×
20.01.2016
216.013.a23f

Результат интеллектуальной деятельности: МАКСИМАЛЬНАЯ ГЛУБИНА ИССЛЕДОВАНИЯ ЗАМЕРОВ В ПОДЗЕМНОЙ ФОРМАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002573177
Дата охранного документа
20.01.2016
Аннотация: Настоящее изобретение относится к области геофизики и может быть использовано для определения объема интервала формации, окружающей ствол скважины, подлежащего исследованию. Для реализации заявленного изобретения используется каротажный прибор, который может устанавливаться на каротажном кабеле, бурильной колонне или на сигналопроводящей бурильной трубе. При использовании каротажного прибора определяется свойство подземной формации. Свойство подземной формации может включать: напряжение, объемное удельное сопротивление, горизонтальное удельное сопротивление, вертикальное удельное сопротивление, пористость, проницаемость, насыщенность флюидом, время ЯМР-релаксации, размер скважины, состав флюида скважины, параметр ИПБ или параметр КВБ. Максимальная глубина исследования в подземной формации устанавливается используя характеристики модели и уровень шума, а объем интервала устанавливается используя установленную максимальную глубину исследования. Максимальная глубина исследования и объем интервала могут устанавливаться даже без определения граничных слоев. Технический результат - повышение точности получаемых данных. 3 н. и 17 з.п. ф-лы, 9 ил.

Предпосылки

Область техники

[0001] Настоящее изобретение относится, в основном, к каротажным исследованиям подземных формаций, окружающих ствол скважины, с использованием глубинного каротажного прибора, и, в частности, к определению максимальной глубины исследования замеров в подземных формациях.

Уровень техники

[0002] Каротажные приборы уже долгое время используются в скважинах, например, при оценочном измерении подземной формации для определения свойств подземных формаций, окружающих скважину, и пластовых флюидов. Распространенными видами каротажных приборов являются электромагнитные приборы, радиоактивные приборы и приборы ядерно-магнитного резонанса (ЯМР), однако используются также и многие другие виды каротажных приборов.

[0003] Более ранние каротажные приборы опускались в скважину по каротажному тросу после бурения самой скважины. До сих пор широко используются современные версии таких тросовых приборов. Однако потребность в получении данных во время бурения скважины послужила поводом для разработки приборов измерения в процессе бурения (ИПБ) и приборов каротажа во время бурения (КВБ). Приборы ИПБ в основном предоставляют такие данные о параметрах режима бурения, как нагрузка на долото, вращающий момент, температура, давление, направление и угол наклона. Приборы КВБ в основном предоставляют такие данные об оценочных измерениях подземной формации, как сопротивление, пористость и распределение ЯМР. Приборы ИПБ и КВБ часто содержат детали, характерные для тросовых инструментов (например, источники и приемники электромагнитных волн), но приборы ИПБ и КВБ должны быть спроектированы не только для выдержки, но и для работы в тяжелых условиях бурения.

[0004] Приборы из уровня техники были направлены на определение и отображение (картирование) расстояния между измерительным датчиком, установленным на приборе, и границей подземных формаций. Определение границы подземных формаций обычно характеризуется изменением в одном или более петрофизическом свойстве подземной формации. Существует множество технологий и процессов для определения расстояния до границы, но все они не способны определить объем подземной формации, исследованный глубинными и азимутальными измерениями при отсутствии различимой границы подземной формации, или в случае измерений, показатели которых находятся за пределами относительно близкой границы подземной формации внутри смежного слоя породы.

Сущность изобретения

[0005] Настоящее изобретение относится к методу определения объема интервала вокруг ствола скважины. Обеспечивается каротажный прибор. Каротажный прибор может размещаться на каротажном кабеле, бурильной колонне или на сигналопроводящей бурильной трубе. При использовании каротажного прибора определяется свойство подземной формации. Свойство подземной формации может включать в себя напряжение (которое, строго говоря, не является свойством подземной формации, но указывается тут такое, что может использоваться в том же значении, что и свойство подземной формации), объемное удельное сопротивление, горизонтальное удельное сопротивление, вертикальное удельное сопротивление, пористость, проницаемость, насыщенность флюидом, время релаксации ЯМР, магнитное поле, индуцированное током, звуковой сигнал, размер скважины, форма скважины, состав скважинного флюида, параметры ИПБ или параметры КВБ. Максимальная глубина исследования в подземных формациях определяется используя характеристики модели и уровня шума, а объем интервала определяется используя установленную максимальную глубину исследования. Максимальная глубина исследования и объем интервала могут определяться и без установления граничных слоев.

