×
27.01.2016
216.014.bc6a

СПОСОБ КАЛИБРОВКИ МОБИЛЬНОГО ПЕЛЕНГАТОРА - КОРРЕЛЯЦИОННОГО ИНТЕРФЕРОМЕТРА С ПРИМЕНЕНИЕМ НАВИГАЦИОННОЙ АППАРАТУРЫ ПОТРЕБИТЕЛЯ ГЛОБАЛЬНОЙ НАВИГАЦИОННОЙ СПУТНИКОВОЙ СИСТЕМЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к радиотехнике, в частности к радиопеленгации. Техническим результатом является уменьшение временных затрат на калибровку мобильного пеленгатора - корреляционного интерферометра при сохранении высокой точности калибровки. Указанный технический результат достигается за счет введения операций по применению навигационной аппаратуры потребителя глобальной навигационной спутниковой системы в дифференциальном и кинематическом режиме и использованию соответствующего алгоритмического обеспечения для автоматизации процесса калибровки мобильного пеленгатора. 1 ил.
Основные результаты: Способ калибровки мобильного пеленгатора - корреляционного интерферометра с применением навигационной аппаратуры потребителя глобальной навигационной спутниковой системы, включающий определение необходимого числа позиций тестового источника радиоизлучений K для контрольных измерений в заданном секторе азимутальных углов и сборку измерительного стенда, включающего подвижные аппаратно-программные средства с тестовым источником радиоизлучений и стационарную часть, подключенную к пеленгатору, последовательную установку носителя с пеленгатором в v-e, , V - число различных угловых ориентаций носителя, рекомендуемое значение от 4, положение на местности как можно ближе к центру площадки, размеры которой обеспечивают выполнение условий нахождения тестового источника радиоизлучений в дальней зоне антенны пеленгатора для всего диапазона его рабочих частот, для каждого v-го положения носителя на местности и каждой k-й угловой позиции тестового источника радиоизлучений, , установку и последовательное перемещение подвижных аппаратно-программных средств измерительного стенда от k-й к (k+1)-й угловой позиции с выполнением измерений векторов амплитудно-фазового распределения z(k,v) для различных частот излучения в заданном диапазоне и с фиксированным шагом, обработку результатов измерений и определение калибровочных векторов амплитудно-фазовых распределений b на основе измеренных векторов z(k,v), , , отличающийся тем, что в процессе сборки измерительного стенда устанавливают элементы навигационной аппаратуры потребителя глобальной навигационной спутниковой системы, обеспечивающие дифференциальный и кинематический режим ее работы по измерению координат положения тестового источника радиоизлучений, после каждой установки носителя в v-e положение на местности, но до последовательного перемещения подвижных аппаратно-программных средств измерительного стенда, дополнительно осуществляют определение координат проекции фазового центра антенной системы пеленгатора на горизонтальную плоскость в выбранной системе координат X, Y, Z: при расположении антенной системы на носителе, не допускающем непосредственного измерения координат проекции навигационной аппаратуры потребителя глобальной навигационной спутниковой системы, его осуществляют путем измерения координат N вспомогательных точек, Ν≥3, и геометрических величин, связывающих их с проекцией фазового центра с последующим составлением уравнений связи переменных и решением оптимизационной задачи определения координат проекции фазового центра, или при расположении антенной системы на носителе, допускающем непосредственное измерение координат проекции фазового центра навигационной аппаратурой потребителя глобальной навигационной спутниковой системы, это измерение осуществляют путем соответствующей установки элементов навигационной аппаратуры потребителя глобальной навигационной спутниковой системы, фиксируют на местности направление продольной оси носителя путем определения с помощью навигационной аппаратуры потребителя глобальной навигационной спутниковой системы координат точки базового направления в выбранной системе координат X, Y, Z, для последовательного перемещения подвижных аппаратно-программных средств измерительного стенда для каждого дополнительно осуществляют установку тестового источника радиоизлучений в k-ю угловую позицию с заданной точностью по азимутальному положению и дальности до проекции фазового центра пеленгатора по данным о текущем положении тестового источника радиоизлучений в полярной системе координат, связанной с проекцией фазового центра пеленгатора и продольной осью носителя, рассчитываемых на базе подвижных аппаратно-программных средств на основе данных о его текущих координатах, выдаваемых навигационной аппаратурой потребителя глобальной навигационной спутниковой системы, и координат X, Y, Z, X, Y, Z.
Реферат Свернуть Развернуть

Изобретение относится к радиотехнике, в частности к радиопеленгации, и может быть использовано для калибровки мобильного пеленгатора, реализующего алгоритм корреляционного интерферометра.

Необходимая точность мобильных пеленгаторов контролируется и обеспечивается специальной калибровкой [1, с. 217-220 - Вартанесян В.А., Гойхман Э.Ш., Рогаткин М.И.. Радиопеленгация. - М.: Воениздат, МО СССР, 1966. - 248 с.].

