×
10.02.2016
216.014.c22f

Результат интеллектуальной деятельности: АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к авиации и касается аппаратов на воздушной подушке (АВП) с системами демпфирования колебаний по высоте и автоматического управления по углам крена и тангажа. АВП содержит ограждение ВП, снабженное воздуховодом, расположенным вдоль периметра корпуса и разделенным на две изолированные полости, пневматически связанные с ограждением. Двигатель кинематически связан с нагнетателем, соединенным посредством воздуховода и дроссельной заслонки с соответствующей изолированной полостью. АВП также содержит систему управления, содержащую датчики вертикальной и угловой перегрузки. При этом датчики связаны с вычислителем, вырабатывающим по сигналам от датчиков сигнал на исполнительный механизм привода открытия заслонок и управляемого клапана. Привод открытия дроссельной заслонки выполнен в виде однокаскадного следящего привода типа «сопло-заслонка», а система управления выполнена с обратной связью по угловому положению и по скорости АВП. Достигается обеспечение автоматического управления угловыми колебаниями и демпфирования вертикальных колебаний АВП. 7 з.п. ф-лы, 11 ил.

Изобретение относится к области авиации, в частности к аппаратам на воздушной подушке, преимущественно к самолетам с шасси на воздушной подушке, оснащенным системой стабилизации, в том числе системой демпфирования колебаний по высоте, и системой автоматического управления по углам тангажа и крена.

Из уровня техники известны аппараты на воздушной подушке (далее АВП), оснащенные системой стабилизации. Так в патенте РФ №2256570, МПК B60V 1/16, B60V 1/12, B60V 3/02, дата публикации 20.05.2005 [1], представлен АВП, содержащий корпус, ограждение воздушной подушки, снабженное воздуховодом, расположенным вдоль периметра АВП и разделенным, по меньшей мере, на две изолированные полости, пневматически связанные с ограждением, силовую установку, содержащую, по меньшей мере, один двигатель, кинематически связанный не менее чем с одним нагнетателем, соединенным посредством воздуховода и дроссельной заслонки с соответствующей изолированной полостью, по меньшей мере, один канал, соединяющий камеру воздушной подушки с атмосферой посредством управляемого клапана, систему управления, содержащую, по меньшей мере, один датчик вертикальной перегрузки и, по меньшей мере, один датчик угловой перегрузки, при этом указанные датчики связаны с вычислителем, вырабатывающим по сигналам от указанных датчиков сигнал на привод открытия соответствующей дроссельной заслонки и управляемого клапана.

В описании изобретения [1], принятого в качестве наиболее близкого аналога, система управления выполнена без обратной связи, что является недостатком изобретения [1], поскольку приводит к увеличению действующих на аппарат на воздушной подушке перегрузок при движении по взволнованной водной и неровной грунтовой поверхностям.

Решаемой в изобретении задачей является уменьшение действующих на АВП перегрузок при движении по взволнованной водной и неровной грунтовой поверхностям.

Технический результат заключается в обеспечении автоматического управления угловыми колебаниями и демпфирования вертикальных колебаний АВП.

Сущность изобретения состоит в следующем.

