×
20.01.2016
216.013.a3fa

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ АКУСТИЧЕСКИХ ВОЛН В ПОРИСТОЙ СРЕДЕ

Вид РИД

Изобретение

№ охранного документа
0002573620
Дата охранного документа
20.01.2016
Аннотация: Изобретение относится к области акустического анализа пористых материалов и может быть использовано для исследования образцов керна. Согласно предложенному способу определения скорости распространения акустических волн в пористой среде облучают по меньшей мере два образца пористой среды, имеющих разную длину, акустическими волнами, возбуждаемыми источником. Для каждого образца регистрируют время прихода волны от источника акустических волн к приемнику и определяют скорость распространения акустических волн на основе анализа изменений времени прихода волны по отношению к изменению длины образцов. Технический результат - повышение точности определения скорости распространения волн. 9 з.п. ф-лы, 4 ил.

Изобретение относится к области акустического анализа пористых материалов, в частности образцов керна.

Определение скорости распространения акустических волн на образцах керна является одной из важных процедур в исследовании керна. Скорости распространения продольных и поперечных волн характеризуют упругие свойства образца и могут сравниваться со скоростями, замеренными каротажными приборами в пластах, из которых извлечены образцы керна. Скорость распространения упругой волны является важной характеристикой пород, так как зависит от наличия порового пространства и структуры трещин в пласте. Поэтому получение информации о скоростях распространения упругих волн необходимо для верной характеризации пород коллектора на месторождениях углеводородов.

Для определения скорости распространения упругих волн в керне применяется стандартная лабораторная установка (см., например, Е. Fjaer, R.M. Holt, P. Horsrud, A.M. Raaen & R. Risnes, "Petroleum Related Rock Mechanics", p. 261-262, Elsevier B.V., 2008, или ASTM D2845 - 08 Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock).

Принцип измерения скорости основан на замере времени пробега волн по одному образцу керна известной длины. Для измерения времени пробега источник и приемник упругой волны закрепляют на противоположных краях образца керна. В качестве источника используют пьезокерамический элемент, возбуждающий на границе образца керна упругое колебание. В качестве приемника используют пьезокерамический элемент, преобразующий колебания стенки керна в электрический сигнал. Сигнал с приемника цифруется и записывается в файл с целью визуального или компьютерного анализа записи.

Время, прошедшее от подачи сигнала источником до момента регистрации сигнала приемником, измеряется и служит основой для определения скорости распространения упругой волне в образце керна. Для определения скорости продольной волны (Р) используют источник, возбуждающий продольные колебания. Для измерения скорости поперечной волны (S) служит источник, возбуждающий сдвиговые колебания. Оба типа источников неидеальны и вместе с основным типом волн Ρ или S возбуждаются все типы волн.

При обработке зарегистрированных приемниками записей визуально или с помощью программы определяют время пробега волны на образце. Для того, чтобы определить время пробега волны, необходимо проанализировать возбуждаемый источником акустический сигнал и выбрать его начало. Форма волны, возбуждаемая источником, как правило, не простая и имеет больше одного максимума. При этом ошибка в выборе начальной фазы сигнала существенно искажает результаты измерения скорости.

Использование точного отсчета начала сигнала приводит к появлению ошибок определения скорости, связанных с неточностью измерений - наличием шумов как аппаратурных, так и акустических. Наиболее чувствительны к ошибкам и наличию шумов измерения скорости поперечных волн. Поперечная волна приходит на больших временах, когда продольные волны в образце керна образовали поле помех за счет переотражений и всевозможных нерегулярных помех. Интерференция прямой поперечной волны с помехами не позволяет однозначно и точно выделить момент прихода, что приводит к существенным погрешностям в измерениях.

Технический результат, достигаемый при реализации изобретения, заключается в повышении точности определения скорости распространения волн, а также в увеличении помехоустойчивости и упрощении интерпретации измеренных данных. При этом предлагаемый способ не чувствителен к изменению формы сигнала источника и выбору момента вступления приходящей волны.

В соответствии с предлагаемым способом осуществляют облучение по меньшей мере двух образцов пористой среды разной длины акустическими волнами, возбуждаемыми источником. Для каждого образца регистрируют время прихода волны от источника акустических волн к приемнику и определяют скорость распространения акустических волн на основе анализа изменений времени прихода волны по отношению к изменению длины образцов.

Анализ изменений времени прихода волны может быть осуществлен во временной области, с использованием оператора сэмбланс, или в частотной области, с использованием метода Прони.