[0006] Другие особенности и преимущества станут очевидными на основе последующего описания и прилагаемой формулы изобретения.

Краткое описание чертежей

[0007] Фигура 1 иллюстрирует типовую систему участка скважины.

[0008] Фигура 2 иллюстрирует электромагнитный каротажный прибор (уровень техники).

[0009] Фигура 3 - это график мощности сигнала по отношению к глубине исследования в соответствии с настоящей заявкой.

[0010] Фигура 4 - это схема этапов примера осуществления изобретения в соответствии с настоящим изобретением.

[0011] Фигура 5 схематически иллюстрирует трехслойную модель, в которой каротажный прибор расположен на два фута ниже верхнего слоя породы.

[0012] Фигуры 6A-6D - это схемы разностей сигнала с и без нижней границы в виде функции расстояния между нижней границей и каротажным прибором Фигуры 5.

Подробное описание

[0013] Некоторые варианты осуществления изобретения будут описываться здесь со ссылкой на фигуры. Сходные элементы в разных фигурах будут соотноситься с соответствующими сходными номерами. Для понимания различных вариантов осуществления и/или свойств изобретения в нижеуказанном описании изложено множество деталей. Однако специалистам в данной области техники будет ясно, что некоторые варианты осуществления изобретения могут применяться и без многих таких деталей и что может быть множество вариаций и модификаций, исходящих из описанных вариантов осуществления. В данном контексте термины «выше» и «ниже», «вверх» и «вниз», «верхний» и «нижний», «кверху» и «книзу» и другие подобные термины, обозначающие относительное положение над или под заданной точкой или элементом, используются в данном описании для более ясного понимания определенных вариантов осуществления. Однако примененные к техническому оборудованию и методам использования в наклонных или горизонтальных скважинах такие термины могут относиться к направлению слева направо, справа налево или по диагонали в зависимости от конкретного случая.

[0014] Фигура 1 иллюстрирует систему участка скважины, в которой может применяться ряд вариантов осуществления изобретения. Участок скважины может быть на суше или на море. В данной типовой системе скважина 11 сформирована в подземной формации с помощью роторного бурения, произведенного общеизвестным методом. При некоторых вариантах осуществления изобретения может также использоваться наклонно-направленное бурение, которое будет описано ниже.

[0015] Бурильная колонна 12 подвешена внутри скважины 11 и имеет компоновку низа бурильной колонны 100, которая включает в себя буровое долото 105, находящееся на ее нижнем конце. Поверхностная система состоит из платформы и буровой установки 10, расположенной над скважиной 11, и включает в себя ротор 16, ведущую трубу 17, крюк 18 и вертлюг 19. Бурильная колонна 12 вращается по ротору 16, который подсоединен к источнику питания (не показан), захватывая ведущую трубу 17 на верхнем конце бурильной колонны. Бурильная колонна 12 подвешивается на крюке 18, который прикреплен к подвижному блоку (не показан), через ведущую трубу 17 и вертюк 19, обеспечивая вращение бурильной колонны относительно крюку. Как известно, в других случаях возможно использование системы верхнего привода.

[0016] В примере данного варианта осуществления изобретения, поверхностная система, кроме прочего, включает в себя буровую жидкость или раствор 26, хранящиеся в пласте-коллекторе 27, который установлен на участке скважины. Насос 29 направляет буровую жидкость 26 внутрь бурильной колонны 12 по каналу в вертлюге 19, посредством чего буровая жидкость течет вниз через бурильную колонну 12, как указано направляющей стрелкой 8. Буровая жидкость выводится из бурильной колонны 12 по каналам в буровом долоте 105, а затем циркулирует вверх по кольцевому участку между наружной частью бурильной колонны и стенкой ствола скважины, как указано направляющими стрелками 9. Таким общеизвестным способом буровая жидкость смазывает буровое долото 105 и поднимает обломки выбуренной породы на поверхность, возвращаясь в пласт-коллектор 27 для рециркуляции.

[0017] Компоновка низа бурильной колонны 100 проиллюстрированного варианта осуществления изобретения включает в себя модуль каротажа во время бурения (КВБ) 120 и модуль измерения в процессе бурения (ИПБ) 130, систему направленного вращения, двигатель и буровое долото 105.

