×
10.03.2016
216.014.bf06

Результат интеллектуальной деятельности: СПОСОБ ТОНКОСЛОЙНОГО ЭЛЕКТРОЛИТИЧЕСКОГО ПОЛУЧЕНИЯ СВИНЦА

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы, изготовленной плазменным напылением корундового порошка, с объемной пористостью не более 30%, проницаемую для расплавленного солевого электролита и непроницаемую для выделившегося катодного свинца. Процесс электролиза проводят при одинаковой катодной и анодной плотностях тока от 0,5 до 1,5 А/см и температуре 450-500°C. Техническим результатом является снижение удельного расхода электроэнергии с сохранением степени очистки чернового свинца от примесей и устойчивой работы в технологическом режиме 1 табл.
Основные результаты: Способ тонкослойного электролитического получения свинца, включающий электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца, отличающийся тем, что электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы, изготовленной плазменным напылением корундового порошка, с объемной пористостью не более 30%, проницаемую для расплавленного солевого электролита и непроницаемую для выделившегося на катоде свинца, при этом электролиз ведут при одинаковой катодной и анодной плотности тока от 0,5 до 1,5 А/см и температуре 450-500°C.

Изобретение относится к цветной металлургии, в частности к получению свинца электролитическим способом.

Известен способ тонкослойного электролиза в расплавленных электролитах (Омельчук А.А. Электрохимия, 2007, том 43, №9, с. 1060-1069) [1]. Сущность известного способа заключается в очистке таких металлов, как индий, цинк, олово, кадмий, висмут посредством анодной поляризации в расплаве смеси расплавленных хлоридов, помещенных в пористую диэлектрическую диафрагму толщиной до 1 см, разделяющую анодный и катодный металлы. Электролит содержит хлорид металла, подвергающего очистке, хлорид цинка и хлорид щелочного металла. Процесс ведут при плотности тока 0,3-0,45 А/см2. Для увеличения плотности тока до 1,0 А/см2 необходимо уменьшать толщину диафрагмы до 0,45 см. Данный способ характеризуется низкой производительностью процесса из-за малой плотности тока, а также требует применения дорогостоящего реагента ZnCl2 и дополнительных энергозатрат в связи с необходимостью предварительной подготовки электролита. Кроме того, уменьшение толщины диафрагмы приведет к уменьшению механической прочности конструкции электрохимической ячейки.

Известен способ электролитического получения свинца (RU 2487199, опубл. 10.07.2013 г.) [2]. Электролитическое получение свинца осуществляют в расплаве галогенидов солей с использованием жидкометаллических катода и анода. При этом процесс электролиза ведут с применением одного и более биполярного электрода, в качестве которого используется жидкий свинец, при катодной плотности тока от 0,5 до 2,0 А/см2, анодной от 0,3 до 1,5 А/см2 и температуре 450-600°C. Расплавленный черновой свинец помещают в анодную часть электролизера, свинец марки С1 - в биполярную и катодную части. При включении постоянного электрического тока поверхность чернового свинца приобретает положительный заряд, поверхность биполярного жидкометаллического электрода, контактирующая с анодным электролитом, - отрицательный заряд, а поверхность, контактирующая с катодным электролитом, - положительный заряд. Под воздействием электрического тока на аноде происходит растворение свинца до катионов Pb2+, которые переходят в солевой расплав, и осаждаются на отрицательно заряженной поверхности биполярного электрода. Далее процесс повторяется, и на катоде осаждается свинец, прошедший двойную электролитическую очистку. Полученный на катоде свинец содержал, мас.%: 0,0003 Ag; 0,003 Bi; 0,0005 As; 0,0006 Sn; 0,0004 Sb. Применение в известном способе биполярного рафинирования позволяет получить металл, соответствующий марке С1 по ГОСТ 3778-98, однако при объемном рафинировании за счет большого межэлектродного пространства (до 10 см) происходят большие энергетические потери, связанные с преодолением сопротивления электролита. Кроме того, ведение процесса в интервале температур от 530 до 600°C вызывает интенсивное испарение компонентов расплава, что приводит к изменению состава и температуры плавления электролита.

Задача предлагаемого изобретения заключается в тонкоослойном электролитическом получении металлического свинца с высокой степенью чистоты, без применения дорогостоящих реагентов, снижение удельного расхода электроэнергии и обеспечении надежности работы электролизера.

Для достижения поставленной задачи тонкослойное электролитическое рафинирование металлического свинца, так же как и в способе по прототипу, ведут в расплаве галогенидов солей с использованием жидкометаллических катода и анода. В отличие от прототипа, в заявленном способе электролиз ведут с применением пропитанной расплавом галогенидов солей керамической диафрагмы, выполненной плазменным напылением корундового порошка, с объемной пористостью не более 30%, проницаемую для расплавленного солевого электролита, но непроницаемую для выделившегося катодного свинца, при этом процесс ведут при одинаковой катодной и анодной плотности тока от 0,5 до 1,5 А/см2 и температуре 450-500°C.