Аппарат на воздушной подушке, как и в наиболее близком аналоге, содержит корпус, ограждение воздушной подушки, снабженное воздуховодом, расположенным вдоль периметра корпуса аппарата на воздушной подушке и разделенным, по меньшей мере, на две изолированные полости, пневматически связанные с ограждением, силовую установку, содержащую, по меньшей мере, один двигатель, кинематически связанный не менее чем с одним нагнетателем, соединенным посредством воздуховода и дроссельной заслонки с соответствующей изолированной полостью, по меньшей мере, один канал, соединяющий камеру воздушной подушки с атмосферой посредством управляемого клапана, систему управления, содержащую, по меньшей мере, по одному датчику вертикальной перегрузки и угловой перегрузки, при этом указанные датчики связаны с вычислителем, вырабатывающим по сигналам от указанных датчиков сигнал на исполнительный механизм привода открытия соответствующих дроссельной заслонки и управляемого клапана, но в отличие от наиболее близкого аналога корпус, ограждение воздушной подушки, снабженное воздуховодом, расположенным вдоль периметра корпуса аппарата на воздушной подушке и разделенным, по меньшей мере, на две изолированные полости, пневматически связанные с ограждением, силовую установку, содержащую, по меньшей мере, один двигатель, кинематически связанный не менее чем с одним нагнетателем, соединенным посредством воздуховода и дроссельной заслонки с соответствующей изолированной полостью, по меньшей мере, один канал, соединяющий камеру воздушной подушки с атмосферой посредством управляемого клапана, систему управления, содержащую, по меньшей мере, по одному датчику вертикальной перегрузки и угловой перегрузки, при этом указанные датчики связаны с вычислителем, вырабатывающим по сигналам от указанных датчиков сигнал на исполнительный механизм привода открытия соответствующих дроссельной заслонки и управляемого клапана.

Аппарат на воздушной подушке характеризуется тем, что исполнительный механизм однокаскадного привода типа «сопло-заслонка» содержит, по меньшей мере, один пневмодвигатель, соединенный с соответствующей дроссельной заслонкой.

При этом следящий привод снабжен компрессором, подающим воздух под давлением в канал питания привода.

Аппарат на воздушной подушке характеризуется тем, что исполнительный механизм однокаскадного привода типа «сопло-заслонка» содержит, по меньшей мере, один гидродвигатель, соединенный с соответствующей дроссельной заслонкой.

Аппарат на воздушной подушке характеризуется тем, что система управления дополнительно содержит датчики давления воздуха в отдельных полостях воздушной подушки, связанные с логико-вычислительной подсистемой, вырабатывающей по данным от этих датчиков сигнал на отклонение дроссельных заслонок.

Аппарат на воздушной подушке характеризуется тем, что за воздушным движителем установлены аэродинамические вертикальные и/или горизонтальные рули, оснащенные электропневматическим или электрогидравлическим следящими приводами для их поворота, сигналы на отклонение которых связаны с системой управления транспортным средством.

Аппарат на воздушной подушке характеризуется тем, что двигатель соединен посредством трансмиссии, по меньшей мере, с одним воздушным движителем для создания тяги и с одним или более нагнетателями для создания воздушной подушки.

Аппарат на воздушной подушке характеризуется тем, что размещенный вдоль периметра корпуса воздуховод разделен мембранами на четыре полости.

Изобретение поясняется чертежами.

На фиг. 1 представлен АВП при виде в плане.

На фиг. 2 показано АВП при виде спереди.

На фиг. 3 показан разрез АВП в продольной плоскости.

На фиг. 4 приведена схема разделения ограждения АВП на изолированные полости.

На фиг. 5 показан разрез А-А на фиг. 1.

На фиг. 6 приведена схема управления дроссельными заслонками.

На фиг. 7 приведена схема расположения датчиков давления воздуха в элементах ограждения АВП.

На фиг. 8 приведена схема управления с помощью АВП по углам крена и тангажа.

На фиг. 9 приведена принципиальная схема поворота дроссельных заслонок с помощью электропневматического следящего привода.

На фиг. 10 приведена принципиальная схема поворота дроссельных заслонок с помощью электрогидравлического следящего привода.

На фиг. 11 показана блок-схема адаптивной системы демпфирования АВП по углам крена и тангажа.

Раскрытие изобретения.

АВП содержит корпус 1, силовую установку, включающую, по меньшей мере, один двигатель 2, кинематически связанный, например, посредством трансмиссии, не менее чем с одним нагнетателем, выполненным, например, в виде осевого вентилятора 3, ограждение 4 камеры 5 воздушной подушки и систему управления (фиг. 1, 2, 3).