[0018] Как известно в данной области техники, модуль КВБ 120 установлен в утяжеленную бурильную трубу (УБТ) специального типа и может содержать один или несколько известных видов каротажных приборов. Разумеется, что можно также задействовать более чем один модуль КВБ и/или ИПБ, как представлено на 120А. (Все ссылки на модуль в положении 120 в других случаях могут также означать модуль в положении 120А.) Модуль КВБ включает в себя возможности для измерения, обработки и хранения данных, а также для связи с наземным оборудованием. В настоящем варианте осуществления изобретения модуль КВБ включает в себя зонд для измерения сопротивления.

[0019] Как известно в данной области техники, модуль ИПБ 130 также установлен в УБТ специального типа и может содержать один или несколько измерительных приборов бурильной колонны и бурового долота. Прибор ИПБ также включает в себя аппарат (не показан) для выработки электроэнергии в систему скважины. Как правило, он состоит из турбогенератора раствора, который приводится в движение потоком буровой жидкости, но, разумеется, может использоваться и другая энергетическая и/или батарейная система. В настоящем варианте осуществления модуль ИПБ включает в себя один или более следующих видов измерительных приборов: прибор измерения нагрузки на долото, прибор измерения неравномерного вращения, прибор измерения направления и прибор измерения угла наклона.

[0020] Пример прибора, который может быть прибором КВБ 120 или может быть частью комплекса приборов КВБ 120А, проиллюстрирован на Фигуре 2. Как видно на Фиг. 2, верхняя и нижняя передающие антенны, Т1 и Т2, имеют верхнюю и нижнюю приемные антенны, R1 и R2, между ними. Антенны установлены в глубине модифицированной УБТ и закреплены в изолирующем материале. Фазовый сдвиг электромагнитной энергии между приемниками создает индикацию сопротивления подземной формации на относительно большой глубине исследования. Для дополнительных подробностей можно сослаться на патент США №4899112. В процессе работы сигналы показателей затухания и сигналы показателей фазы присоединяются к процессору, выходная мощность которого совмещается с телеметрической цепью.

[0021] Новейшие электромагнитные (ЭМ) каротажные приборы задействуют одну и больше наклонных или поперечных антенн с или без применения осевых антенн. Эти антенны могут быть как трансмиттерами, так и приемниками. Дипольный момент наклонной антенны не является ни параллельным, ни перпендикулярным по отношению к продольной оси прибора. Дипольный момент поперечной антенны является перпендикулярным по отношению к продольной оси прибора, а дипольный момент осевой антенны является параллельным по отношению к продольной оси прибора. В трехкоординатной антенне три антенны (например, антенные катушки) соединены взаимно ортогонально. Обычно, одна антенна (катушка) осевая, а другие две поперечные. Считается, что две антенны имеют одинаковые углы в случае, когда векторы их дипольного момента пересекают долевую ось прибора под одним и тем же углом. Например, две наклонные антенны имеют одинаковый угол наклона в случае, когда векторы их дипольного момента с концами, концептуально прикрепленными к точке на долевой оси прибора, лежат на поверхности правого кругового конуса, который находится в центре долевой оси прибора, и вершиной доходят до этой контрольной точки. Очевидно, что поперечные антенны имеют одинаковые углы в 90 градусов в независимости от их азимутальной ориентации по отношению к прибору.

[0022] Технические приборы/методы уровня техники не обеспечивают оператора обратной связью или данными для определения максимальной глубины исследования прибора, в случае когда не обозначена граница. Глубина обследований большинства глубоких и азимутально-чувствительных измерений зависит как от конфигурации прибора, так и от свойств подземной формации. Соответственно, глубина исследования (ГИ), или объем исследования (ОИ) азимутально-чувствительных измерений не должны считаться постоянными. В данном документе следует использовать взаимозаменяемые акронимы «ГИ» и «ОИ», а также их производные.

[0023] Может быть установлена и отображена максимальная ГИ глубокого, азимутального ЭМ исследования, при котором не определены границы подземной формации. Такие данные могут использоваться для оптимизации применения такого вида измерений, а также для других видов измерений большого радиуса. Приложения включают в себя, например, размещение скважин, оценку свойств подземной формации и оценку структуры пласта-коллектора. Эти приложения могут быть представлены как в реальном времени, так и в режиме записи. Для удобства и ясности описание изобретения, представленное тут, рассматривает ЭМ измерения, но также могут применяться и другие виды измерений. Параметры могут также быть результатом вычислений, проведенных с использованием одного или больше сенсорных измерений, таких как сопротивление подземной формации, расстояние до скачка удельного сопротивления, насыщенность флюидом (водой, маслом и газом), давление подземной формации, давление разрыва и проницаемость.