Известен способ калибровки пеленгатора [2, с. 570 - Кукес И.С., Старик М.Е. Основы радиопеленгации. - М.: Советское радио, 1964. - 640 с.], включающий прием контрольных сигналов тестовых источников радиоизлучения (ИРИ) с известными координатами. Он позволяет проконтролировать работоспособность пеленгатора, но обеспечивает низкую точность калибровки [3, с. 280 - Левин Б.Р. Теоретические основы статистической радиотехники. Книга вторая. - М.: Советское радио, 1972] в связи с отсутствием необходимого числа тестовых ИРИ при пеленговании с различных направлений, не позволяющую принять меры по снижению ошибок пеленгования, что является его недостатком.

Известен способ калибровки пеленгатора, осуществляемый путем облета летательного средства (самолета) с тестовым ИРИ на борту по маршруту, вокруг центра которого размещен мобильный пеленгатор, с пересечением предварительно выбранных ориентиров [1, с. 218]. При этом, согласно этому способу, точность заходов летательного средства над ориентирами маршрута должна быть не хуже 1°. Известный способ позволяет производить калибровку мобильного пеленгатора и оценивать ошибку пеленгования. Недостатком является то, что точность калибровки ограничена и требует больших временных затрат на ее проведение. Это объясняется сложностью выполнения калибровочных работ, связанных с ограниченностью по времени пребывания летательного средства над ориентиром при измерении векторов амплитудно-фазового распределения (АФР), необходимых для калибровки пеленгатора - корреляционного интерферометра, при пролете летательного средства над каждым ориентиром. Кроме того, для уменьшения случайных ошибок летательному средству необходимо совершить несколько заходов над ориентиром.

Известен способ калибровки мобильного пеленгатора - корреляционного интерферометра [4, с. 364-369 - Радиомониторинг - задачи, методы, средства / Под ред. A.M. Рембовского. 2-е изд., перераб. и доп. - М.: Горячая линия-Телеком, 2010. - 624 с.], принятый за прототип, который включает:

- определение необходимого числа позиций тестового ИРИ (K) для контрольных измерений в заданном секторе азимутальных углов и сборку измерительного стенда, включающего подвижные аппаратно-программные средства с тестовым ИРИ и стационарную часть, подключенную к пеленгатору;

- последовательную установку носителя с пеленгатором в ν-e ( , V - число различных угловых ориентаций носителя, рекомендуемое значение от 4) положение на местности приблизительно в центре площадки, размеры которой обеспечивают выполнение условий нахождения тестового ИРИ в дальней зоне антенны пеленгатора для всего диапазона его рабочих частот;

- для каждого ν-го положения носителя на местности установку прибора для измерения углов и дальностей в точку проекции фазового центра антенной системы пеленгатора, фиксацию направления продольной (строительной) оси носителя путем установки вешки и определение нулевого направления для измерительного прибора;

- для каждого ν-го положения носителя на местности и значений разметку K угловых положений тестового ИРИ путем перемещения и установки k-й вешки в k-е угловое положение с одновременной проверкой ее требуемого положения по азимутальному углу и дальности (с заданными точностями δθ и δd, соответственно) с помощью прибора для измерения углов и дальностей (при невыполнении одного из условий операции перемещения вешки и контроля ее положения повторяют), закрепление вешек в найденных положениях;

- для каждого ν-го положения носителя на местности и каждой k-й ( ) угловой позиции тестового ИРИ установку и последовательное перемещение подвижных аппаратно-программных средств измерительного стенда от k-й к (k+1)-й угловой позиции с выполнением измерений векторов АФР z(k,ν) для и различных частот излучения в заданном диапазоне и с фиксированным шагом;

- обработку результатов измерений и определение калибровочных векторов АФР bk на основе измеренных векторов z(k,ν), , .

Недостатком способа-прототипа являются большие временные затраты на калибровку мобильного пеленгатора, связанные с разметкой площадки по азимутальным углам с заданным шагом и выполнением условий наличия и возможности установки угловых меток (вешек) в районе площадки, проецированием фазового центра антенной системы на плоскость площадки, установкой носителя так, чтобы с заданной точностью совпали проекция фазового центра антенной системы с центром площадки и его продольная ось с осью отсчета азимутальных углов, необходимостью устанавливать вновь угловые метки при каждой смене угловой ориентации носителя на местности.

Предлагаемый способ свободен от указанного недостатка и при этом сохраняет достоинство способа-прототипа - высокую точность калибровки.

Задачей, на решение которой направлено изобретение, является уменьшение временных затрат на калибровку мобильного пеленгатора-корреляционного интерферометра при сохранении высокой точности калибровки.

Для решения указанной задачи предлагается способ калибровки мобильного пеленгатора - корреляционного интерферометра с применением навигационной аппаратуры потребителя глобальной навигационной спутниковой системы, включающий определение необходимого числа позиций тестового ИРИ (K) для контрольных измерений в заданном секторе азимутальных углов и сборку измерительного стенда, включающего подвижные аппаратно-программные средства с тестовым ИРИ и стационарную часть, подключенную к пеленгатору, последовательную установку носителя с пеленгатором в ν-e ( , V - число различных угловых ориентаций носителя, рекомендуемое значение от 4) положение на местности как можно ближе к центру площадки, размеры которой обеспечивают выполнение условий нахождения тестового ИРИ в дальней зоне антенны пеленгатора для всего диапазона его рабочих частот, для каждого ν-го положения носителя на местности и каждой k-й угловой позиции тестового ИРИ ( ) установку и последовательное перемещение подвижных аппаратно-программных средств измерительного стенда от k-й к (k+1)-й угловой позиции с выполнением измерений векторов АФР z(k,ν) для различных частот излучения в заданном диапазоне и с фиксированным шагом, обработку результатов измерений и определение калибровочных векторов АФР bk на основе измеренных векторов z(k,ν), , .