Сущность способа заключается в следующем. Расплавленный черновой свинец помещают в анодную часть электролизера, электролит - в катодную часть, отделенную от анодной части пористой диафрагмой, пропитанной электролитом. Диафрагма, изготовленная плазменным напылением порошка корундовой керамики, имеет механическую прочность, исключающую появление трещин, способствующих вытеканию катодного свинца. Изготовление диафрагмы плазменным напылением порошка корундовой керамики позволяет помимо механической прочности, достаточной для предотвращения вытекания катодного свинца, получить заданную, не превышающую 30% объемную пористость, проницаемую для расплавленного солевого электролита, но непроницаемую для выделившегося катодного свинца. В электролит погружают графитовый токоподвод. При включении постоянного электрического тока поверхность чернового свинца приобретает положительный заряд, поверхность графита - отрицательный заряд. Под воздействием электрического тока на аноде происходит растворение свинца до катионов Pb2+, которые переходят в солевой расплав, находящийся в порах диафрагмы, и осаждаются на отрицательно заряженной поверхности графита. Выделившийся жидкий свинец заполняет катодное пространство. Уровни анодного и катодного металлов выравниваются, и дальнейшее выделение свинца происходит на поверхности катодного металла, контактирующего с электролитом диафрагмы, следовательно, площади рабочих поверхностей анода и катода равны. Межэлектродное расстояние равно толщине диафрагмы (не более 1 см). Таким образом, в отличие от способа [2], снижение расхода электроэнергии достигается за счет компактного расположения жидкометаллических электродов по обе стороны диафрагмы с сохранением высокой степени очистки свинца от примесей. Использование диафрагмы, изготовленной плазменным напылением порошка корундовой керамики, устраняет неравномерность массообмена в процессе рафинирования. Это позволяет применять более широкий интервал плотности тока по сравнению со способом [1]. Исходя из этого заявляемый интервал величин анодной и катодной плотности тока выбран в зависимости от концентрации электроположительного компонента сплава. Чем меньше концентрации металлов-примесей, тем выше будет значение плотности тока. Соответственно, при увеличении концентрации металлов-примесей необходимо уменьшить плотность тока. Рекомендуемый интервал плотности тока обусловлен с одной стороны скоростью процесса, с другой - чистотой катодного металла. Ниже ia=iк=0,5 А/см2 будет низкая производительность процесса, выше ia=iк=1,5 А/см2 - может возникнуть локальный перегрев электролита в порах керамической диафрагмы, что приведет к нарушению теплового режимы электрохимической ячейки. При этом температурный интервал от 450 до 500°C, превышающий температуру плавления не более чем на 70°C, позволяет минимизировать испарение расплава.

Новый технический результат, достигаемый заявленным решением, заключается в снижении удельного расхода электроэнергии с сохранением степени очистки чернового свинца от примесей и устойчивой работой в технологическом режиме.

Способ апробирован в опытно-лабораторном масштабе и иллюстрируется примером практического применения. Электролитическое получение свинца осуществляли в электролизере, имеющем корпус, изготовленный из силицированного графита. Во внутреннее пространство корпуса помещена пропитанная расплавом галогенидов солей керамическая диафрагма в виде емкости, изготовленная плазменным напылением корундового порошка, с объемной пористостью не более 30%, проницаемую для расплавленного солевого электролита, но непроницаемую для выделившегося катодного свинца, плазменным напылением порошка корундовой керамики, разделяющая пространство на анодную и катодную части. Расплавленный черновой свинец помещали в анодную часть электролизера, электролит - в катодную часть, отделенную от анодной части диафрагмой, пропитанной электролитом. Таким образом, анодный и катодный металлы имели контакт с электролитом, расположенным в порах керамической емкости. Подвод тока к электродам осуществляется графитовыми стержнями. Загрузка, выгрузка металла и отбор проб для химического анализа осуществляется с таким расчетом, чтобы уровни анодного и катодного металлы были равны.

Реализация заявляемого способа в электролизере предполагает последовательное выполнение следующих действий:

- начальная загрузка металла;

- установка емкости из пористой керамики;

- наплавление электролита;

- установка уровней анодного и катодного металлов;

- загрузка чернового свинца;

- выгрузка катодного металла;

- отбор проб.

Опытные испытания способа проводили с токовой нагрузкой до 340 А в течение 12 суток в расплаве из хлоридов калия и свинца при непрерывном контроле режимов процесса рафинирования.