[0024] Данные, полученные на разных глубинах вдоль траектории скважины, могут обрабатываться как в реальном времени, так и быть записаны и использованы при дальнейшей обработке. Специфический формат данных преимущественно используется для обеспечения передачи данных на различные 3-D проекционные платформы. Сами по себе измерения обычно зависят от времени, но также могут использоваться и другие области. Измерения получают посредством, например, приборов КВБ и ИПБ с применением поверхностных и скважинных датчиков давления, температуры, потока флюида и т.д. Вследствие того, что некоторые параметры азимутально колеблются по окружности скважины, спроектированы определенные каротажные датчики для измерения таких азимутально колеблющихся параметров. Такие измерения позволяют определить и визуализировать осевые и азимутальные изменения в подземной формации и условия скважины. Возможно исследование свойств и содержимого скелета подземной формации, жидкости подземной формации, жидкости скважины, выбуренной породы и других компонентов пласта, размера и формы скважины, параметров подземной формации и параметров жидкости.

[0025] Возможен анализ данных для определения объема интервала. Например, объем интервала может быть цилиндрическим и может располагать по центру оси прибора. В одном варианте осуществления изобретения цилиндрический объем интервала имеет форму «коробочки» с радиусом, пропорциональным расстоянию передатчика-приемника, и с относительно короткой «длиной» по сравнению с этим радиусом. Также могут быть и другие размеры и формы объемов. Возможен анализ измерений для исследования влияния подземной формации на измерения и для оценки общей чувствительности (например, максимальный коэффициент сигнала/шума), при которой сигнал все еще подает данные о различимом свойстве подземной формации. Такой анализ позволяет определить и визуализировать осевые, азимутальные и радиальные изменения в геометрии свойства подземной формации. После его определения, в 3-D, пространственно ориентированный объем интервала, который расположен в трехмерной среде вдоль траектории скважины, как фактической, так и предполагаемой, может быть отображен. В таком изображении возможна цветовая маркировка одной или более границ свойства подземной формации. Множественные круги или эллипсоиды разного размера и формы, расположенные рядом, могут образовываться, чтобы отобразить изменение (или же его отсутствие) в объеме интервала. Также, возможно выведение трехмерного изображения расстояния между прибором и максимальным расстоянием исследования.

[0026] Используя полученные ЭМ измерения, возможно определение вертикального и горизонтального сопротивления анизотропной подземной формации. Для осуществления измерений, которые приводят к различным глубинам исследования, используется множество частот и интервалов передатчика-приемника (соединения измерений). Возможно установление определенной комбинации частот и интервалов, которая обеспечивает самую глубокую ГИ и является функцией установленных сопротивлений. Установленные соединения измерений, которые обеспечивают самую глубокую ГИ, могут использоваться для определения шумового порога. Шумовой порог - это тот уровень шума, при котором сложно установить и опознать сигнал. Сам шум обычно зависит от частоты и интервала передатчика-приемника и характеризуется электронным шумом прибора.

[0027] Возвращаясь к определенным сопротивлениям, может создаваться коэффициент сопротивления, который определяет желаемый или гипотетичный скачок удельного сопротивления. При одном из вариантов осуществления изобретения числитель коэффициента - это определенное горизонтальное сопротивление, а его знаменатель - это произвольное или указанное сопротивление. Коэффициент сопротивления и установленное соединение измерения могут использоваться для моделирования ответного сигнала, как функции расстояния прибора от гипотетичной или предполагаемой границы подземной формации. Как показано на Фигуре 3, мощность сигнала может определяться против глубины расстояния исследования. По желанию пользователя, шумовой порог можно установить на разных положениях или величинах. Например, его можно установить дважды или трижды от стандартного отклонения шума. В зависимости от других критериев можно выбрать другие величины. Шумовой порог можно установить на смоделированной мощности сигнала в виде горизонтальной линии. Линии шумового порога пересекают кривую графика мощности сигнала в точке, которая называется здесь точкой «среза». Предполагается, что мощность сигнала ниже шумового порога слишком низка, чтобы быть достоверной, таким образом, максимальная ГИ, при которой появляется приемлемый уровень уверенности в сигнале, это та, что соответствует точке среза. Так, вертикальная линия, опущенная с точки среза, пересекает горизонтальную ось в максимальной ГИ прибора для данного условия измерения.