Согласно изобретению, в процессе сборки измерительного стенда устанавливают элементы навигационной аппаратуры потребителя (НАП) глобальной навигационной спутниковой системы (ГНСС) [5, с. 2 - ГОСТ Ρ 52928-2010. Система спутниковая навигационная глобальная. Термины и определения. - М.: Стандартинформ, 2011.], обеспечивающие дифференциальный и кинематический режим ее работы по измерению координат положения тестового ИРИ, после каждой установки носителя в ν-e положение на местности, но до последовательного перемещения подвижных аппаратно-программных средств измерительного стенда, дополнительно осуществляют определение координат проекции фазового центра антенной системы пеленгатора на горизонтальную плоскость в выбранной системе координат X0, Y0, Z0: при расположении антенной системы на носителе, не допускающем непосредственное измерение координат проекции НАП ГНСС, оно осуществляется путем измерения координат N вспомогательных точек (N≥3) и геометрических величин, связывающих их с проекцией фазового центра с последующим составлением и решением оптимизационной задачи, или при расположении антенной системы на носителе, допускающем непосредственное измерение координат проекции фазового центра НАП ГНСС, это измерение осуществляется путем соответствующей установки элементов НАП ГНСС, фиксацию на местности направления продольной (строительной) оси носителя путем определения с помощью НАП ГНСС координат точки базового направления в выбранной системе координат Xb, Yb, Zb, для последовательного перемещения подвижных аппаратно-программных средств измерительного стенда для каждого дополнительно осуществляют установку тестового ИРИ в k-ю угловую позицию с заданной точностью по азимутальному положению и дальности до проекции фазового центра пеленгатора по данным о текущем положении тестового ИРИ в полярной системе координат, связанной с проекцией фазового центра пеленгатора и продольной осью носителя, рассчитываемых на базе подвижных аппаратно-программных средств на основе данных о его текущих координатах, выдаваемых НАП ГНСС, и координат X0, Y0, Z0, Xb, Yb, Zb.

Достигаемый технический результат заключается в уменьшении временных затрат на калибровку мобильного пеленгатора, при сохранении высокой точности калибровки.

Указанный технический результат достигают за счет введения новых операций по применению НАП в дифференциальном и кинематическом режиме [6, с. 2, 3 - ГОСТ Ρ 53864-2010. Глобальная навигационная спутниковая система. Сети геодезические спутниковые. Термины и определения. - М.: Стандартинформ, 2011] и использования соответствующего алгоритмического обеспечения для автоматизации процесса калибровки мобильного пеленгатора.

Сочетание отличительных признаков и свойств предлагаемого способа из литературы не известны, поэтому он соответствует критериям новизны и изобретательского уровня.

На чертеже приведена схема измерительного стенда для реализации предлагаемого способа.

В практическом плане способ осуществляют следующим образом.

Определяют необходимое число позиций тестового ИРИ (K) для контрольных измерений в заданном секторе азимутальных углов, например, задают шаг изменения азимутального положения тестового ИРИ Δθ, начальное (нулевое) азимутальное положение θ0=0, и собирают измерительный стенд по схеме, например, соответствующий чертежу. - 1

Последовательно устанавливают носитель с пеленгатором в ν-e ( , V - число различных угловых ориентаций носителя, рекомендуемое значение от 4) положение на местности как можно ближе к центру площадки, размеры которой обеспечивают выполнение условий нахождения тестового ИРИ в дальней зоне антенны пеленгатора для всего диапазона его рабочих частот. - 2

После каждой установки носителя в ν-e положение на местности осуществляют определение координат проекции фазового центра антенной системы пеленгатора на горизонтальную плоскость в выбранной системе координат X0, Y0, Z0:

- при расположении антенной системы на носителе, не допускающем непосредственного измерения координат проекции НАП ГНСС (в частности, приемником-ровером ГНСС), оно осуществляется путем измерения координат вспомогательных точек (Xn,Yn,Zn), , Ν≥3 (приемником-ровером ГНСС совместно с приемником-базой ГНСС в режиме RTK) и геометрических величин (углов и дальностей, например, тахеометром), связывающих их с проекцией фазового центра с последующим составлением уравнений связи переменных и решением оптимизационной задачи определения координат проекции фазового центра Χ0, Y0, Ζ0 [7, с. 1410-1412 - Строцев А.А., Колесников С.С., Сухенький И.А. Методика калибровки мобильного пеленгатора - многоканального корреляционного интерферометра с применением GNSS приемников // Сборник докладов XX Международной научно-технической конференции «Радиолокация, навигация, связь». - Воронеж: НПФ «Саквое», 2014 г., т. 2. - С. 1407-1418];

- при расположении антенной системы на носителе, допускающем непосредственное измерение координат проекции фазового центра НАП ГНСС, это измерение осуществляют путем соответствующей установки элементов НАП ГНСС. - 3

