×
27.03.2016
216.014.c5d2

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиации. Устройство для улучшения вывода самолета из штопора представляет наплыв горизонтального оперения, выполненный в форме двух несущих поверхностей, установленных симметрично относительно продольной плоскости симметрии самолета в хвостовой части фюзеляжа и пристыкованных к горизонтальному оперению вблизи его корневых хорд. Максимальная ширина каждой несущей поверхности достигается в месте сопряжения ее с горизонтальным оперением. Угол стреловидности каждой несущей поверхности от середины длины до горизонтального оперения составляет 90°÷115°. Изобретение направлено на повышение безопасности эксплуатации самолета при отклонении всех органов управления в нейтральное положение. 9 ил.
Основные результаты: Устройство для улучшения вывода самолета из штопора, содержащее наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, отличающееся тем, что длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, причем максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

Изобретение относится к области авиации и может быть использовано для улучшения вывода из штопора учебно-тренировочного самолета и обеспечения возможности обучения пилотов выводу самолета из штопора различными методами.

Поиск научно-технических решений, направленных на улучшение характеристик вывода самолета из режима штопора, диктуется, прежде всего, необходимостью обеспечения безопасности эксплуатации самолетов. Известно, что по мировой статистике летных происшествий около пятидесяти процентов аварий и катастроф самолетов происходит именно на этих режимах («Аэродинамика самолетов на больших углах атаки. Библ. список», ОНТИ ЦАГИ, 1990; «Авиация общего назначения. Рекомендации для конструкторов», под ред. В.Г. Микеладзе, изд. ЦАГИ, 2001 г., стр. 213).

Проблемы улучшения характеристик вывода из штопора учебно-тренировочного самолета, кроме того, связаны с тем, что:

- с одной стороны, он может эксплуатироваться сравнительно слабоподготовленным пилотом;

- с другой стороны, на таком самолете, как правило, необходимо для обучения пилота иметь возможность демонстрировать все существующие методы вывода из штопора («Авиация общего назначения. Рекомендации для конструкторов», под ред. В.Г. Микеладзе, изд. ЦАГИ, 2001 г., стр. 276; патент РФ №2297364, 2007 г., МПК В64С 5/08, CN 201694385, 2011 г.; МПК В64С 17/00; В64С 3/00, патент US 5,575,442, 1996 г., МПК В64С 21/10; В64С 3/58).

Известно устройство в виде так называемого Λ-наплыва крыла, имеющего кромку обратной стреловидности в месте сочленения его с фюзеляжем (Ученые записки ЦАГИ, т. XXVII, №1-2, 1996 г., Вождаев Е.С., Головкин В.А., Головкин М.А., Долженко Н.Н.). Установка такого Λ-наплыва приводит к разделению вихревых жгутов, формирующихся на носовой части фюзеляжа и собственно на наплыве крыла. В результате при наличии скольжения под подветренным вихревым жгутом наплыва, распространяющимся вдоль подветренной консоли крыла, образуется меньшее разрежение и реализуется меньшая подъемная сила, приводящая к возникновению стабилизирующего момента крена, а, следовательно, улучшается характер сваливания самолета.

Недостатком такого устройства является невозможность его применения на самолете без наплыва крыла, а также неопределенность его влияния на характеристики вывода из штопора.

Наиболее близким из известных технических решений, принятым за прототип, является устройство, содержащее наплыв в виде двух треугольных несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных непосредственно вблизи корневых хорд горизонтального оперения. (Электронные адреса в Интернете: ml и www.embraerdefensesystems.com/english/content/combat/tucano_three_view.asp).

Установка перед горизонтальным оперением такого наплыва, как показывают проведенные эксперименты в вертикальной аэродинамической трубе, приводит к:

- появлению на больших углах атаки дополнительного момента на пикирование;

- увеличению демпфирования вращения;

- переводу самолета, как следствие двух указанных факторов, из режима плоского штопора, который реализуется при углах атаки α≈70°, в режим крутого штопора с углом атаки α≈50° с меньшей частотой вращения.

В результате хотя и улучшается вывод самолета из штопора, но с применением только так называемого усиленного метода пилотирования, при котором осуществляют отклонение вначале элеронов и руля направления полностью против штопора, затем через 0,5 витка - руля направления полностью вниз. Это устройство не обеспечивает вывод самолета из режима штопора другими методами, и, в частности, при отклонении всех органов управления в нейтральное положение одновременно и в правильной последовательности (одновременно руль направления и элероны в нейтральное положение, а через 0,5-1 виток - руль высоты).