[0028] Фигура 4 иллюстрирует схему 400 с пронумерованными вышеуказанными этапами. При этапе 402 получены данные и, если данные являются ЭМ, определяются сопротивления (этап 404). Для других видов измерений устанавливаются другие физические свойства, которые используются подобным образом. Устанавливается определенное соединение измерений, которое вырабатывает самую глубокую ГИ, в виде функции определенных сопротивлений (этап 406). Установленное соединение измерений используется для определения шумового порога (этап 408). Коэффициент сопротивления формируется с использованием определенных и установленных величин сопротивления (этап 410). Модель ответного сигнала определяется как функция ГИ с применением установленного соединения измерений и коэффициента сопротивления, после чего наносится на график (этап 412). Определенный шумовой порог наносится на график ответного сигнала, и устанавливается точка среза (этап 414). Затем максимальная ГИ определяется на основании установленной точки среза (этап 416).

[0029] Одно из назначений отображения ГИ - это графически показать пользователю, что даже если границы не установлены инверсией, основанной на отсутствии сигнала, все еще возможно заключить, что в пределах расстояния, определенного максимальной ГИ, границ нет. Таким образом, можно установить объем интервала. Пользователь может оценить максимальную глубину исследования на каждом этапе, основанном на определенных инверсионных входах. Например, оценка может базироваться на профиле удельных сопротивлений или на результатах других типов инверсии. Профиль удельных сопротивлений можно предопределить в процессе предварительных работ, или же пользователь может ввести, например, сопротивление проводящей соседней подземной формации, если оно известно или установлено.

[0030] Дальность обнаружения можно установить на основе инвертированных моделей. ГИ сгенерирует зону, которая может быть отчетливо обозначена и будет отличаться от фактического скачка удельного сопротивления таким образом, что ее невозможно будет спутать с физической границей. При одном осуществлении используется тройное стандартное отклонение шума каждого измерения (например, 0,025 децибел затухания азимутального измерения, 0,15 градусов сдвига фазы в азимутальном измерении) в качестве величины среза при оценке максимальной ГИ. ГИ зависит не только от расстояния до подземной формации, но также и от скачка, и от профиля удельного сопротивления. Максимальная ГИ может быть получена посредством глубоких направленных измерений, проведенных из входного ряда направленных измерений. Например, если входной ряд направленных измерений включает в себя промежуточные измерения в 96 дюймов и промежуточные измерения в 34 дюйма, промежуточные измерения в 96 дюймов преимущественно используются для определения максимальной ГИ. В случае, когда входной ряд направленных измерений включает в себя промежуточные измерения в 34 дюйма и промежуточные измерения в 22 дюйма, промежуточные измерения в 34 дюйма преимущественно используются для определения максимальной ГИ.

[0031] На каждом этапе можно определить модель подземной формации и положение прибора, а также максимальную ГИ для прибора. Когда модель подземной формации является двухслойной моделью, максимальную ГИ можно установить посредством отодвигания расположения границы до тех пор, пока одно из глубинных промежуточных измерений (подобно измерению в 96 дюймов) не опустится ниже отметки тройного отклонения от стандарта измерения. Когда модель подземной формации является трехслойной моделью и прибор находится в центральном слое, максимальную ГИ нижней границы можно определить посредством установления верхнего положения границы, положения прибора, сопротивления верхнего слоя (Ru), горизонтального сопротивления центрального слоя (Rh), вертикального сопротивления центрального слоя (Rv) и сопротивления нижнего слоя (Rl), а также посредством отодвигания расположения нижней границы до тех пор, пока разница абсолютного сигнала между глубинными промежуточными измерениями с или без учета нижней границы не будет меньше тройного отклонения от стандарта измерений.