Фиксируют на местности направление продольной (строительной) оси носителя путем определения с помощью НАП ГНСС (в частности, путем установки вешки с приемником-ровером ГНСС на линии визирования, совпадающей с продольной (строительной) осью носителя, с последующим проведением измерений совместно с приемником-базой ГНСС в режиме RTK) координат точки базового направления в выбранной системе координат Xb, Yb, Zb. - 4

Осуществляют перемещение и установку тестового ИРИ в k-ю, , угловую позицию на расстояние (d±δd) метров от фазового центра пеленгатора с заданной допустимой абсолютной погрешностью δθ. В частности, для автоматизации процедуры установки тестового ИРИ в условиях практической горизонтальности участка местности проведения калибровочных работ выполняют следующие операции:

- определяют истинный курс носителя:

где , - пространственные топоцентрические горизонтальные прямоугольные координаты точки базового направления относительно проекции фазового центра антенной системы,

B0, L0 - эллипсоидальные геодезические координаты (широта и долгота) проекции фазового центра антенной системы, вычисленные по значениям координат Χ0, Y0, Ζ0 в соответствии с [8 - ГОСТ Ρ 51794-2008. Глобальные навигационные спутниковые системы. Системы координат. Методы преобразований координат определяемых точек. - М.: Стандартинформ, 2009.] в выбранной системе координат,

- по текущим координатам Χ, Y, Ζ положения тестового ИРИ, измеренных приемником-ровером ГНСС совместно с приемником-базой ГНСС в режиме RTK в выбранной системе координат, определяют координаты положения ИРИ в пространственной топоцентрической горизонтальной прямоугольной системе координат [9, с. 19 - Машимов М.М. Геодезия. Теоретическая геодезия: Справочное пособие / Под ред. В.П. Савиных и В.Р. Ященко. - М.: Недра, 1991. - 268 с.] с центром в точке проекции фазового центра антенной системы:

- определяют курсовой азимут положения тестового ИРИ в текущей точке с координатами Χ, Y, Ζ относительно проекции фазового центра антенной системы

- определяют расстояния между положением ИРИ в текущей точке с координатами Χ, Y, Ζ и проекцией фазового центра антенной системы

- перемещая подвижные аппаратно-программные средства с приемником-ровером ГНСС (ПАПС с ГНСС-ПР) (3) контролируют положение тестового ИРИ при его установке в k-ю угловую позицию с заданной точностью по азимутальному положению (kΔθ) и по требуемой дальности (d) до проекции фазового центра пеленгатора, т.е. контролируют выполнение условий:

0-kΔθ|≤δθ и |s0-d|≥δd,

где δθ и δd - заданные максимально допустимые абсолютные погрешности по азимуту и дальности. При одновременном выполнении этих условий УУ-2 (12) формирует оповещение оператору о занятии тестовым ИРИ требуемого углового положения.

После установки тестового ИРИ в k-ю угловую позицию выполняют измерения векторов АФР z(k,ν) для различных частот излучения в заданном диапазоне и с фиксированным шагом посредством:

- передачи оповещения УУ-1 (7) об установке ПАПС с ГНСС-ПР (3) в заданную угловую позицию и готовности к работе ИРИ;

- формирования сигналов управления пеленгатором по частоте и длительности пеленгации на заданной частоте;

- формирования сигналов управления для УУ-2 (12) на изменение режимов работы генератора сигналов ИРИ и о завершении измерений и переходе к следующей угловой позиции или завершении процесса калибровки;

- получение данных от АПСП (6) о значениях z(k,ν), , для заданных частот и их хранение. - 5

Обрабатывают результаты измерений и определяют калибровочные векторы АФР bk на основе измеренных векторов z(k,ν), , . - 6

Следовательно, предлагаемый способ, так же, как и прототип, обладает высокой точностью калибровки за счет использования НАП ГНСС в дифференциальном и кинематическом режиме, в частности высокоточных приемников ГНСС в режиме RTK. Кроме того, он имеет преимущество в виде сокращения временных затрат для проведения калибровки мобильного пеленгатора, поскольку длительные операции (выполняемые для каждого ν-го положения носителя на местности и значений ):

- разметки угловых положений тестового ИРИ путем перемещения и установки k-й вешки в k-е угловое положение с одновременной проверкой требуемого ее положения с заданной точностью по азимутальному углу δθ и по дальности δd с помощью прибора для измерения углов и дальностей (при невыполнении одного из условий операции перемещения вешки и контроля ее положения повторяются);

- закрепления вешек в найденных положениях;

- установки и последовательного перемещения подвижных аппаратно-программных средств измерительного стенда от k-й к (k+1)-й угловой позиции заменены на малые по временной длительности вспомогательные операции, выполняемые только после установки носителя в каждое ν-e положение на местности и непосредственное перемещение подвижных аппаратно-программных средств измерительного стенда, для каждого , в k-ю угловую позицию с заданной точностью по азимутальному положению и дальности до проекции фазового центра пеленгатора по информации, предоставляемой УУ-2 (12).

Таким образом, предлагаемый способ имеет следующие отличительные признаки в последовательности его реализации от способа-прототипа, которые представлены в таблице 1.