По периметру корпуса 1, например вдоль ограждения 4, расположены воздуховоды 6, разделенные, например, мембранами 7, по меньшей мере, на две, а в предпочтительном варианте - на четыре изолированные полости, соответственно: носовую 8, кормовую 9, правого 10 и левого 11 бортов (фиг. 4, 5, 6, 7). Каждая из изолированных полостей 8, 9, 10, 11 пневматически связана с ограждением 4 и с нагнетателем, например осевым вентилятором 3, посредством дроссельных заслонок соответственно 12, 13, 14 и 15. Камера 5 воздушной подушки может соединяться с атмосферой каналом 16 с размещенным в нем управляемым клапаном 17 (фиг. 5).

Система управления содержит, по меньшей мере, по одному датчику вертикальной перегрузки и угловой перегрузки, в предпочтительном варианте выполнения - датчики перегрузки в носовой 18 и кормовой 19 частях АВП, датчики угла тангажа 20 и угла крена 21. В каждой из изолированных полостей 8, 9, 10, 11 установлены датчики давления 22, 23, 24, 25 соответственно в носовой, кормовой, правого борта, левого борта изолированных полостях (фиг. 6). Все датчики 18-25 связаны с вычислителем 26, вырабатывающим по сигналам от датчиков 18-25 сигнал на привод 27, 28, 29, 30 открытия соответственно дроссельных заслонок 12, 13, 14, 15 (фиг. 6, 7), а также привод 31 управляемого клапана 17 (фиг. 5). Система управления также может содержать контур управления работой двигателей 2 силовой установки и нагнетателей, например осевого вентилятора 3. При этом система управления выполнена с обратной связью по угловому положению и по скорости.

В предпочтительном варианте выполнения камера 5 воздушной подушки мембранами 7 разделена на четыре изолированные полости 8, 9, 10, 11 (фиг. 4), каждая из которых оснащена собственным нагнетателем, например осевым вентилятором 3 (фиг. 8). Обратная связь системы управления по угловому положению содержит датчик 20, 21 углового положения по тангажу и крену (фиг. 6), кинематическая связь привода с соответствующей дроссельной заслонкой 12, 13, 14, 15 содержит шарико-винтовую передачу 32 и реечный механизм 33 (фиг. 8).

В качестве привода 27-30 дроссельных заслонок 11-14 при взлетной массе АВП 2-5 тонн целесообразно использовать электропневматический однокаскадный следящий привод типа «сопло-заслонка» (фиг. 9), а при взлетной массе АВП более 5 тонн - электрогидравлический однокаскадный следящий привод типа «сопло-заслонка» (фиг. 10).

Принципиальная схема системы регулирования давления в воздушной подушке с помощью электропневматического однокаскадного привода типа «сопло-заслонка» (ЭПСП) содержит следующие элементы (фиг. 9): 34 - сопло; 35 - заслонка; 36 - упругая (разделительная) трубка; 37, 38 - дроссели пневматического моста; 39 - исполнительный пневмодвигатель (пневмоцилиндр); 40 - шток; 41 - устройство «сопло-заслонка»; 42 - датчик обратной связи; 43 - усилитель электрических сигналов; 44 - элемент воздушной подушки; 45 - опорная поверхность; 46 - электромеханический преобразователь; 47 - магнит постоянного тока; 48 - якорь; 49 - обмотка якоря. При этом сжатый воздух поступает в следящий привод от компрессора (не показан).

Принципиальная схема регулирования давления в воздушной подушке с помощью электрогидравлического односкаскадного привода типа «сопло-заслонка» (ЭГСП) (фиг. 10) отличается от электропневматической ЭПСП (фиг. 9) тем, что вместо дросселей 37, 38 пневматического моста и исполнительного пневмодвигателя 39 со штоком 40 установлены дроссели 50, 51 гидравлического моста, исполнительный гидродвигатель 52 с поршнем 53 (фиг. 10).