Образцы пористой среды разной длины могут быть получены путем последовательного уменьшения длины одного образца.

Предпочтительно набор длин образцов представляет собой последовательность, увеличивающуюся с постоянным шагом.

Акустические волны могут представлять собой продольные или поперечные волны.

В качестве образца пористой среды может быть использован керн горной породы.

Изобретение поясняется чертежом, где на фиг. 1 показана установка для измерений на наборе образцов керна, на фиг. 2 - полученный в результате измерений набор записей для шести образцов различной длины, на фиг. 3 представлен результат определения скорости распространения продольной волны во временной области, основанного на оценке «сэмбланса», на фиг. 4 - результат определения скорости распространения продольной волны, выполненного в частотной области на основе метода Прони.

Для того, чтобы сделать процесс измерения более точным и помехоустойчивым, предлагается применить новый подход к определению скоростей упругих волн, базирующийся на сравнении записей акустических измерений на коллекции образцов различной длины. При относительном измерении времени пробега на образцах керна различной длины оценивается не абсолютное время, а разница замеров на нескольких образцах. В связи с этим измеряемая скорость не зависит от начальной отметки времени. Отсутствие ошибок в отметке момента и увеличение статистики измерений позволяет увеличить точность метода и упростить и автоматизировать интерпретацию измеренных данных.

Для реализации предлагаемого метода измерений можно использовать стандартную установку акустических измерений. Для проведения измерений выбирают не менее двух образцов керна различной длины. Можно взять один образец и проводить последовательные измерения, уменьшая длину образца (отпиливая или стачивая его). На фиг. 1 показана установка для наблюдения на N образцах керна различной длины. При проведении эксперимента используют источник 1 - пьезокерамические излучатель и приемник 2 - детектор, необходимые для возбуждения упругой волны в образце 3 и записи колебаний. Источник 1 и приемник 2 располагают на двух противоположных плоскостях цилиндрического образца 3 керна, закрепленного в кернодержателе 4. Крепление источника и приемника к образцу керна может быть различным. Оно определяется конструкцией лабораторного оборудования. Важно, что контакты между источником и образцом керна и приемником, и образцом керна были жесткие и не имели зазоров. Жесткий контакт предотвращает поглощение упругой энергии при возбуждении и регистрации, а также минимизирует уровень помех в эксперименте.

В результате измерений, проведенных в отношении образцов 5 различной длины, получают набор записей, каждая из которых соответствует своей длине образца (см. фиг. 2). Данные измерения могут проводиться при возбуждении сигналов излучателями различного типа. Важно то, что в результате измерений получают набор записей, по которым можно оценивать различие во временах пробега упругих волн от источника в приемник.

По набору записей проводится обработка, предусматривающая измерение не абсолютных значений времен, а только изменения времен прихода волн на записях, зарегистрированных при различных геометрических размерах керна или различающихся между собой по каким-либо другим параметрам.

Определение скорости распространения акустической волны выполняют на основе определения изменений времен прихода (наклона оси синфазности фиг. 3) по отношению к изменению длины образца.

Преимущество многократных замеров основано на том, что выбранная волна Ρ или S на различных замерах (трассах) имеет одинаковую форму записи и различается по времени прихода, за счет различия в расстояниях излучатель-детектор или изменения свойств среды. Выделение всех времен (годографа) одновременно на всех записях может быть реализовано различными методами. Все методы могут быть классифицированы на два типа. В одном случае обработка наблюдений выполняется во временной области, для второй группы алгоритмов обработка наблюдений выполняется в частотной области, после проведения преобразования Фурье наблюденных данных.

Один из возможных алгоритмов анализа во временной области базируется на поиске максимума функционала, называемого сэмбланс:

В данной формуле реализован расчет оценки S(ti, Δt) по набору наблюдений un(t). Здесь t отражает изменение времени, n номер наблюдения, Δt контролируют изменение времени или сдвиг момента прихода волны при изменении номера наблюдения. Анализу подлежит набор записей из N замеров. Внешнее суммирование, как в числителе, так и в знаменателе имеет смысл осреднения по времени в окне из Μ отсчетов. Внутренняя сумма в числителе и знаменателе предполагает суммирование сигналов с различными сдвигами Δt. Сдвиг является параметром перебора и отображает зависимость оценки сэмбланс от искомой скорости волны:

где x определяет изменение расстояния излучатель-детектор между двумя наблюдениями. То есть параметр скорости V фактически является параметром наклона графика времен прихода (годографа) анализируемой волны. Обычно считается, что форма сигнала приходящей полезной волны, а также уровень и частотный состав помех заранее неизвестны, поэтому формула (1) расчета оценки S(ti, Δt) может измениться, при этом смысл оценки энергии волны, вдоль набора различных наклонов годографа сохраняется.