Из представленной таблицы сравнения последовательности реализации способа-прототипа и предлагаемого способа видно, что в предлагаемом способе, относительно способа-прототипа, введена новая совокупность операций по перемещению и установке подвижных аппаратно-программных средств для измерения экспериментальных векторов АФР, приводящих к положительному эффекту - уменьшению временных затрат на калибровку мобильного пеленгатора - корреляционного интерферометра.

Оценку эффективности разработанного способа по показателю требуемых временных затрат рассмотрим на примере калибровки мобильного пеленгатора, верхняя граница рабочего диапазона частот которого составляет 3000 МГц, а линейный размер антенной системы равен 3 м. В этом случае ближняя граница дальней зоны определяется значением 180 м. Поэтому величины, характеризующие расстояние тестового ИРИ от фазового центра антенной системы пеленгатора, могут принимать значения d=200 м, Δd=2 м. Сектор разметки для проведения калибровочных работ составляет Ω=360°, шаг разметки Δθ=2°, т.е. K=180. Число различных угловых ориентаций носителя V=4.

Сравнительную оценку эффективности разработанного способа, относительно способа-прототипа, проведем по следующему показателю:

δT=T-TS,

где Τ - время, необходимое для формирования калибровочных векторов АФР bk в соответствии со способом-прототипом;

TS - для предлагаемого, Τ=t1+V(t2+t3+K(t4+t5))+t6, , , ti - времена однократного выполнения операций по i-му пункту предлагаемого способа и способу-прототипу, соответственно.

Ряд операций рассматриваемых способов по требуемому времени их выполнения можно считать эквивалентными, в частности, , iэ∈{1,2,5,6}. Кроме того, при расположении антенной системы на носителе, допускающем непосредственное измерение координат проекции приемниками ГНСС,

Тогда оценка величины δT может быть представлена в виде

δΤ≈VKt4.

Значение t4 зависит от:

- требуемой дальности положения тестового ИРИ от фазового центра антенной системы пеленгатора (d);

- подготовленности и слаженности работы специалистов, осуществляющих измерение угловых величин и дальностей, а также перемещение, установку и закрепление вешек;

- требуемой угловой точности установки вешек.

Оценим требуемую эквивалентную угловую точность установки вешек.

Случайные величины погрешности измерения в горизонтальной плоскости линейных (l) и угловых (α) величин связаны соотношением (в случае ортогонального расположения отрезков l и d на плоскости). Поскольку при применении НАП ГНСС в дифференциальном и кинематическом режиме величина l принимает малые значения, тогда при d=200 м отношение и, следовательно, (рад).

При использовании в составе измерительного стенда, представленного на чертеже, в качестве приемников ГНСС - приемников ТРИУМФ-1 (ДРША.464345.001 РЭ) в режиме RTK, для всех точек калибровочной площадки, размеры которой определены значением d=200 м, среднеквадратическое отклонение (СКО) погрешности измерения в горизонтальной плоскости линейных величин l равно σi=0,01 м [10, с. 15, 65 - Триумф-1. Руководство по эксплуатации. ДРША.464345.001 РЭ. Версия 1.1. Ревизия от 08/11/2011. // http://javad.com/jgnss/support/manuals.html]. Тогда, СКО эквивалентной азимутальной угловой погрешности установки вешек будет характеризоваться значением .

Кроме того, поскольку K=180, то расстояние между вешками для d=200 м будет равно 7 м.

Следовательно, при реализации способа-прототипа с учетом:

- необходимости переноса 180 вешек на расстояние 200 м от фазового центра антенной системы по окружности и расстояния между вешками, равного 7 м;

- требуемой точности установки каждой вешки (σα≈10″) по командам специалиста, осуществляющего измерения их положения;

- затрат времени на выполнение операций по закреплению вешек для обеспечения их устойчивости и их снятию,

среднее время однократного выполнения операций по 4-му пункту способа-прототипа может составить около 3 минут.

Следовательно, при количестве положений носителя V=4 получим следующее значение оценки показателя эффективности разработанного способа:

δΤ*4·180·3=2160 (мин),

при эквивалентной азимутальной угловой погрешности установки ИРИ.

Заявляемый способ реализуется с помощью схемы измерительного стенда, приведенной на чертеже, где приняты следующие условные обозначения:

(1) - носитель;

АСП (5) - антенная система пеленгатора;

АПСП (6) - аппаратно-программные средства пеленгатора;

ДАПСП (2) - дополнительные аппаратно-программные средства пеленгатора, входящие в состав измерительного стенда;

УУ1 (7), УУ2 (12) - устройства управления, аппаратно реализованные на ЭВМ;

WF1 (8), WF2 (13) - устройства беспроводной связи (Wi-Fi роутер, Wi-Fi адаптер);

ПАПС с ГНСС-ПР (3) - подвижные аппаратно-программные средства с приемником-ровером ГНСС;

G (11) - генератор сигналов ИРИ;

А (10) - антенна ИРИ;

ГНСС-1 (15), ГНСС-2 (9) - приемники ГНСС;

УКВ-1 (16), УКВ-2 (14) - УКВ-модемы приемников ГНСС;

ГНСС-ПБ (4) - приемник-база ГНСС.