Технологические параметры осуществления способа:

плотность тока 0,5-1,5 А/см2
напряжение на электродах 0,72-2,4 В
токовая нагрузка 100-340 А
температура процесса 450-500°C

Состав чернового свинца, мас.%: сурьма от 1,0 до 1,5; висмут от 0,1 до 0,4; мышьяк от 0,01 до 0,07. Результаты процесса электрорафинирования, включая химический состав исходных материалов и продуктов электрорафинирования, приведены в таблице.

Как видно из данных таблицы, полученный на катоде свинец содержал в мас.%: 0,0006 Ag; <0,0004 Bi; <0,0002 As; 0,0001 Sn; 0,0005 Sb, что соответствует требованиям ГОСТ 3778-98. Удельный расход электроэнергии составил 0,615 кВт·ч/кг свинца, а расчетное значение по способу [2] - 2,15 кВт·ч/кг свинца, таким образом, достигнуто уменьшение удельного расхода электроэнергии в несколько раз.

Способ тонкослойного электролитического получения свинца, включающий электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца, отличающийся тем, что электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы, изготовленной плазменным напылением корундового порошка, с объемной пористостью не более 30%, проницаемую для расплавленного солевого электролита и непроницаемую для выделившегося на катоде свинца, при этом электролиз ведут при одинаковой катодной и анодной плотности тока от 0,5 до 1,5 А/см и температуре 450-500°C.
Источник поступления информации: Роспатент

Showing 71-80 of 99 items.
01.11.2018
№218.016.9938

Способ получения керамики для извлечения гелия из газовых смесей

Изобретение относится к способам получения функциональной керамики, которая может использоваться для извлечения гелия из газовых смесей, включая природный газ, и разделения его изотопов. Способ включает прессование и обжиг тонкодисперсных порошков прекурсоров, в качестве которых используют...
Тип: Изобретение
Номер охранного документа: 0002671379
Дата охранного документа: 30.10.2018
24.01.2019
№219.016.b305

Потенциометрический датчик концентрации кислорода

Изобретение может быть использовано в электрохимии, металлургии, энергетике, автомобилестроении и других отраслях для определения содержания кислорода. Датчик содержит несущий элемент, выполненный в виде трубки из оксида алюминия. Несущий элемент с помощью стеклогерметика герметично соединен с...
Тип: Изобретение
Номер охранного документа: 0002677927
Дата охранного документа: 22.01.2019
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
16.03.2019
№219.016.e1d6

Твердооксидный протонпроводящий материал

Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал...
Тип: Изобретение
Номер охранного документа: 0002681947
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.ed71

Твердоэлектролитный потенциометрический датчик для анализа влажности воздуха и малых концентраций водорода

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха и малых концентраций водорода в газовых смесях. Датчик содержит три диска из протонпроводящего твердого электролита, герметично соединенные между собой с образованием двух полостей между...
Тип: Изобретение
Номер охранного документа: 0002683134
Дата охранного документа: 26.03.2019
10.04.2019
№219.016.feea

Способ создания билатеральной костной модели для исследования интеграции остеотропных материалов в эксперименте

Изобретение относится к экспериментальной медицине, а именно к оперативной травматологии и имплантологии, и может быть использовано для изучения интеграции остеотропных материалов, их участия в репаративных процессах костной ткани. Производят разрез в области коленного сустава....
Тип: Изобретение
Номер охранного документа: 0002684356
Дата охранного документа: 08.04.2019
19.04.2019
№219.017.321d

Способ электролиза расплавленных солей с кислородсодержащими добавками с использованием инертного анода

Изобретение относится к способам получения металлов, в частности алюминия, или сплавов электролизом расплавленных солей с кислородсодержащими добавками с использованием металлического и оксидно-металлического керметного инертного анода. В способе в процессе электролиза измеряют потенциал анода...
Тип: Изобретение
Номер охранного документа: 0002457286
Дата охранного документа: 27.07.2012
27.04.2019
№219.017.3d05

Способ электролитического получения алюминия

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку на этапе пуска электролизера в качестве электролита смеси криолита со фторидом алюминия с содержанием фторида алюминия от 25 до 35 мас.%. Обеспечивается сокращение времени пуска...
Тип: Изобретение
Номер охранного документа: 0002686408
Дата охранного документа: 25.04.2019
09.05.2019
№219.017.507b

Электрохимический способ получения нанопорошков диборида титана

Изобретение относится к электрохимическому способу получения нанопорошков диборида титана, может быть использовано в получении неоксидной керамики для высокотемпературных агрегатов типа электролизера для производства алюминия. Нанопорошки диборида титана получают импульсной анодно-катодной...
Тип: Изобретение
Номер охранного документа: 0002465096
Дата охранного документа: 27.10.2012
24.05.2019
№219.017.5dcc

Способ подготовки образцов костной ткани человека для исследования методом растровой электронной микроскопии