Задачей данного изобретения является расширение возможностей вывода самолета из штопора, что особенно важно для учебно-тренировочного самолета, на котором, как правило, пилотов обучают всем методам вывода.

Техническим результатом является создание дополнительного демпфирования и дополнительной нормальной силы, приводящей к увеличению пикирующего момента.

Решение поставленной задачи и технический результат достигаются тем, что в устройстве для улучшения вывода самолета из штопора, содержащем наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, а их максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, причем угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

Такая геометрия устройства и его положение выбраны на основе экспериментальных исследований, проведенных в вертикальной аэродинамической трубе на динамически подобной модели учебно-тренировочного самолета в режимах штопора, а также расчетных оценок влияния установки устройства на характеристики модели. При полете на сверхбольших углах атаки в сечениях фюзеляжа, где установлен наплыв у горизонтального оперения, реализуется дополнительная нормальная сила, приводящая к дополнительному пикирующему моменту. В результате штопор модели происходит на меньших углах атаки по сравнению с исходным вариантом. Кроме того, в режиме штопора, когда модель вращается, на наветренной стороне в двугранном углу, образованном стыком несущей поверхности, расположенной на наветренной стороне, с фюзеляжем создается дополнительное торможение потока. В результате сопротивление вращению, т.е. демпфирование возрастает и модель совершает вращение с меньшей угловой скоростью. Выбранные форма, размеры и угол стреловидности несущих поверхностей, образующих наплыв горизонтального оперения, приводят, в отличие от прототипа, к тому, что вихревое образование, формирующееся на боковой кромке наветренной несущей поверхности, не отдаляется от вертикального оперения, а проходит в непосредственной близости от него и создает скосы, способствующие созданию дополнительного демпфирования за счет вертикального оперения и соответственно дополнительному снижению угловой скорости вращения.

Сформированная геометрия предлагаемого устройства обеспечивает достаточные величины нормальной силы, реализующейся на наплыве у горизонтального оперения, а также дополнительного демпфирования вращения, обусловленного как торможением потока в двугранном углу, образованном стыком несущей поверхности, расположенной на наветренной стороне, с фюзеляжем, так и формирующимся на боковой кромке этой несущей поверхности вихревым образованием, которое благоприятно взаимодействует с вертикальным оперением.

На фиг. 1, 2 изображен общий вид предлагаемого устройства для улучшения вывода самолета из штопора в различных вариантах его исполнения.

На фиг. 3 показаны механизмы образования дополнительного пикирующего момента, приводящего к уменьшению угла атаки в штопоре, а также дополнительного демпфирующего вращение момента.

На фиг. 4 показано вихревое образование, формирующееся на боковой кромке наветренной несущей поверхности, способствующее благоприятной интерференции с вертикальным оперением, что приводит к формированию дополнительного демпфирующего вращение момента.

На фиг. 5 представлены результаты испытаний в вертикальной аэродинамической трубе свободно штопорящей динамически подобной модели учебно-тренировочного самолета с предлагаемым устройством при выводе из штопора усиленным методом пилотирования.

На фиг. 6 показаны результаты испытаний той же модели при выводе из штопора отклонением всех органов управления в нейтральное положение.

На фиг. 7 представлены результаты испытаний модели без предлагаемого устройства при выводе из штопора усиленным методом пилотирования.

На фиг. 8 показаны результаты испытаний модели с устройством-прототипом при выводе из штопора усиленным методом пилотирования.

На фиг. 9 представлены результаты испытаний модели с устройством-прототипом при выводе из штопора отклонением всех органов управления в нейтральное положение.

Устройство для улучшения вывода самолета из штопора (фиг. 1, 2) содержит наплыв у горизонтального оперения при виде в плане в форме двух несущих поверхностей 1 и 2, установленных в хвостовой части фюзеляжа 3 симметрично относительно продольной плоскости симметрии 4 самолета и пристыкованных к горизонтальному оперению 5 непосредственно вблизи его корневых хорд. Длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, где b - корневая хорда горизонтального оперения. Максимальная ширина каждой несущей поверхности достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.

На фиг. 1а и 2а изображен вид устройства при виде сбоку.