Система управления АВП по углам крена и тангажа, как показано на фиг. 6, 8, 11, содержит:

- исполнительную подсистему (пневмодвигатели 39 или гидродвигатели 52 приводов 27, 28, 29, 30 поворота дроссельных заслонок 12, 13, 14, 15);

- регулирующую подсистему (система дроссельных заслонок 12, 13, 14, 15);

- энергетическую подсистему (двигатели 2, нагнетатели, например осевые вентиляторы 3, источники питания);

- логико-вычислительную подсистему (вычислитель 26, выполненный, например, в виде программируемого контроллера);

- информационная подсистема (датчики 18, 19, 20, 21, 22, 23, 24, 25).

АВП работает следующим образом.

АВП, как объект управления, двигаясь по неровной опорной поверхности, передает в информационную подсистему массив данных об объекте. Информационная подсистема собирает все данные с датчиков 18-25 о движении АВП, данные об энергетической подсистеме, передает суммирующую информацию в вычислитель 26 логико-вычислительной подсистемы, которая за счет введенных алгоритмов и программ вырабатывает управляющий сигнал на операционный усилитель.

В усилителе электрических сигналов 43 сравниваются управляющие сигналы и сигналы от датчиков обратной связи 42 положения соответствующих исполнительных элементов приводов 27-30 - пневмодвигателей 39 и гидродвигателей 52. По сигналу рассогласования вырабатывается сигнал на соответствующие пневмодвигатели 39 и гидродвигатели 52 приводов 27-30, которые устанавливают необходимое положение дроссельных заслонок 12-15. Дроссельные заслонки 12-15 изменяют перераспределение массовых расходов воздуха, подаваемого в изолированные полости 8-11 ограждения 4 камеры 5 воздушной подушки, тем самым управляя АВП по углам крена и тангажа (фиг. 6, 9-11).

Система управления АВП по крену и тангажу с электропневматическим или электрогидравлическим следящим приводом управления дроссельными заслонками 12-15 и управляемого клапана 17 работает следующим образом.

На операционный усилитель электрических сигналов 43 от логико-вычислительной подсистемы приходит сигнал Uвx. Он сравнивается с сигналом от датчика обратной связи 42 положения штока 40 пневмоцилиндра пневмодвигателя 39 (фиг. 9) или штока 53 гидроцилиндра гидродвигателя 52 (фиг. 10) Uос (угла поворота дроссельных заслонок 12-15). Разница этих сигналов поступает в электромеханический преобразователь 46 на обмотки якоря 49. Между постоянными магнитом 47 и якорем 48 возникает электромагнитное поле, поворачивающее якорь 48 на определенный угол. К якорю 48 с помощью упругого элемента 36 прикреплена заслонка 35. Поворачиваясь, например, по часовой стрелке, она перекрывает левое сопло 34 и открывает отверстие правого сопла 34. Таким образом, расход в левой части электропневматического (или электрогидравлического) усилителя через дроссель 37 и левое сопло 34 уменьшится (произойдет увеличение давления воздуха в левой полости пневмоцилиндра пневмодвигателя 39 или гидроцилиндра гидродвигателя 52), а в правой части электропневматического (или электрогидравлического) усилителя расход увеличится через дроссель постоянного сечения 38 и правое сопло 34 (давление воздуха в правой полости пневмоцилиндра пневмодвигателя 39 или гидроцилиндра гидродвигателя 52 уменьшится). Возникнет перепад давления между полостями пневмоцилиндра 39 или гидроцилиндра гидродвигателя 52, его шток переместится на такое расстояние, когда отношение Uвх и Uос будет равняться нулю. При этом левые дроссельные заслонки 15 откроют канал 6 для поступления воздуха в полость 11 левого борта, а две правые дроссельные заслонки 14 закроют канал 6 для поступления воздуха в полость 10 правого борта. С помощью алгоритмов логико-вычислительной подсистемы достигается плавное управление АВП по углам крена и тангажа.