В представленном на чертеже варианте аппаратная часть НАП ГНСС состоит из двух приемников ГНСС (ГНСС-1 (15), ГНСС-2(9)), двух УКВ-модемов (УКВ-1 (16), УКВ-2 (14)) и ЭВМ (устройство управления УУ-1 (7)), при этом для реализации дифференциального и кинематического режима ее функционирования используется режим Real Time Kinematic (RTK) - фазовый дифференциальный режим определения местоположения подвижных объектов в режиме реального времени, обеспечивающий сантиметровую точность определения координат [11, с. 23 - Евстафьев О.В. Наземная инфраструктура ГНСС для точного позиционирования // Геопрофи. - 2008. - №1. - С. 21-24.], [8, с. 15]. Один из приемников (ГНСС-2 (9)) реализует функции ровера - подвижной части НАП ГНСС [10, с. 65], расположенной на одной вертикальной оси с антенной тестового ИРИ, второй (ГНСС-1 (15)) - функции базы - контрольной станции, передающей посредством УКВ-модемов дифференциальные поправки роверу в режиме реального времени. Получение, обработка и визуализация текущих координат приемника-ровера с учетом дифференциальных поправок в выбранной системе координат осуществляется на устройстве управления (УУ-2 (12)). Кроме того, на базе устройства управления УУ-2 (12) осуществляется:

- решение задачи определения координат проекции фазового центра антенной системы пеленгатора на горизонтальную плоскость в выбранной системе координат X0, Y0, Z0 по автоматически сохраняемым измерениям приемника-ровера координат N вспомогательных точек (Ν≥3) и дополнительно измеряемым (например, тахеометром, установленным в точке проекции фазового центра) и вводимым в специальное программное обеспечение геометрических величин, связывающих координаты вспомогательных точек с проекцией фазового центра;

- хранение результатов измерения или вычисления координат проекции фазового центра антенной системы пеленгатора на горизонтальную плоскость в выбранной системе координат Χ0, Y0, Ζ0;

- хранение результатов измерения с помощью приемника-ровера НАП ГНСС координат точки базового направления в выбранной системе координат Xb, Yb, Zb;

- хранение данных о требуемых K угловых положениях, диапазоне и шаге изменения частоты излучения тестового ИРИ;

- вычисление на основе координат X0, Y0, Z0, Xb, Yb, Zb и текущего положения тестового ИРИ в системе координат, в которой производятся измерения и вычисления, его текущего положения в полярной системе координат, связанной с проекцией фазового центра пеленгатора и продольной осью носителя;

- вычисление и визуализация отклонений текущего положения тестового ИРИ от требуемой k-й угловой позиции по азимутальному положению и дальности до проекции фазового центра пеленгатора по ранее определенным данным;

- управление режимами работы генератора сигналов ИРИ G (11);

- беспроводная связь посредством устройств WF1 (8), WF2 (13) с УУ-1 (7);

- оповещение оператора, осуществляющего перемещение ПАПС с ГНСС-ПР (3) о завершении измерений и переходе к следующей угловой позиции или завершении процесса калибровки;

- оповещение УУ-1 (7) об установке ПАПС с ГНСС-ПР (3) в заданную угловую позицию и готовности к работе ИРИ.

Кроме того, на базе устройства управления УУ-1 (7) осуществляется:

- формирование сигналов управления для УУ-2 (12) на изменение режимов работы генератора сигналов ИРИ и о завершении измерений и переходе к следующей угловой позиции или завершении процесса калибровки;

- беспроводная связь посредством устройств WF1 (8), WF2 (13) с УУ-2 (12);

- формирование сигналов управления пеленгатором по частоте и длительности пеленгации на заданной частоте;

- получение данных от АПСП (6) о значениях z(k,v), , для заданных частот и их хранение;

- обработка результатов измерений и определение калибровочных векторов АФР bk на основе измеренных векторов z(k,v), , .

Помимо УКВ-модемов для реализации передачи данных от базы к роверу могут быть использованы GSM-модемы или иные средства.

Наличие в составе НАП ГНСС двух приемников ГНСС (9) и (15) позволяет применить при нахождении местоположения объектов (проекции фазового центра антенной системы пеленгатора, точки базового направления и тестового ИРИ) один из двух методов определения координат - относительный или абсолютный [6, с. 3].

Кроме того, при обеспечении требуемой точности могут быть использованы локальные, региональные или широкозонные дифференциальные подсистемы ГНСС [6, с. 7]. В этом случае в составе НАП ГНСС измерительного стенда достаточно использование одного приемника ГНСС.

Таким образом, предлагаемый способ, так же как и способ-прототип, позволяет выполнить калибровку мобильного пеленгатора, реализующего алгоритм корреляционного интерферометра, с заданной точностью расположения ИРИ. Кроме того, приведенная сравнительная оценка эффективности предлагаемого способа, относительно способа-прототипа, показывает существенное сокращение временных затрат на проведение калибровки пеленгатора.