Внешние обводы устройства при виде в плане могут иметь излом (фиг. 1б) или быть гладкими (фиг. 2б).

Рассмотрим работу устройства (фиг. 1, 2) для улучшения вывода самолета из штопора. Работа заключается в следующем. При полете самолета на больших, закритических углах атаки в режиме штопора в сечениях фюзеляжа, где установлено предлагаемое устройство, на фюзеляже и самом устройстве осуществляется дополнительный подпор - торможение потока. В результате в продольной плоскости симметрии реализуется дополнительная нормальная сила ΔN (фиг. 3а), способствующая созданию дополнительного пикирующего момента ΔMz и снижению угла атаки α самолета. В режиме штопора, т.е. при наличии угловой скорости вращения ω реализуется обтекание с суммарным вектором скорости W, равным векторной сумме скорости V и линейной скорости ωrsinα от углового вращения самолета, где r - текущее расстояние от центра масс модели до сечения А-А (фиг. 3б). В итоге в двугранном углу - стыке наветренной несущей поверхности с фюзеляжем создается дополнительное торможение потока и реализуется сила P1 и демпфирующий вращение момент Мд1 (фиг. 3а). В результате самолет совершает движение с меньшей угловой скоростью. Выбранные размеры и угол стреловидности несущих поверхностей, образующих наплыв у горизонтального оперения, приводят, в отличие от прототипа, к тому, что вихревое образование Г, формирующееся на боковой кромке наветренной несущей поверхности, не отдаляется от вертикального оперения (фиг. 4а), а проходит в непосредственной близости от него. Это вихревое образование создает индуктивные скорости υi (фиг. 4б), способствующие созданию на вертикальном оперении силы Р2 и дополнительного демпфирующего вращение момента Мд2 и соответственно снижению угловой скорости вращения ω. Сформированная геометрия предлагаемого устройства обеспечивает достаточные по величине отмеченные выше положительные эффекты от его установки.

Устройство для улучшения вывода самолета из штопора испытано на динамически подобных свободно штопорящих моделях самолетов в вертикальной аэродинамической трубе.

На фиг. 5, 6 показано, что в результате средний угол атаки модели самолета α(t) в свободном штопоре составляет α≈45°, частота вращения ω=6,5 1/с, т.е. ϖ≈360°/с, ψ(t), где t - время, ψ - угол поворота модели относительно вертикали, α - угол атаки, β - угол скольжения, δ - угол отклонения органов управления; здесь введены также следующие сокращения: Р.Н. - руль направления, Р.В. - руль высоты, Элерон (Пр.) - означает, что указано отклонение правого элерона. Это позволяет производить вывод учебно-тренировочного самолета из штопора усиленным методом за ~0,5 витка, т.е. значение ψ(t)≈180° после срабатывания всех рулей против штопора (фиг. 5), и в течение ~2,5 витков (фиг. 6) после срабатывания всех рулей, даже путем отклонения всех органов управления в нейтральное положение, что в конечном счете обеспечивает существенное повышение безопасности эксплуатации самолета. На фиг. 7 для сравнения приведены результаты испытаний исходной модели самолета, без предлагаемого устройства. Видно, что средний угол атаки в штопоре исходной модели составляет α≈71°, частота вращения ω=10 1/с, причем модель не выходит из штопора (не уменьшает угол атаки до приемлемых значений ~15÷20°) даже за ~5 витков в последовательности срабатывания органов, соответствующей так называемому усиленному методу вывода. На фиг. 8, 9 для сравнения с фиг. 5, 6 приведены результаты испытаний модели с устройством-прототипом. Видно, что штопор модели самолета происходит при среднем значении угла атаки α≈50°, частота вращения ω=6,8 1/с. Значение этих параметров заметно хуже, чем у модели с предлагаемым устройством. Модель с устройством-прототипом выходит из штопора усиленным методом (фиг. 8), но, как можно видеть из фиг. 9, модель не выходит из штопора после срабатывания рулей в нейтральное положение. Многочисленные эксперименты показали, что модель с устройством-прототипом выходила из штопора только с применением усиленного метода пилотирования, что для учебно-тренировочного самолета, предназначенного для обучения пилотов, недостаточно.

Эффективность предложенного устройства подтверждена математическим моделированием и испытаниями динамически подобных свободно штопорящих моделей самолетов в вертикальной аэродинамической трубе. Достигнутый при этом технический результат обеспечивает существенное повышение безопасности эксплуатации самолетов.

