×
27.02.2016
216.014.c131

Результат интеллектуальной деятельности: ГЕОФИЗИЧЕСКИЙ КОМПЛЕКС ДЛЯ МОНИТОРИНГА И МОРСКОЙ СЕЙСМОРАЗВЕДКИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к комплексам для проведения гидро- и геоакустических исследований. Сущность: комплекс содержит надводную аппаратуру (1), а также установленные на дне коммутатор (3) и мультилинейные кабельные антенны с приемниками (5) давления. Надводная аппаратура (1) соединена с коммутатором (3) подводным магистральным кабелем (4). Все мультилинейные кабельные антенны подключены к коммутатору (3), при этом их противоположные концы снабжены якорными фиксаторами (6). Якорные фиксаторы (6) посредством буйрепов соединены с всплывающими буями (7). При этом каждый всплывающий буй (7) выполнен в виде контейнера с дренажными отверстиями и крышкой. Внутри контейнера буя (7) расположен фалонакопитель в виде плавучей катушки с центральным отверстием. Через упомянутое центральное отверстие проходит размыкатель, фиксированный стопорными кольцами со стороны крышки и со стороны нижней части контейнера. Через нижнее стопорное кольцо пропущен буйреп, соединенный с якорным фиксатором (6), а размыкатель электрически герметично соединен с кабелем антенны. Технический результат: расширение функциональных возможностей, повышение надежности и обеспечение многократности развертывания и свертывания комплекса при длительном сроке мониторинга. 3 ил.

Изобретение относится к области гидро- и геоакустики и может быть использовано в морях, океанах, пресноводных водоемах в составе донных геофизических комплексов для проведения исследований, мониторинга и морской сейсморазведки на шельфе в обеспечение инженерно-геофизических работ на морском дне.

Известен стационарный измерительный гидроакустический комплекс (СИГК), состоящий из носителя аппаратуры, выполненного в виде буя с положительной плавучестью. Буй связан гибким кабель-тросом со спуско-подъемным устройством, выполненным в виде заякоренного короба, внутри которого расположена барабанная лебедка с запасом кабель-троса, редуктором и приводом, при этом барабан лебедки закреплен неподвижно с вертикально ориентированной осью. Привод размещен внутри неподвижного барабана, причем на ось привода насажено горизонтально ориентированное коромысло, на одном конце которого закреплен ролик, опирающийся на верхнюю щеку барабана. На другом конце коромысла закреплен ролик-укладчик гибкого кабель-троса с горизонтальной осью вращения, причем нижняя кромка ролика-укладчика лежит в плоскости, проходящей через середину барабана лебедки. Управление приводом и подача электроэнергии на него для всплытия и притопления буя осуществляются по магистральному кабелю, связывающему СИГК с надводным центром управления (патент РФ № 2220069, МПК В63В 22/06, приоритет от 06.12.2001 г.). Недостатком этого устройства является одноточечный характер данных, регистрируемых аппаратурой, расположенной в буе, что не позволяет использовать антенные технологии для выделения полезного сигнала, малая надежность работы на наклонном дне, т.к. при этом ось барабана с запасом кабель-троса не будет вертикально ориентированной, а также необходимость внешнего источника электроэнергии, подводимого по магистральному кабелю.

Наиболее близким по технической сущности и достигаемому результату (прототипом) к предлагаемому устройству является геофизический комплекс для мониторинга и морской сейсморазведки, содержащий подводную аппаратуру, подводный магистральный кабель, набор датчиков, соединенных подводным кабелем между собой, надводную аппаратуру сбора и преобразования, соединенную с подводной аппаратурой подводным магистральным кабелем, всплывающий буй, якорный фиксатор подводной аппаратуры, соединенный с всплывающим буем буйрепом через фалонакопитель, концы которого замкнуты размыкателем, при этом фалонакопитель выполнен в виде цилиндра с вращающейся крышкой, имеющей радиальную прорезь, фал уложен слоями со случайно размещенными в пространстве петлями. В накопителе имеются два щелевых отверстия, через которые перед установкой комплекса накопитель заполняется гибким фалом. При заполнении фала крышка накопителя вращается для более равномерного распределения петель фала в корпусе накопителя, который при заполнении самопроизвольно укладывается по всему объему накопителя, при этом длина фала должна быть достаточной для всплытия притопленного буя на поверхность моря. Для всплытия притопленного буя подается кодированная акустическая команда. Размыкатель срабатывает и сила плавучести притопленного буя вытягивает фал из накопителя. Притопленный буй всплывает на поверхность (патент России № 2446979, МПК В63В 22/06, приоритет 09.06.2010 г.).

