерения массы, координат центра масс и тензора инерции изделия

Изобретение относится к области механических измерений, в частности к измерению массы, координат центра масс и тензора инерции машиностроительных изделий, и может быть использовано в машиностроении, судостроении, авиации и космической технике. Устройство содержит раму, к которой крепится...
Тип: Изобретение
Номер охранного документа: 0002368880
Дата охранного документа: 27.09.2009
09.06.2019
№219.017.7c10

Полумостовой преобразователь приращения сопротивления в напряжение

Изобретение относится к измерительной технике и может быть использовано, в частности, в тензометрии. Полумостовой преобразователь приращения сопротивления в напряжение содержит полумост, два операционных усилителя, источник напряжения, три резистора, дифференциальный усилитель и сумматор....
Тип: Изобретение
Номер охранного документа: 0002366965
Дата охранного документа: 10.09.2009
09.06.2019
№219.017.7c24

Устройство для преобразования изменения сопротивления в напряжение

Устройство относится к измерительной технике и может быть использовано в авиационной промышленности, машиностроении, строительстве и т.д. для исследования прочности конструкций с помощью тензорезисторов. Устройство содержит тензорезистор, резистор и источник тока, соединенные последовательно, а...
Тип: Изобретение
Номер охранного документа: 0002366966
Дата охранного документа: 10.09.2009
19.06.2019
№219.017.845d

Самолет с системой управления общесамолетным оборудованием

Изобретение относится к авиационной технике и предназначено для использования при реализации управления учебно-тренировочными полетами. Самолет содержит фюзеляж, крыло, оперение, шасси, двигатели основной силовой установки, воздухозаборники с ограниченными крылом каналами. На крыле с...
Тип: Изобретение
Номер охранного документа: 0002263044
Дата охранного документа: 27.10.2005
19.06.2019
№219.017.85cf

Способ калибровки и коррекции результатов измерения многоканального измерительно-вычислительного комплекса

Указанный способ применим к измерительно-вычислительному комплексу (ИВК), включающему в себя узел коммутации (УК), программируемый нормирующий преобразователь (ПНП), микропроцессор (МП) и встроенный радиоканал связи (PC), с целью обеспечения работы комплекса в широком диапазоне температур...
Тип: Изобретение
Номер охранного документа: 0002345328
Дата охранного документа: 27.01.2009
19.06.2019
№219.017.85d8

Многоканальный преобразователь сопротивления резистивных датчиков в напряжение

Изобретение относится к техническим средствам измерения неэлектрических величин электрическим способом. Многоканальный преобразователь сопротивления резистивных датчиков в напряжение содержит источник опорного напряжения, четыре источника взвешенного напряжения, два источника постоянного тока,...
Тип: Изобретение
Номер охранного документа: 0002343494
Дата охранного документа: 10.01.2009
19.06.2019
№219.017.868e

Шумоглушащее сопло воздушно-реактивного двигателя (варианты)

Изобретение относится к области авиации, в частности к соплам летательных аппаратов с устройствами для снижения шума струи воздушно-реактивного двигателя. Предложено три варианта шумоглушащего сопла. В первом варианте канал сужающегося плоского сопла воздушно-реактивного двигателя с вырезами на...
Тип: Изобретение
Номер охранного документа: 0002313680
Дата охранного документа: 27.12.2007
19.06.2019
№219.017.8b3a

Устройство для экспериментального определения комплексов вращательных и нестационарных производных

Изобретение относится к экспериментальной аэродинамике летательных аппаратов и может быть использовано при динамических испытаниях моделей различных летательных аппаратов в аэродинамической трубе. Устройство содержит державку для крепления модели летательного аппарата, измеритель...
Тип: Изобретение
Номер охранного документа: 0002441214
Дата охранного документа: 27.01.2012
19.06.2019
№219.017.8b81

Пульсатор быстропеременного давления

Изобретение относится к измерительной технике и может быть использовано для калибровки датчиков пульсаций давления. Пульсатор содержит сильфон, эталонный и калибруемый датчики давления, расположенные внутри рабочей камеры пульсаций давления сильфона. Вход эталонного датчика через аппаратуру...
Тип: Изобретение
Номер охранного документа: 0002467297
Дата охранного документа: 20.11.2012
Showing 151-153 of 153 items.
18.05.2019
№219.017.5724

Самолет ближне-среднемагистральный

Изобретение относится к области авиации. Самолет выполнен в пропорции L/C=1/1, где L - длина фюзеляжа с диаметром d≥4,18 м, С - размах крыла, образованного сверхкритическими профилями и выполненного со следующими параметрами: удлинение λ≥11,5, стреловидность по линии 1/4 хорд χ≥26,5°, угол...
Тип: Изобретение
Номер охранного документа: 0002384463
Дата охранного документа: 20.03.2010
17.08.2019
№219.017.c168

Устройство для исследования ближнего поля давления модели в аэродинамической трубе

Изобретение относится к области аэродинамики и предназначено для исследования ближнего поля давления модели при сверхзвуковом обтекании в аэродинамической трубе. Устройство содержит генератор ударной волны (модель), поверхность с нанесенным барочувствительным покрытием, расположенную...
Тип: Изобретение
Номер охранного документа: 0002697569
Дата охранного документа: 15.08.2019
02.10.2019
№219.017.ccdb

Способ исследования макета ламинаризированной поверхности

Изобретение относится к области натурных и модельных испытаний элементов летательных аппаратов. Способ исследования макета ламинаризированной поверхности, снабженной активной системой ламинаризации, содержит микроперфорированную поверхность и систему отсоса пограничного слоя. Макет...
Тип: Изобретение
Номер охранного документа: 0002701291
Дата охранного документа: 25.09.2019
+ добавить свой РИД