Устройство для улучшения вывода самолета из штопора, содержащее наплыв в виде двух несущих поверхностей, установленных в хвостовой части фюзеляжа симметрично относительно продольной плоскости симметрии самолета и пристыкованных к горизонтальному оперению непосредственно вблизи его корневых хорд, отличающееся тем, что длина каждой несущей поверхности вдоль длины фюзеляжа лежит в пределах 1,1÷1,5 b, причем максимальная ширина достигается в месте сопряжения с горизонтальным оперением и лежит в пределах 0,1÷0,15 b, где b - корневая хорда горизонтального оперения, а угол стреловидности от середины длины каждой несущей поверхности до горизонтального оперения составляет 90°÷115°.
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
УСТРОЙСТВО ДЛЯ УЛУЧШЕНИЯ ВЫВОДА САМОЛЕТА ИЗ ШТОПОРА
Источник поступления информации: Роспатент

Showing 91-100 of 277 items.
20.11.2015
№216.013.92f1

Способ снижения вертикальных и угловых перегрузок транспортного средства при движении по поверхности и транспортное средство, реализующее этот способ

Группа изобретений относится к способу снижения динамической нагруженности транспортного средства. Транспортное средство содержит корпус, амортизационное устройство, систему управления жесткостью и демпфированием амортизационного устройства, систему управления, логико-вычислительную подсистему,...
Тип: Изобретение
Номер охранного документа: 0002569235
Дата охранного документа: 20.11.2015
27.12.2016
№216.013.9df7

Устройство и способ для измерения быстропеременного давления

Изобретения относятся к измерительной технике, в частности к средствам и методам для измерения давления. В устройстве используются пленочные емкостные датчики, позволяющие измерять пульсации давления, возникающие от нагрузки вибрации, также устройство содержит державку, демпфер, снижающий...
Тип: Изобретение
Номер охранного документа: 0002572069
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9fa6

Учебный самолет

Изобретение относится к авиации и касается винтомоторных монопланов, предназначенных для первоначальной подготовки летного состава и тренировки пилотов. Учебный самолет содержит тянущий воздушно-винтовой движитель, шасси, механизированное крыло и фюзеляж, включающий кабину экипажа, снабженную...
Тип: Изобретение
Номер охранного документа: 0002572507
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.c3d2

Способ определения остаточных напряжений в композиционных материалах

Изобретение относится к области экспериментальной механики и предназначено для определения остаточных напряжений, возникающих при изготовлении тонкостенных конструкций летательных аппаратов из композиционных материалов. Технический результат от реализации данного изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002574231
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c513

Способ управления упругими изгибными и крутильными деформациями несущей поверхности и устройство для его реализации

Изобретение относится к области авиации, в частности к конструкциям и способам изменения аэродинамических характеристик несущих поверхностей летательных аппаратов. Способ управления упругими изгибными и крутильными деформациями несущей поверхности включает операцию деформирования кессона...
Тип: Изобретение
Номер охранного документа: 0002574491
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c8c0

Динамически подобная аэродинамическая модель несущей поверхности летательного аппарата

Изобретение относится к области экспериментальных исследований динамических явлений аэроупругости летательных аппаратов в аэродинамических трубах. Динамически подобная аэродинамическая модель несущей поверхности содержит силовую упругую балку-лонжерон, дренированные блоки, установленные по...
Тип: Изобретение
Номер охранного документа: 0002578915
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0363

Регулятор давления воздуха в форкамере аэродинамической трубы с форсированным выходом на заданный режим

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, регулятор давления. Регулятор давления выполнен в виде последовательно включенных...
Тип: Изобретение
Номер охранного документа: 0002587518
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.046d

Аэроупругая модель

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах (АДТ), где требуется проведение исследований явлений аэроупругости. Сущность изобретения состоит в том, что во внутренней полости аэроупругой модели с лимитированным зазором...
Тип: Изобретение
Номер охранного документа: 0002587525
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.04f5

Регулятор давления воздуха в форкамере аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, а также регулятор давления. Регулятор давления состоит из сумматора отрицательной...
Тип: Изобретение
Номер охранного документа: 0002587526
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.373a