[0032] Процесс демонстрируется на синтетическом трехслойном образце. В этом образце, входная модель подземной формации имеет следующие значения: Ru=1 ohm-m, Rh=Rv=30 ohm-m, и Rl=2 ohm-m. Как показано на Фигуре 5, толщина центральной подземной формации составляет восемь футов, а прибор расположен на два фута ниже верхней границы. Различия сигнала с и без учета нижней границы проиллюстрированы на Фигурах 6A-6D в виде функции расстояния нижней границы до расположения прибора. Исходя из Фигуры 6А (SAD1), максимальная ГИ составляет 7,9 футов. В данном случае, тройная спецификация измерения (0,25 децибел) образует два показателя: 7,9 футов и 17,6 футов. Мы выбрали тот, что короче. Исходя из Фигуры 6В (SAD4), максимальная ГИ составляет 12,5 футов, исходя из Фигуры 6С (SPD1) 7,6 футов, и исходя из Фигуры 6D (SPD4) 12,8 футов. Нынешние технические методы инверсии могут обеспечить лишь одно решение границы так, что при теперешнем процессе вырабатывается от 7,6 до 12,8 футов для максимальной ГИ относительно нижней границы. Это означает, что промежуточные измерения имеют чувствительность, при которой нижняя граница составляет 12,8 футов, однако при нынешних методах инверсии нижняя граница вырабатывается лишь в 7,6 футов от прибора.

[0033] Подобная логика может применяться для определения максимальной ГИ по отношению к верхнему слою границы. Когда модель подземной формации составляет более 3 слоев, она вначале преимущественно упрощается до трехслойной модели, а способ, описанный выше, используется для получения максимального масштаба ГИ. Для упрощения модели подземной формации до трехслойной может применяться средневзвешенный показатель, основанный на удельной проводимости подземной формации и на расстоянии до прибора, которое измеряется от центра подземной формации, при этом используется следующее уравнение:

В данном уравнении diu - это расстояние от верхнего слоя границы до центра ith верхнего слоя, Ciu - это показатель проводимости ith верхнего слоя, diu - это расстояние от нижнего слоя границы до центра ith нижнего слоя, а Ciu - это показатель проводимости ith нижнего слоя.

[0034] ГИ, указанная в данном случае, имеет некоторые сходства с соотношением сигнал/шум, упомянутым выше. Они оба определяют, являются ли сигналы измерений хорошими индикаторами наличия границы. Однако их показатели различаются. Отношение сигнал/шум позволяет простым путем определить, находится ли сигнал, измеренный при определенном положении прибора, ниже параметров шума. Тем не менее, любая дополнительная интерпретация касательно наличия границы на большом расстоянии является необоснованной. С другой стороны, ГИ определяет, насколько далеко должна находиться граница, чтобы измерение стало нечувствительным к ней, тем самым делая интерпретацию более достоверной в случае, когда инвертированная граница находится в пределах досягаемости просчитанной дальности обнаружения.

[0035] Следует учесть, что, несмотря на то, что изобретение описывается с учетом ограниченного количества вариантов осуществления, специалисты в данной области техники, определив преимущества данного описания, учтут, что возможна разработка и других вариантов осуществления, которые не отклоняются от объема изобретения, как указано здесь. Соответственно, объем изобретения должен ограничиваться лишь прилагаемой здесь формулой.


МАКСИМАЛЬНАЯ ГЛУБИНА ИССЛЕДОВАНИЯ ЗАМЕРОВ В ПОДЗЕМНОЙ ФОРМАЦИИ
МАКСИМАЛЬНАЯ ГЛУБИНА ИССЛЕДОВАНИЯ ЗАМЕРОВ В ПОДЗЕМНОЙ ФОРМАЦИИ
МАКСИМАЛЬНАЯ ГЛУБИНА ИССЛЕДОВАНИЯ ЗАМЕРОВ В ПОДЗЕМНОЙ ФОРМАЦИИ
МАКСИМАЛЬНАЯ ГЛУБИНА ИССЛЕДОВАНИЯ ЗАМЕРОВ В ПОДЗЕМНОЙ ФОРМАЦИИ
МАКСИМАЛЬНАЯ ГЛУБИНА ИССЛЕДОВАНИЯ ЗАМЕРОВ В ПОДЗЕМНОЙ ФОРМАЦИИ
МАКСИМАЛЬНАЯ ГЛУБИНА ИССЛЕДОВАНИЯ ЗАМЕРОВ В ПОДЗЕМНОЙ ФОРМАЦИИ
МАКСИМАЛЬНАЯ ГЛУБИНА ИССЛЕДОВАНИЯ ЗАМЕРОВ В ПОДЗЕМНОЙ ФОРМАЦИИ
МАКСИМАЛЬНАЯ ГЛУБИНА ИССЛЕДОВАНИЯ ЗАМЕРОВ В ПОДЗЕМНОЙ ФОРМАЦИИ
МАКСИМАЛЬНАЯ ГЛУБИНА ИССЛЕДОВАНИЯ ЗАМЕРОВ В ПОДЗЕМНОЙ ФОРМАЦИИ
Источник поступления информации: Роспатент