Недостатками данного устройства являются ограниченные функциональные возможности из-за того, что все датчики расположены на вертикальной линии и их зона действия ограничена. Диаграмма направленности, формируемая вертикальной антенной, не позволяет локализовать источники акустической эмиссии, расположенные в породе под морским дном, которые представляют основной интерес в пассивной сейсморазведке. Кроме этого, система всплытия буя недостаточно надежна из-за использования акустической команды. Недостатком данного устройства являются также проблемы с подъемом и свертыванием комплекса при относительно длительном (месяцы) сроке мониторинга.

Техническим результатом изобретения является расширение функциональных возможностей комплекса за счет использования площадной системы наблюдений в виде распределенной мультилинейной донной антенны, повышение надежности и обеспечение многократности развертывания и свертывания комплекса при длительном сроке мониторинга. Технический результат достигается за счет того, что в геофизическом комплексе для мониторинга и морской сейсморазведки, содержащем подводную аппаратуру, подводный магистральный кабель, набор датчиков, соединенных подводным кабелем между собой, надводную аппаратуру сбора и преобразования, соединенную с подводной аппаратурой подводным магистральным кабелем, всплывающий буй, якорный фиксатор подводной аппаратуры, соединенный с всплывающим буем буйрепом через фалонакопитель, концы которого замкнуты размыкателем, подводная аппаратура выполнена в виде установленного на дне коммутатора, при этом набор датчиков выполнен в виде расположенных на дне мультилинейных кабельных антенн, включающих расположенные через определенные интервалы расстояния между собой приемники давления, причем все кабельные антенны подключены к соответствующим входам коммутатора, а их противоположные концы снабжены якорными фиксаторами и соединенными с ними соответствующими буйрепами через фалонакопители, концы которых замкнуты размыкателями, при этом каждый всплывающий буй выполнен в виде контейнера с дренажными отверстиями и с крышкой, внутри которого расположен фалонакопитель в виде плавучей катушки с центральным отверстием, в котором расположен размыкатель, зафиксированный стопорными кольцами в верхней части крышки и в нижней части контейнера, при этом конец буйрепа пропущен через нижнее стопорное кольцо и соединен с якорным фиксатором, размыкатель электрически герметично соединен с соответствующим кабелем антенны, а размыкатель выполнен в виде силового элемента из нейлоновой мононити с исполнительным элементом из навитой вокруг нее нихромовой проволоки, причем исполнительный элемент размещен в цилиндрическом корпусе и залит герметизирующим компаундом.

Сущность изобретения поясняется чертежами, где на Фиг. 1 схематически представлена блок-схема устройства, на Фиг. 2 представлена конструкция всплывающего буя, а на Фиг. 3 - конструкция размыкателя буя.

Геофизический комплекс для мониторинга и морской сейсморазведки содержит надводную аппаратуру сбора и преобразования 1, магистральный кабель 2, подводную аппаратуру в виде установленного на дне коммутатора 3, соединенный подводным кабелем 4 между собой набор датчиков, выполненный в виде расположенных на дне мультилинейных кабельных антенн, включающих расположенные через определенные интервалы расстояния между собой приемники давления 5, причем все кабельные антенны подключены к соответствующим входам коммутатора 3, якорные фиксаторы 6, соединенные с соответствующими всплывающими буями 7 буйрепами 8 через соответствующие фалонакопители 9 и размыкатели 10 с силовыми фиксирующими элементами 11, выполненными из нейлоновой мононити (лески), при этом каждый всплывающий буй 7 выполнен в виде контейнера 12 с дренажными отверстиями и с крышкой 13, внутри которого расположен фалонакопитель 9 в виде плавучей катушки 14 с центральным отверстием, в котором расположен размыкатель 10, зафиксированный стопорными кольцами 15 в верхней части крышки 13 и в нижней части контейнера 12, причем конец буйрепа 8 пропущен через нижнее стопорное кольцо 15 и соединен с якорным фиксатором 6, а размыкатель 10 электрически герметично соединен с соответствующим кабелем антенны 4 и выполнен в виде силового элемента из нейлоновой мононити 11 с исполнительным элементом из навитой вокруг нее нихромовой проволоки 16, причем исполнительный элемент размещен в цилиндрическом корпусе 17 и залит герметизирующим компаундом 18.

Устройство работает следующим образом.