Способ калибровки мобильного пеленгатора - корреляционного интерферометра с применением навигационной аппаратуры потребителя глобальной навигационной спутниковой системы, включающий определение необходимого числа позиций тестового источника радиоизлучений K для контрольных измерений в заданном секторе азимутальных углов и сборку измерительного стенда, включающего подвижные аппаратно-программные средства с тестовым источником радиоизлучений и стационарную часть, подключенную к пеленгатору, последовательную установку носителя с пеленгатором в v-e, , V - число различных угловых ориентаций носителя, рекомендуемое значение от 4, положение на местности как можно ближе к центру площадки, размеры которой обеспечивают выполнение условий нахождения тестового источника радиоизлучений в дальней зоне антенны пеленгатора для всего диапазона его рабочих частот, для каждого v-го положения носителя на местности и каждой k-й угловой позиции тестового источника радиоизлучений, , установку и последовательное перемещение подвижных аппаратно-программных средств измерительного стенда от k-й к (k+1)-й угловой позиции с выполнением измерений векторов амплитудно-фазового распределения z(k,v) для различных частот излучения в заданном диапазоне и с фиксированным шагом, обработку результатов измерений и определение калибровочных векторов амплитудно-фазовых распределений b на основе измеренных векторов z(k,v), , , отличающийся тем, что в процессе сборки измерительного стенда устанавливают элементы навигационной аппаратуры потребителя глобальной навигационной спутниковой системы, обеспечивающие дифференциальный и кинематический режим ее работы по измерению координат положения тестового источника радиоизлучений, после каждой установки носителя в v-e положение на местности, но до последовательного перемещения подвижных аппаратно-программных средств измерительного стенда, дополнительно осуществляют определение координат проекции фазового центра антенной системы пеленгатора на горизонтальную плоскость в выбранной системе координат X, Y, Z: при расположении антенной системы на носителе, не допускающем непосредственного измерения координат проекции навигационной аппаратуры потребителя глобальной навигационной спутниковой системы, его осуществляют путем измерения координат N вспомогательных точек, Ν≥3, и геометрических величин, связывающих их с проекцией фазового центра с последующим составлением уравнений связи переменных и решением оптимизационной задачи определения координат проекции фазового центра, или при расположении антенной системы на носителе, допускающем непосредственное измерение координат проекции фазового центра навигационной аппаратурой потребителя глобальной навигационной спутниковой системы, это измерение осуществляют путем соответствующей установки элементов навигационной аппаратуры потребителя глобальной навигационной спутниковой системы, фиксируют на местности направление продольной оси носителя путем определения с помощью навигационной аппаратуры потребителя глобальной навигационной спутниковой системы координат точки базового направления в выбранной системе координат X, Y, Z, для последовательного перемещения подвижных аппаратно-программных средств измерительного стенда для каждого дополнительно осуществляют установку тестового источника радиоизлучений в k-ю угловую позицию с заданной точностью по азимутальному положению и дальности до проекции фазового центра пеленгатора по данным о текущем положении тестового источника радиоизлучений в полярной системе координат, связанной с проекцией фазового центра пеленгатора и продольной осью носителя, рассчитываемых на базе подвижных аппаратно-программных средств на основе данных о его текущих координатах, выдаваемых навигационной аппаратурой потребителя глобальной навигационной спутниковой системы, и координат X, Y, Z, X, Y, Z.
СПОСОБ КАЛИБРОВКИ МОБИЛЬНОГО ПЕЛЕНГАТОРА - КОРРЕЛЯЦИОННОГО ИНТЕРФЕРОМЕТРА С ПРИМЕНЕНИЕМ НАВИГАЦИОННОЙ АППАРАТУРЫ ПОТРЕБИТЕЛЯ ГЛОБАЛЬНОЙ НАВИГАЦИОННОЙ СПУТНИКОВОЙ СИСТЕМЫ
СПОСОБ КАЛИБРОВКИ МОБИЛЬНОГО ПЕЛЕНГАТОРА - КОРРЕЛЯЦИОННОГО ИНТЕРФЕРОМЕТРА С ПРИМЕНЕНИЕМ НАВИГАЦИОННОЙ АППАРАТУРЫ ПОТРЕБИТЕЛЯ ГЛОБАЛЬНОЙ НАВИГАЦИОННОЙ СПУТНИКОВОЙ СИСТЕМЫ
СПОСОБ КАЛИБРОВКИ МОБИЛЬНОГО ПЕЛЕНГАТОРА - КОРРЕЛЯЦИОННОГО ИНТЕРФЕРОМЕТРА С ПРИМЕНЕНИЕМ НАВИГАЦИОННОЙ АППАРАТУРЫ ПОТРЕБИТЕЛЯ ГЛОБАЛЬНОЙ НАВИГАЦИОННОЙ СПУТНИКОВОЙ СИСТЕМЫ
СПОСОБ КАЛИБРОВКИ МОБИЛЬНОГО ПЕЛЕНГАТОРА - КОРРЕЛЯЦИОННОГО ИНТЕРФЕРОМЕТРА С ПРИМЕНЕНИЕМ НАВИГАЦИОННОЙ АППАРАТУРЫ ПОТРЕБИТЕЛЯ ГЛОБАЛЬНОЙ НАВИГАЦИОННОЙ СПУТНИКОВОЙ СИСТЕМЫ
СПОСОБ КАЛИБРОВКИ МОБИЛЬНОГО ПЕЛЕНГАТОРА - КОРРЕЛЯЦИОННОГО ИНТЕРФЕРОМЕТРА С ПРИМЕНЕНИЕМ НАВИГАЦИОННОЙ АППАРАТУРЫ ПОТРЕБИТЕЛЯ ГЛОБАЛЬНОЙ НАВИГАЦИОННОЙ СПУТНИКОВОЙ СИСТЕМЫ
Источник поступления информации: Роспатент