Анализ скоростей акустической волны в частотной области базируется на измерении наклона годографа, пропорционального значению скорости (2). Метод Прони является одним из известных подходов к численной реализации данной процедуры (W. Lang, A.L. Kurkjian, J.H. McClellan, C.F. Morris, T.W. Parks, "Estimating slowness dispersion from arrays of sonic logging waveforms, "Geophysics, vol. 52, p 530-544, 1987). Метод Прони и его модификации основаны на частотном разложении волнового поля с использованием Фурье преобразования.

Если как ранее обозначим наблюдения на серии образцов керна за u(xn, t), где t - время регистрации, а n определяет номер наблюдения. Координата xn обычно изменяется с постоянным шагом (xn0+Δх). Разложение в спектр Фурье выполняется для сейсмограммы, состоящей из N-трасс. Для каждой трассы, зарегистрированной в точке приема xn, преобразование Фурье несет информацию о всех волнах, измеренных при данном физическом наблюдении на керне:

Для каждой трассы (n) и фиксированной частоты (ω) плоская волна будет представлена гармонической составляющей с амплитудой а i и фазовым сдвигом ki, зависящим от наклона волны на исходном волновом поле. Поэтому поле на заданной частоте ω0 будет иметь вид:

Число p определяет количество регулярных волн в анализируемом поле. Через наклон волны определяется скорость (Vi) или интервальное время пробега (si) (медленность)

В работах Hsu K., Baggeroer А.В. Application of the maximum likelihood method (MLM) for sonic velocity logging: 1986. Geophysics, 51, 780-787, и R. Kumaresan and D.W. Tufts, "Estimating the parameters of exponentially damped sinusoids and pole-zero modelling in noise," IEEE Trans. Acoustics, Speech, Signal Processing, vol. 30, pp. 833-840, 1982, показано, что при аппроксимации спектра набором ρ комплексных экспонент, аргументы экспонент (полюса) являются общими собственными значениями пары матриц, или решением матричного уравнения:

,

где матрицы U0 и U1 сформированы из значений u(n) таким образом, что:

По найденным при решении уравнения (6) значениям si из (5) определяются скорость Ρ или S волны для каждого значения частоты.

Результатом обработки измерений в предлагаемом методе является значение скорости, пересчитываемое из измеренных параметров по формуле (2) или по формуле (5) в зависимости от того, какой метод - временной или частотный - применялся для анализа наблюдений.

Таким образом, в отличие от стандартного метода, использующего одно измерение, для определения скорости используют одновременно все N измерений. Причем анализ наблюдений и определение скорости могут быть выполнены как во временной области, с использованием оценки сэмбланс, так и в частотной области с использованием метода Прони. При анализе данных могут быть применены другие методы преобразования данных, другие методики интерпретации. Принципиально новым является то, что определение скорости выполняется по набору измерений с использованием относительных изменений времен, вследствие чего получаемое значение скорости определяется устойчиво и с меньшей погрешностью.

Далее приведены примеры определения скорости акустических волн, выполненного во временной и частотной областях.

Обработка измерений во временной области:

Для того чтобы определить скорость акустической волны Ρ, необходимо по наблюденным данным (фиг. 2) рассчитать оценку сэмбланс. На фиг. 3 приведен пример измерения скорости распространения Ρ волны во временной области и представлен результат расчета сэмбланса S(ti, Δt). Вертикальная ось соответствует временной оси наблюденных колебаний и характеризует временное положение окна анализа (ti - в формуле (1)). Горизонтальная ось проградуирована в значениях скорости, которые пересчитаны из параметра Δt из (1), в скорости по формуле (2). Максимум разрастания, наблюдаемый на времени 5.86 мкс, имеет значение наклона, соответствующее скорости распространения продольной волны Ρ - 6250 м/с.

Оценка скорости получена для данных, в которых сигнал возбуждался источником продольной волны. В случае источника поперечной волны при использовании данной процедуры могут одновременно измеряться скорости поперечной и продольной волн. Однако с точки зрения помехоустойчивости оценок следует измерять скорость той волны, которую создает акустический источник.