Аэродинамический профиль крыла

Изобретение относится к авиационной технике. Аэродинамический профиль крыла включает носовую часть круговой формы малого радиуса от передней кромки до сопряжения с контуром нижней поверхности. Носовая часть профиля крыла от передней кромки профиля до сопряжения с контуром верхней поверхности...
Тип: Изобретение
Номер охранного документа: 0002581642
Дата охранного документа: 20.04.2016
Showing 91-100 of 153 items.
20.11.2015
№216.013.92f1

Способ снижения вертикальных и угловых перегрузок транспортного средства при движении по поверхности и транспортное средство, реализующее этот способ

Группа изобретений относится к способу снижения динамической нагруженности транспортного средства. Транспортное средство содержит корпус, амортизационное устройство, систему управления жесткостью и демпфированием амортизационного устройства, систему управления, логико-вычислительную подсистему,...
Тип: Изобретение
Номер охранного документа: 0002569235
Дата охранного документа: 20.11.2015
27.12.2016
№216.013.9df7

Устройство и способ для измерения быстропеременного давления

Изобретения относятся к измерительной технике, в частности к средствам и методам для измерения давления. В устройстве используются пленочные емкостные датчики, позволяющие измерять пульсации давления, возникающие от нагрузки вибрации, также устройство содержит державку, демпфер, снижающий...
Тип: Изобретение
Номер охранного документа: 0002572069
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9fa6

Учебный самолет

Изобретение относится к авиации и касается винтомоторных монопланов, предназначенных для первоначальной подготовки летного состава и тренировки пилотов. Учебный самолет содержит тянущий воздушно-винтовой движитель, шасси, механизированное крыло и фюзеляж, включающий кабину экипажа, снабженную...
Тип: Изобретение
Номер охранного документа: 0002572507
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.c3d2

Способ определения остаточных напряжений в композиционных материалах

Изобретение относится к области экспериментальной механики и предназначено для определения остаточных напряжений, возникающих при изготовлении тонкостенных конструкций летательных аппаратов из композиционных материалов. Технический результат от реализации данного изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002574231
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c513

Способ управления упругими изгибными и крутильными деформациями несущей поверхности и устройство для его реализации

Изобретение относится к области авиации, в частности к конструкциям и способам изменения аэродинамических характеристик несущих поверхностей летательных аппаратов. Способ управления упругими изгибными и крутильными деформациями несущей поверхности включает операцию деформирования кессона...
Тип: Изобретение
Номер охранного документа: 0002574491
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c8c0

Динамически подобная аэродинамическая модель несущей поверхности летательного аппарата

Изобретение относится к области экспериментальных исследований динамических явлений аэроупругости летательных аппаратов в аэродинамических трубах. Динамически подобная аэродинамическая модель несущей поверхности содержит силовую упругую балку-лонжерон, дренированные блоки, установленные по...
Тип: Изобретение
Номер охранного документа: 0002578915
Дата охранного документа: 27.03.2016
20.06.2016
№217.015.0363

Регулятор давления воздуха в форкамере аэродинамической трубы с форсированным выходом на заданный режим

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, регулятор давления. Регулятор давления выполнен в виде последовательно включенных...
Тип: Изобретение
Номер охранного документа: 0002587518
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.046d

Аэроупругая модель

Изобретение относится к области аэродинамических испытаний и предназначено для использования в аэродинамических трубах (АДТ), где требуется проведение исследований явлений аэроупругости. Сущность изобретения состоит в том, что во внутренней полости аэроупругой модели с лимитированным зазором...
Тип: Изобретение
Номер охранного документа: 0002587525
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.04f5

Регулятор давления воздуха в форкамере аэродинамической трубы

Изобретение относится к области экспериментальной аэродинамики, в частности к аэродинамическим трубам. Устройство содержит задающее устройство, исполнительный механизм, датчики температуры, давления, положения, а также регулятор давления. Регулятор давления состоит из сумматора отрицательной...
Тип: Изобретение
Номер охранного документа: 0002587526
Дата охранного документа: 20.06.2016
20.04.2016
№216.015.373a

Аэродинамический профиль крыла

Изобретение относится к авиационной технике. Аэродинамический профиль крыла включает носовую часть круговой формы малого радиуса от передней кромки до сопряжения с контуром нижней поверхности. Носовая часть профиля крыла от передней кромки профиля до сопряжения с контуром верхней поверхности...
Тип: Изобретение
Номер охранного документа: 0002581642
Дата охранного документа: 20.04.2016
+ добавить свой РИД