Подводную аппаратуру, включающую коммутатор 3, соединенный подводным кабелем 4 между собой набор приемников давления 5 в виде мультилинейных кабельных антенн, подключенных к соответствующим входам коммутатора 3, погружают на морское дно и фиксируют якорными фиксаторами 6, соединенными с соответствующими всплывающими буями 7. При этом с выхода коммутатора 3 через магистральный кабель 2 принятые мультилинейными кабельными антеннами сигналы передают на надводную аппаратуру сбора и преобразования 1, которая может быть установлена на борту судна или другого плавсредства. Отдельная мультилинейная антенна для мониторинга сейсмоакустической эмиссии на шельфе имеет длину от 500 м до 1 км и содержит от 25 до 50 датчиков давления, расположенных равномерно с интервалом не более 20 м. Рабочий диапазон частот антенны 3-300 Гц. Диапазон частот определяется целевой глубиной и затуханием звука в земной коре и соответствует диапазону частот, который практически используется в методе вертикального сейсмического профилирования. В качестве приемника давления может использоваться цилиндрический пьезоэлемент, встроенный в кабель 4, который содержит грузонесущий кевларовый трос, необходимое число сигнальных витых пар и силовых токопроводящих жил, продольную герметизацию и полиуретановую оболочку (на чертеже не показаны). При этом за счет большого числа таких датчиков решается проблема выделения волн различной поляризации по их кинематическим характеристикам, а также существенное расширение функциональных возможностей.

Многократность свертывания и развертывания комплекса обеспечивается за счет использования всплывающих буев 7, соединенных буйрепами 8 через соответствующие фалонакопители 9 и размыкатели 10 с силовыми фиксирующими элементами 11, выполненными из нейлоновой мононити (лески). Всплывающие буи 7 предназначены для скрытного размещения и последующего обнаружения и извлечения подводного оборудования при проведении подводных научно-исследовательских, геологоразведочных и других работ на морском шельфе. Буи погружаются под воду вместе с прикрепленным оборудованием и находятся под водой продолжительное время. Когда появляется необходимость извлечения оборудования, на исполнительные элементы 16 размыкателей 10 буев 7 подаются от надводной аппаратуры 1 через магистральный кабель 2, коммутатор 3 и подводные кабели 4 управляющие электрические сигналы.

При подаче тока на исполнительные элементы 16 из нихромовой проволоки проволока нагревается и плавит силовой элемент 11 (леску), которая теряет прочность, рвется и выдергивается из герметизирующего компаунда 18 под действием небольшого усилия порядка 1 кГс. При этом размыкатель 10 разрушается и в результате происходит всплытие плавучего тела с закрепленным буйрепом 8. За буйреп 8 выбираются якорные фиксаторы 6 с закрепленным оборудованием. При повторном использовании буев 7 размыкатели 10 заменяются новыми.

С целью повышения живучести и надежности в конструкции буя используются преимущественно устойчивые к воздействию морской среды материалы. В конструкции буя отсутствуют механизмы и подвижные элементы, которые могут быть ненадежными при длительной эксплуатации в условиях морской среды.


ГЕОФИЗИЧЕСКИЙ КОМПЛЕКС ДЛЯ МОНИТОРИНГА И МОРСКОЙ СЕЙСМОРАЗВЕДКИ
ГЕОФИЗИЧЕСКИЙ КОМПЛЕКС ДЛЯ МОНИТОРИНГА И МОРСКОЙ СЕЙСМОРАЗВЕДКИ
ГЕОФИЗИЧЕСКИЙ КОМПЛЕКС ДЛЯ МОНИТОРИНГА И МОРСКОЙ СЕЙСМОРАЗВЕДКИ
Источник поступления информации: Роспатент

Showing 31-31 of 31 items.
20.01.2018
№218.016.1e6a

Устройство ультразвукового контроля состояния изделий

Использование: для обнаружения дефектов изделий. Сущность изобретения заключается в том, что ультразвуковое устройство контроля состояния изделий, состоящее из генератора зондирующего импульса, соединенного с размещенным на поверхности изделия одним или несколькими излучающими акустическими...
Тип: Изобретение
Номер охранного документа: 0002640956
Дата охранного документа: 12.01.2018
Showing 31-40 of 45 items.
20.01.2018
№218.016.1e6a

Устройство ультразвукового контроля состояния изделий

Использование: для обнаружения дефектов изделий. Сущность изобретения заключается в том, что ультразвуковое устройство контроля состояния изделий, состоящее из генератора зондирующего импульса, соединенного с размещенным на поверхности изделия одним или несколькими излучающими акустическими...
Тип: Изобретение
Номер охранного документа: 0002640956
Дата охранного документа: 12.01.2018
10.05.2018
№218.016.452d