Showing 91-100 of 106 items.
12.06.2020
№220.018.25fa

Способ обучения искусственной нейронной сети

Изобретение относится к компьютерным системам, а именно искусственным нейронным сетям, и может быть использовано для обучения нейронной сети при моделировании физических явлений технологических процессов. Техническим результатом является обеспечение возможности обучения ИНС в случае отсутствия...
Тип: Изобретение
Номер охранного документа: 0002723270
Дата охранного документа: 09.06.2020
12.06.2020
№220.018.2611

Способ построения радиолокационной станции

Изобретение относится к радиолокации и предназначено для построения радиолокационных станций (РЛС) различного назначения, например управления воздушным движением, метеорологических и т.д. Технический результат - сокращение времени обзора пространства. Указанный результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002723299
Дата охранного документа: 09.06.2020
20.04.2023
№223.018.4d56

Способ построения антенной системы с изменяемым углом плоскости линейной поляризации

Изобретение относится к антенной технике для мобильных наземных станций спутниковой связи с линейной поляризацией сигнала. Техническим результатом является независимость поляризационной развязки антенной системы от угла поворота плоскости поляризации сигнала. Предложен способ, в котором...
Тип: Изобретение
Номер охранного документа: 0002793230
Дата охранного документа: 30.03.2023
20.04.2023
№223.018.4e0c

Голографический способ измерения доплеровского сдвига частоты

Изобретение относится к областям телекоммуникаций и радиолокации и может быть использовано в системах компенсации доплеровского сдвига частоты в радиоканалах, а также в радиотехнической аппаратуре измерения скорости движения объекта. Техническим результатом изобретения является уменьшение...
Тип: Изобретение
Номер охранного документа: 0002793229
Дата охранного документа: 30.03.2023
12.05.2023
№223.018.5467

Способ построения антенной решетки

Изобретение относится к области антенной техники, в частности к приемопередающим АФАР. Техническим результатом изобретения является снижение массы антенной решетки. Предложено излучатели располагать в виде печатных вибраторов с плечами из металлических полос на диэлектрической подложке над...
Тип: Изобретение
Номер охранного документа: 0002795527
Дата охранного документа: 04.05.2023
14.05.2023
№223.018.54ff

Способ обзорной однопозиционной трилатерационной некогерентной радиолокации воздушных целей

Изобретение относится к области радиотехники и может использоваться в наземных системах активной обзорной однопозиционной радиолокации для обнаружения и определения местоположения, параметров движения и траекторий перемещающихся в пространстве воздушных целей. Достигаемый технический результат...
Тип: Изобретение
Номер охранного документа: 0002735744
Дата охранного документа: 06.11.2020
14.05.2023
№223.018.552a

Способ обнаружения малых беспилотных летательных аппаратов

Изобретение относится к области обнаружения объектов в воздушном пространстве, а более конкретно к способам обнаружения малых беспилотных летательных аппаратов (БЛА) посредством измерения акустической скорости частиц совместно с радиолокационными измерениями. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002735070
Дата охранного документа: 27.10.2020
15.05.2023
№223.018.5930

Способ обработки радиолокационных сигналов в импульсно-доплеровской радиолокационной станции с активной фазированной антенной решеткой

Изобретение относится к области радиолокации, конкретно к обработке радиолокационного сигнала в импульсно-доплеровских радиолокационных станциях (РЛС), и может быть использовано в системах обработки первичной радиолокационной информации импульсно-доплеровских РЛС различного назначения....
Тип: Изобретение
Номер охранного документа: 0002760409
Дата охранного документа: 24.11.2021
15.05.2023
№223.018.5931

Способ обработки радиолокационных сигналов в импульсно-доплеровской радиолокационной станции с активной фазированной антенной решеткой

Изобретение относится к области радиолокации, конкретно к обработке радиолокационного сигнала в импульсно-доплеровских радиолокационных станциях (РЛС), и может быть использовано в системах обработки первичной радиолокационной информации импульсно-доплеровских РЛС различного назначения....
Тип: Изобретение
Номер охранного документа: 0002760409
Дата охранного документа: 24.11.2021
20.05.2023
№223.018.6772

Способ обзора воздушного пространства импульсно-доплеровской радиолокационной станцией с активной фазированной антенной решеткой

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС), в которых в качестве антенны используется активная фазированная антенная решетка (АФАР). Технический результат – увеличение плотности потока мощности у цели в каждом передающем луче при...
Тип: Изобретение
Номер охранного документа: 0002794466
Дата охранного документа: 19.04.2023
Showing 61-61 of 61 items.
12.06.2020
№220.018.25fa

Способ обучения искусственной нейронной сети

Изобретение относится к компьютерным системам, а именно искусственным нейронным сетям, и может быть использовано для обучения нейронной сети при моделировании физических явлений технологических процессов. Техническим результатом является обеспечение возможности обучения ИНС в случае отсутствия...
Тип: Изобретение
Номер охранного документа: 0002723270
Дата охранного документа: 09.06.2020
+ добавить свой РИД