Изобретение относится к способу подготовки образцов поствитальной или пострезекционной костной ткани человека для исследования методом растровой электронной микроскопии. Способ характеризуется тем, что образцы вырезают абразивным кругом из костной заготовки, охлажденной жидким азотом, на 5 мин...
Тип: Изобретение
Номер охранного документа: 0002688944
Дата охранного документа: 23.05.2019
Showing 71-80 of 97 items.
27.04.2019
№219.017.3d05

Способ электролитического получения алюминия

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава. Способ включает загрузку на этапе пуска электролизера в качестве электролита смеси криолита со фторидом алюминия с содержанием фторида алюминия от 25 до 35 мас.%. Обеспечивается сокращение времени пуска...
Тип: Изобретение
Номер охранного документа: 0002686408
Дата охранного документа: 25.04.2019
09.06.2019
№219.017.7d54

Способ получения нано- и микроволокон кремния электролизом диоксида кремния из расплавов солей

Изобретение относится к производству электролитического кремния в виде нановолокон или микроволокон с использованием сырья - диоксида кремния. Сущность изобретения: способ получения нано- или микрооволокон кремния характеризуется тем, что процесс электролиза SiO ведут в расплаве LiF (0÷3) - KCl...
Тип: Изобретение
Номер охранного документа: 0002427526
Дата охранного документа: 27.08.2011
09.06.2019
№219.017.7e1f

Инертный анод для электролитического получения металлов

Изобретение относится к области цветной металлургии и электролитическому получению металлов и может быть использовано при получении алюминия электролизом криолит-глиноземного расплава с применением инертных анодов. Инертный анод содержит металлическую фазу и керамическую фазу, включающую оксид...
Тип: Изобретение
Номер охранного документа: 0002401324
Дата охранного документа: 10.10.2010
09.06.2019
№219.017.7e28

Способ получения алюминиевых сплавов электролизом

Изобретение относится к цветной металлургии, в частности для получения сплавов на основе алюминия электрохимическим способом. Способ включает введение в расплавленный алюминий катода легирующих элементов из малорастворимого анода путем растворения его в калиевом криолит-глиноземном расплаве,...
Тип: Изобретение
Номер охранного документа: 0002401327
Дата охранного документа: 10.10.2010
27.06.2019
№219.017.9894

Электрохимический способ получения микрокристаллов вольфрам-молибденового сплава

Изобретение относится к области высокотемпературной электрохимии, в частности к электролитическому получению микрокристаллического осадка сплава вольфрам-молибден, и может быть использовано для изготовления устройств, применяемых в условиях повышенных температур, а именно: оснащения водородных...
Тип: Изобретение
Номер охранного документа: 0002692543
Дата охранного документа: 25.06.2019
14.07.2019
№219.017.b451

Способ получения алюминия электролизом расплава

Изобретение относится к цветной металлургии и способу электролитического получения алюминия. Способ включает электролиз расплава KF-NaF-AlF с добавками АlО при температуре электролита 700-900°С и поддержание криолитового отношения (KF+NaF)/AlF от 1,1 до 1,9. Электролиз ведут при анодной...
Тип: Изобретение
Номер охранного документа: 0002415973
Дата охранного документа: 10.04.2011
19.07.2019
№219.017.b611

Способ контроля содержания глинозема при электролизе криолит-глиноземного расплава

Изобретение относится к получению алюминия электролизом криолит-глиноземного расплава, в частности к способу контроля содержания глинозема при электролизе криолит-глиноземного расплава. Способ включает определение эмпирической линейной зависимости концентрации глинозема в криолит-глиноземном...
Тип: Изобретение
Номер охранного документа: 0002694860
Дата охранного документа: 17.07.2019
03.08.2019
№219.017.bc0f

Установка для очистки галогенидных солей

Изобретение относится к области химической технологии и может быть использовано для получения особо чистых галогенидных солей методом зонной перекристаллизации, применяемых, в частности, при пирохимической переработке ядерного топлива, химическом и электрохимическом синтезе элементов и...
Тип: Изобретение
Номер охранного документа: 0002696474
Дата охранного документа: 01.08.2019
02.10.2019
№219.017.cfc0

Способ переработки оксидного ядерного топлива

Изобретение относится к ядерной энергетике и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % с...
Тип: Изобретение
Номер охранного документа: 0002700934
Дата охранного документа: 24.09.2019
15.11.2019
№219.017.e214

Электрохимический способ формирования кристаллов оксидных вольфрамовых бронз из нановискеров (варианты)

Изобретение относится к вариантам электрохимического способа формирования кристаллов оксидных вольфрамовых бронз из нановискеров. Один из вариантов включает электролиз поливольфраматного расплава с использованием платинового анода, в котором электроосаждение ведут при 700°C в импульсном...
Тип: Изобретение
Номер охранного документа: 0002706006
Дата охранного документа: 13.11.2019
+ добавить свой РИД