Комплекс для сейсморазведки в транзитных зонах на основе мультилинейной цифровой кабельной антенны

Изобретение относится к области гидро- и геоакустики и может быть использовано в транзитной зоне вода-суша в качестве цифровой кабельной антенны для проведения исследований, мониторинга и сейсморазведки месторождений углеводородов в транзитных зонах и обеспечения инженерно-геофизических работ....
Тип: Изобретение
Номер охранного документа: 0002650097
Дата охранного документа: 06.04.2018
09.06.2018
№218.016.5b86

Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса под действием динамических сил

Изобретение относится к области гидроакустики и может быть использовано для измерения (уточнения) структуры гидроакустического поля (ГАП), в том числе - зависимостей ГАП от угла в пространстве и от расстояния до объекта. Техническим результатом настоящего изобретения является повышение...
Тип: Изобретение
Номер охранного документа: 0002655683
Дата охранного документа: 29.05.2018
09.06.2018
№218.016.5ba0

Способ определения структуры гидроакустического поля техногенных подводных объектов от воздушного шума внутри корпуса

Изобретение относится к области гидроакустики и может быть использовано для измерения структуры гидроакустического поля (ГАП), зависимостей ГАП от угла в пространстве и от расстояния до подводных объектов. Техническим результатом настоящего изобретения является: возможность получения данных о...
Тип: Изобретение
Номер охранного документа: 0002655680
Дата охранного документа: 29.05.2018
05.07.2018
№218.016.6c6e

Способ определения структуры гидроакустического поля техногенных подводных объектов от вибраций корпуса

Изобретение относится к области гидроакустики и может быть использовано для измерения структуры ГАП, зависимостей ГАП от угла в пространстве и от расстояния до подводных объектов. Техническим результатом настоящего изобретения является: - возможность получения данных о структуре ГАП в...
Тип: Изобретение
Номер охранного документа: 0002659891
Дата охранного документа: 04.07.2018
19.08.2018
№218.016.7df7

Акустическое устройство для сбора тонких пленок нефти и нефтепродуктов с поверхности воды

Изобретение предназначается для охраны окружающей среды, в частности для сбора нефти и нефтепродуктов при очистке естественных и искусственных водоемов. Изобретение может быть использовано в процессе доочистки аварийных разливов нефтепродуктов там, где требуется высокая конечная степень чистоты...
Тип: Изобретение
Номер охранного документа: 0002664309
Дата охранного документа: 16.08.2018
18.05.2019
№219.017.59e4

Гидроакустическая буксируемая антенна для геофизических работ

Изобретение относится к области гидроакустики и может быть использовано в морях, океанах, пресноводных водоемах в качестве геофизической косы для проведения исследований на морском дне. Техническим результатом является снижение диаметра антенны при повышенной помехозащищенности от...
Тип: Изобретение
Номер охранного документа: 0002458359
Дата охранного документа: 10.08.2012
27.06.2019
№219.017.9937

Гибкая протяженная гидроакустическая цифровая кабельная антенна

Изобретение относится к области гидроакустики, а именно к гидроакустическим системам навигации подводных аппаратов, и может быть использовано при разработке гибких буксируемых антенн в системах шумопеленгования надводных кораблей и подводных лодок. Техническим результатом, достигаемым...
Тип: Изобретение
Номер охранного документа: 0002417383
Дата охранного документа: 27.04.2011
09.10.2019
№219.017.d397

Устройство для активного гашения акустических шумов в вентиляционных каналах

Изобретение относится к средствам защиты от акустического шума, вызванного работающими системами вентиляции в жилых помещениях и в подвижных объектах. Устройство для активного гашения акустических шумов в вентиляционных каналах содержит размещенный в корпусе (3) громкоговоритель (1), излучающая...
Тип: Изобретение
Номер охранного документа: 0002702252
Дата охранного документа: 07.10.2019
08.12.2019
№219.017.ea7c

Способ электроискрового нанесения покрытий

Изобретение относится к металлообработке, в частности к электроэрозионным методам упрочнения и легирования электропроводящих поверхностей, и может быть использовано в машиностроительном и ремонтном производстве для получения износостойких, антикоррозийных и жаростойких покрытий на деталях...
Тип: Изобретение
Номер охранного документа: 0002708196
Дата охранного документа: 04.12.2019
+ добавить свой РИД