Для обеспечения необходимой информацией логико-вычислительной системой АВП для выработки сигналов управления на исполнительные органы целесообразно, кроме измерения скорости движения АВП, продольных и поперечных перегрузок, измерять датчиками 22-25 (фиг. 7) также избыточные давления в полостях 8-11 шасси на воздушной подушке. С помощью этих датчиков 22-25 (фиг. 7) управление АВП будет происходить своевременно и более плавно, система управления будет иметь большие запасы устойчивости. Датчики 22-25 давления установлены в каждый элемент 44 ограждения 4 камеры 5 воздушной подушки, а также в каждый их четырех каналов 6, по которым воздух поступает от вентилятора в полости камеры 5 (ресивера) воздушной подушки.

Представленное описание АВП раскрыто в достаточной мере для разработки конструкции и реализации изобретения на специализированных предприятиях. Изобретение соответствует условию патентоспособности «промышленная применимость».

ПЕРЕЧЕНЬ ПОЗИЦИЙ И ОБОЗНАЧЕНИЙ

1 - корпус;

2 - двигатель;

3 - осевой вентилятор;

4 - ограждение камеры воздушной подушки;

5 - камера воздушной подушки;

6 - воздуховод;

7 - мембрана;

8 - носовая изолированная полость;

9 - кормовая изолированная полость;

10 - правого борта изолированная полость;

11 - левого борта изолированная полость;

12 - дроссельная заслонка, соединяющая воздуховод 6 с носовой изолированной полостью 8;

13 - дроссельная заслонка, соединяющая воздуховод 6 с кормовой изолированной полостью 9;

14 - дроссельная заслонка, соединяющая воздуховод 6 с правого борта изолированной полостью 10;

15 - дроссельная заслонка, соединяющая воздуховод 6 с левого борта изолированной полостью 11;

16 - канал;

17 - управляемый клапан;

18 - датчик перегрузки в носовой части АВП;

19 - датчик перегрузки в кормовой части АВП;

20 - датчик угла тангажа;

21 - датчик угла крена;

22 - датчики давления в носовой изолированной полости 8;

23 - датчики давления в кормовой изолированной полости 9;

24 - датчики давления в правого борта изолированной полости 10;

25 - датчики давления в левого борта изолированной полости 11;

26 - вычислитель;

27 - привод дросселирующей заслонки 12;

28 - привод дросселирующей заслонки 13;

29 - привод дросселирующей заслонки 14;

30 - привод дросселирующей заслонки 15;

31 - электродвигатель управляемого клапана 17;

32 - шарико-винтовая передача;

33 - реечный механизм;

34 - сопло;

35 - заслонка;

36 - упругая (разделительная) трубка;

37 - дроссель пневматического моста;

38 - дроссель пневматического моста;

39 - исполнительный пневмодвигатель;

40 - шток;

41 - устройство «сопло-заслонка»;

42 - датчик обратной связи;

43 - усилитель электрических сигналов;

44 - элемент воздушной подушки;

45 - опорная поверхность;

46 - электромеханический преобразователь;

47 - магнит постоянного тока;

48 - якорь;

49 - обмотка якоря;

50 - дроссель гидравлического моста;

51 - дроссель гидравлического моста;

52 - гидродвигатель;

53 - шток гидродвигателя;

Uвх - входной сигнал на операционный усилитель электрических сигналов 43;

Uос - сигнал от датчика обратной связи 42 на операционный усилитель электрических сигналов 43.


АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ
АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ
АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ
АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ
АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ
АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ
АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ
АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ
АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ
АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ
АППАРАТ НА ВОЗДУШНОЙ ПОДУШКЕ
Источник поступления информации: Роспатент

Showing 131-140 of 263 items.
20.09.2015
№216.013.7d71

Способ контроля обледенения жалюзи воздухоприемной решетки

Изобретение предназначено для определения начала обледенения жалюзи воздухоприемной решетки при исследовании тепловых процессов, осуществляемых в целях защиты от обледенения. Обледенение решетки жалюзи определяют по образованию инея на влажном марлевом бинте, который предварительно укладывают...
Тип: Изобретение
Номер охранного документа: 0002563710
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d75

Крупногабаритная воздухоприемная решетка с обогреваемыми жалюзи

Изобретение относится к области защиты судовых устройств от обледенения. Решетка с обогреваемыми жалюзи выполнена из модулей-ршеток, заполненных теплопроводным компаундом и объединенных общей рамой. Греющие кабели проложены в разных модулях, объедены в общую электрическую сеть и запитаны от...
Тип: Изобретение
Номер охранного документа: 0002563714
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d76

Способ защиты воздухозаборных решеток с жалюзи от обледенения и устройство для его осуществления

Изобретение относится к устройствам для защиты вентиляционных решеток с жалюзи от обледенения. Устройство содержит полые жалюзи для прокладки внутри них греющего кабеля и заполнения теплопроводящим веществом частей полости жалюзи. Торцы элементов ребер жесткости выполнены вогнутыми...
Тип: Изобретение
Номер охранного документа: 0002563715
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7f07

Способ двухступенчатого преобразования энергии ионизирующего излучения в электрическую энергию

Изобретение относится к способу преобразования энергии ионизирующего излучения в ультрафиолетовое излучение. В заявленном способе предусмотрено использование диссоциирующего газа и преобразование ультрафиолетового излучения в электрическую энергию с помощью полупроводникового алмаза. Источник...
Тип: Изобретение
Номер охранного документа: 0002564116
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.818f

Способ легирования стали

Изобретение относится к области металлургии и может быть использовано при получении быстрорежущей стали из отходов изношенного режущего инструмента. В способе осуществляют расплавление отходов в индукционной тигельной печи с последующим проведением химанализа полученного расплава и...
Тип: Изобретение
Номер охранного документа: 0002564764
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.86f2

Способ получения пенополиуретанового нанокомпозита

Изобретение относится к производству полимерных композитов на основе пенополиуретанов, которые могут быть использованы для теплоизоляции конструкций в судостроении, авиастроении и автомобильной промышленности. Способ получения пенополиуретанового нанокомпозита включает предварительную...
Тип: Изобретение
Номер охранного документа: 0002566149
Дата охранного документа: 20.10.2015
27.10.2015
№216.013.87f8

Пьезоэлектрический акселерометр

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров ускорения в виброметрии, сейсмологии и акустики. Пьезоэлектрический акселерометр содержит предусилитель и концентрично расположенные кольцевые инерционную массу, корпус и первый...
Тип: Изобретение
Номер охранного документа: 0002566411
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.9047

Лигатура для титановых сплавов

Изобретение относится к области металлургии и может быть использовано при производстве титановых сплавов. Лигатура для титановых сплавов содержит, мас.%: ванадий 30-50, углерод 1-4, молибден 5-25, титан 5-20, алюминий 20-50, примеси - остальное. Изобретение позволяет за счет добавки в титановый...
Тип: Изобретение
Номер охранного документа: 0002568551
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.904b

Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления

Изобретение относится к получению наноструктурированного конгломерированного порошкового материала для нанесения износо-коррозионностойких покрытий гизодинамическим и газотермическим напылением. Проводят диспергирование наноструктурного материала в жидкую среду посредством ультразвука и сушку...
Тип: Изобретение
Номер охранного документа: 0002568555
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90fe

Устройство для получения и хранения атомарного водорода

Изобретение относится к энергетическому оборудованию и может быть использовано в водородной энергетике для получения, хранения и транспортировки водорода. Устройство для получения атомарного водорода содержит реактор 1, работающий на разложении воды твердым реагентом, анод 3, катод 4 и...
Тип: Изобретение
Номер охранного документа: 0002568734
Дата охранного документа: 20.11.2015
Showing 131-140 of 201 items.
20.07.2015
№216.013.63e0