Обработка измерений в частотной области:

Измеренные данные (фиг. 2) подвергают преобразованию Фурье по временной координате и разложению по методу Прони. На фиг. 4 приведен пример измерения скорости распространения Ρ волны в частотной области и показано распределение интервальных времен пробега (медленность) в зависимости от частоты. Использование метода Прони не отличается от того, каким образом метод используется в акустическом каротаже. Все известные из уровня техники возможные подходы и модификации метода Прони могут быть с успехом использованы для анализа данных, замеренных на наборе нескольких образцов керна.


СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ АКУСТИЧЕСКИХ ВОЛН В ПОРИСТОЙ СРЕДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ АКУСТИЧЕСКИХ ВОЛН В ПОРИСТОЙ СРЕДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ АКУСТИЧЕСКИХ ВОЛН В ПОРИСТОЙ СРЕДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ АКУСТИЧЕСКИХ ВОЛН В ПОРИСТОЙ СРЕДЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ РАСПРОСТРАНЕНИЯ АКУСТИЧЕСКИХ ВОЛН В ПОРИСТОЙ СРЕДЕ
Источник поступления информации: Роспатент

Showing 31-40 of 113 items.
27.09.2014
№216.012.f882

Способ определения коэффициента теплового объемного расширения жидкости

Изобретение относится к области исследования свойств жидкости и может найти применение в нефтегазовой, химической промышленности и др. Для определения коэффициента объемного теплового расширения жидкости в ячейку калориметра помещают образец исследуемой жидкости и осуществляют ступенчатое...
Тип: Изобретение
Номер охранного документа: 0002529455
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f95b

Многофазный сепаратор-измеритель

Многофазный сепаратор-измеритель выполнен в виде двух вертикальных камер, гидравлически соединенных между собой в верхней и нижней частях. В нижней части первой камеры расположен входной порт, в котором установлена заглушенная сверху трубка с перфорированными стенками для подачи смеси флюидов,...
Тип: Изобретение
Номер охранного документа: 0002529672
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.fe32

Способ предварительного прогрева нефтенасыщенного пласта

Изобретение относится к нефтегазовой отрасли и может быть использовано в тепловых методах добычи тяжелой нефти и, в частности, с использованием парогравитационного дренажа, паротепловой обработки скважины, циклической закачки теплоносителя. Обеспечивает повышение эффективности способа за счет...
Тип: Изобретение
Номер охранного документа: 0002530930
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.006b

Способ определения профиля притока флюидов многопластовых залежей в скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока флюидов, поступающих в скважину из продуктивных пластов многопластовых коллекторов. Технический результат настоящего изобретения заключается в увеличении точности и...
Тип: Изобретение
Номер охранного документа: 0002531499
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.0551

Акустическое каротажное устройство

Изобретение относится к области геофизики и может быть использовано для определения свойств горных пород в процессе акустического каротажа. Акустическое каротажное устройство содержит по меньшей мере один излучатель и по меньшей мере два приемника, причем приемники расположены в точках с...
Тип: Изобретение
Номер охранного документа: 0002532759
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0f3e

Способ оценки свойств продуктивного пласта

Данное изобретение относится к способами оценки продуктивных пластов на нефтегазовых месторождениях, в частности к оценке их свойств. Технический результат заключается в более эффективной оценке свойств пористого пласта. Способ оценки свойств продуктивного пласта, пробуренного скважиной,...
Тип: Изобретение
Номер охранного документа: 0002535319
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f43

Способ определения параметров забоя и призабойной зоны скважины

Изобретение относится к области заканчивания и испытания скважин в нефтегазовой промышленности и предназначено для расчета параметров забоя и призабойной зоны скважины. Технический результат заключается в обеспечении возможности определения параметров забоя и призабойной зоны во время...
Тип: Изобретение
Номер охранного документа: 0002535324
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.100e

Способ определения количественного состава многокомпонентной среды (варианты)

Изобретение относится к области исследования свойств многокомпонентных сред и может найти применение в различных отраслях промышленности, например как нефтегазовая и химическая промышленности. Способы определения количественного состава многокомпонентной среды предусматривают размещение...
Тип: Изобретение
Номер охранного документа: 0002535527
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.108a

Способ и устройство для определения теплопроводности и температуропроводности неоднородного материала