Способ термической обработки поковок из высокопрочной коррозионно-стойкой стали мартенситного класса

Изобретение относится к области термообработки поковок из легированных сталей и предназначено для использования в судовом машиностроении при изготовлении гребных валов. Для получения требуемой категории прочности металла с пределом текучести не менее 800 МПа и повышения коррозионной стойкости...
Тип: Изобретение
Номер охранного документа: 0002557115
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.695b

Способ индикации летчику о положении летательного аппарата относительно заданной глиссады при заходе на посадку на корабль

Изобретение относится к способам индикации летчику положения летательного аппарата (ЛА) при посадке на корабль. Определяют взаимное положение ЛА и корабля с помощью глобальной или корабельной системы позиционирования и бортовой цифровой вычислительной машины. Формируют и отображают на...
Тип: Изобретение
Номер охранного документа: 0002558524
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.695c

Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового бпла

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА). Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА содержит...
Тип: Изобретение
Номер охранного документа: 0002558525
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6be8

Способ активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового летательного аппарата

Изобретение относится к активной тепловой защите теплонапряженных элементов конструкции летательного аппарата (ЛА), управлению его обтеканием и работой силовой установки. Способ включает формирование защитного слоя из продуктов разложения метангидрата (смеси паров воды и метана). Последние...
Тип: Изобретение
Номер охранного документа: 0002559182
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6cec

Состав эпоксиполиуретанового компаунда и способ его получения

Изобретение относится к составу двухкомпонентного эпоксиполиуретанового заливочного электроизоляционного компаунда и способу его получения. Компонента «А» состоит из мономерно-олигомерной смеси полиэпоксидов, состоящей из диглицидилового эфира бисфенола А, моноглицидилового эфира бисфенола А и...
Тип: Изобретение
Номер охранного документа: 0002559442
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.70e6

Способ получения многослойного материала

Изобретение может быть использовано для получения крупногабаритных многослойных материалов, используемых в атомной, нефтегазовой, химической отраслях промышленности, а также в судостроении. Для повышения прочности сцепления металлических плит из разнородных материалов применяют нанесение...
Тип: Изобретение
Номер охранного документа: 0002560472
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7558

Способ получения композиционного плакированного порошка для нанесения покрытий

Изобретение относится к получению композиционных порошков для защитных износостойких покрытий. Готовят смесь неметаллической керамической компоненты и металлического порошка при массовом соотношении 1:(1-4). Неметаллическую компоненту используют с размером фракций, составляющим 1/100 размера...
Тип: Изобретение
Номер охранного документа: 0002561615
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.777c

Установка для сварки трением с перемешиванием

Установка может быть использована при сварке трением прессованных или катаных тонкостенных полуфабрикатов неограниченной длины из алюминиевых сплавов. Сварочный инструмент закреплен на корпусе, имеющем привод его поступательного перемещения вдоль линии сварки по горизонтальной поверхности...
Тип: Изобретение
Номер охранного документа: 0002562177
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7888

Стенд для измерения стато - динамических характеристик физических объектов

Изобретение относится к области измерительной техники и может быть использовано для измерения массы, координат центра масс и моментов инерции объектов машиностроения. Устройство состоит из динамометрической платформы для измерения массы изделия, пятикомпонентного динамометрического элемента,...
Тип: Изобретение
Номер охранного документа: 0002562445
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d02

Устройство для контроля подводного плавсредства с самого плавсредства

Использование: изобретение относится к области гидроакустики и может быть использовано для оперативного контроля параметров подводного шума плавсредства с помощью гидроакустического рабочего средства измерений (РСИ) с самого плавсредства. Сущность: с самого плавсредства в режиме стабилизации...
Тип: Изобретение
Номер охранного документа: 0002563599
Дата охранного документа: 20.09.2015
+ добавить свой РИД