Изобретение относится к области изучения физических свойств неоднородных материалов и может быть использовано для анализа теплопроводности, температуропроводности, объемной теплоемкости различных материалов. Для определения теплопроводности и температуропроводности неоднородного материала...
Тип: Изобретение
Номер охранного документа: 0002535657
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1782

Способ определения скорости фильтрации пластовых флюидов

Изобретение относится к геофизическим исследованиям скважин и предназначено для определения скоростей течения пластовых флюидов в нефтяных скважинах. Техническим результатом является выделение интервалов глубин (пластов), где происходит движение флюидов, и оценка скорости их фильтрации в месте...
Тип: Изобретение
Номер охранного документа: 0002537446
Дата охранного документа: 10.01.2015
Showing 31-40 of 78 items.
27.07.2014
№216.012.e500

Способ определения теплоты адсорбции и теплоты смачивания поверхности и измерительная ячейка калориметра

Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности. Заявлена измерительная ячейка калориметра, состоящая из изолированных друг от друга верхней и нижней частей,...
Тип: Изобретение
Номер охранного документа: 0002524414
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e7a4

Способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для прогнозирования изменения характеристик призабойной зоны нефтегазосодержащих пластов. Техническим результатом является повышение точности и снижение трудоемкости прогнозирования изменения характеристик...
Тип: Изобретение
Номер охранного документа: 0002525093
Дата охранного документа: 10.08.2014
27.09.2014
№216.012.f882

Способ определения коэффициента теплового объемного расширения жидкости

Изобретение относится к области исследования свойств жидкости и может найти применение в нефтегазовой, химической промышленности и др. Для определения коэффициента объемного теплового расширения жидкости в ячейку калориметра помещают образец исследуемой жидкости и осуществляют ступенчатое...
Тип: Изобретение
Номер охранного документа: 0002529455
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f95b

Многофазный сепаратор-измеритель

Многофазный сепаратор-измеритель выполнен в виде двух вертикальных камер, гидравлически соединенных между собой в верхней и нижней частях. В нижней части первой камеры расположен входной порт, в котором установлена заглушенная сверху трубка с перфорированными стенками для подачи смеси флюидов,...
Тип: Изобретение
Номер охранного документа: 0002529672
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.fe32

Способ предварительного прогрева нефтенасыщенного пласта

Изобретение относится к нефтегазовой отрасли и может быть использовано в тепловых методах добычи тяжелой нефти и, в частности, с использованием парогравитационного дренажа, паротепловой обработки скважины, циклической закачки теплоносителя. Обеспечивает повышение эффективности способа за счет...
Тип: Изобретение
Номер охранного документа: 0002530930
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.006b

Способ определения профиля притока флюидов многопластовых залежей в скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока флюидов, поступающих в скважину из продуктивных пластов многопластовых коллекторов. Технический результат настоящего изобретения заключается в увеличении точности и...
Тип: Изобретение
Номер охранного документа: 0002531499
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.0551

Акустическое каротажное устройство

Изобретение относится к области геофизики и может быть использовано для определения свойств горных пород в процессе акустического каротажа. Акустическое каротажное устройство содержит по меньшей мере один излучатель и по меньшей мере два приемника, причем приемники расположены в точках с...
Тип: Изобретение
Номер охранного документа: 0002532759
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0f3e

Способ оценки свойств продуктивного пласта

Данное изобретение относится к способами оценки продуктивных пластов на нефтегазовых месторождениях, в частности к оценке их свойств. Технический результат заключается в более эффективной оценке свойств пористого пласта. Способ оценки свойств продуктивного пласта, пробуренного скважиной,...
Тип: Изобретение
Номер охранного документа: 0002535319
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f43

Способ определения параметров забоя и призабойной зоны скважины

Изобретение относится к области заканчивания и испытания скважин в нефтегазовой промышленности и предназначено для расчета параметров забоя и призабойной зоны скважины. Технический результат заключается в обеспечении возможности определения параметров забоя и призабойной зоны во время...
Тип: Изобретение
Номер охранного документа: 0002535324
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.100e

Способ определения количественного состава многокомпонентной среды (варианты)

Изобретение относится к области исследования свойств многокомпонентных сред и может найти применение в различных отраслях промышленности, например как нефтегазовая и химическая промышленности. Способы определения количественного состава многокомпонентной среды предусматривают размещение...
Тип: Изобретение
Номер охранного документа: 0002535527
Дата охранного документа: 10.12.2014
+ добавить свой РИД