Showing 71-80 of 324 items.
10.06.2014
№216.012.d0de

Платформа клапана-регулятора расхода

Группа изобретений относится к горному делу и может быть применена в скважинных клапанных системах. Скважинная система включает в себя насосно-компрессорную трубу, проходящую в изолированную зону скважины, и множество модулей штуцеров, расположенных в изолированной зоне, для управления...
Тип: Изобретение
Номер охранного документа: 0002519241
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d384

Система, устройство и способ для быстрого конфигурирования объемной подачи насосов

Изобретение относится к области насосостроения, в частности к поршневым насосам прямого вытеснения. Система для изменения конфигурации подачи насоса включает смеситель, подающий текучую среду низкого давления в насос. Насос имеет приводную часть и гидравлическую часть, причем гидравлическая...
Тип: Изобретение
Номер охранного документа: 0002519919
Дата охранного документа: 20.06.2014
20.06.2014
№216.012.d490

Система и способ оптимизирования добычи в скважине

Изобретение относится к способу оптимизирования эксплуатации скважины. Выбирают интервалы в наклонно-направленном стволе скважины и развертывают колонну испытаний и обработки скважины в стволе скважины. Каждый интервал затем изолируют для обеспечения выполнения необходимых испытаний. Полученные...
Тип: Изобретение
Номер охранного документа: 0002520187
Дата охранного документа: 20.06.2014
10.07.2014
№216.012.dcf2

Порт связи для использования на скважинном измерительном приборе

Группа изобретений относится к скважинному измерительному прибору, который может быть использован в горнодобывающей промышленности, а также к способу изготовления соединительного устройства связи для данного прибора. Прибор содержит кожух, выполненный с возможностью перемещения внутри ствола...
Тип: Изобретение
Номер охранного документа: 0002522340
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.e091

Доставка зернистого материала под землю

Изобретение относится к доставке зернистого материала на участок, расположенный под землей. Скважинный флюид является жидкостью-носителем на водной основе, содержащим первый и второй гидрофобные зернистые материалы - частицы, суспендированные в нем, где первые частицы имеют больший удельный...
Тип: Изобретение
Номер охранного документа: 0002523275
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e0ba

Способ гидравлического разрыва пласта

Представлен способ отклонения закачиваемой рабочей жидкости, содержащей понизитель трения, при гидравлическом разрыве пласта. Способ гидравлического разрыва подземной формации включает закачивание промежуточной жидкости с вязкостью менее чем приблизительно 50 мПа·с при скорости сдвига 100 с при...
Тип: Изобретение
Номер охранного документа: 0002523316
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e1d9

Способ и установка для удаления двойной индикации дефектов при контроле труб по дальнему полю вихревых токов

Изобретение относится к измерительной технике. Сущность: устройство обнаружения дальнего поля вихревых токов вводится в цилиндрические трубы и перемещается по ним. Устройство может быть использовано для измерения толщины трубы и содержит излучающую рамку и множество симметрично расположенных...
Тип: Изобретение
Номер охранного документа: 0002523603
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e3b8

Доставка зернистого материала под землю

Изобретение относится к доставке зернистого материала на участок, расположенный под землей. Скважинный флюид включает жидкость-носитель на водной основе и гидрофобный зернистый материал, суспендированный в нем, где гидрофобный зернистый материал имеет объемный медианный размер частиц d не...
Тип: Изобретение
Номер охранного документа: 0002524086
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e3c6

Скважинные системы датчиков и соответствующие способы

Группа изобретений относится к области отбора проб из геологических пластов и анализа при оценивании и испытании пластов. Техническим результатом является усовершенствование скважинных систем датчиков, чтобы сделать системы более гибкими и приспосабливаемыми для скважинных применений. Модуль...
Тип: Изобретение
Номер охранного документа: 0002524100
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e43d

Механизм для активирования множества скважинных устройств

Группа изобретений относится к добыче углеводородов в подземных пластах и, более конкретно, к механизму для активирования множества скважинных устройств в случае, когда необходимо создать множество зон добычи. Способ избирательного активирования механизма приведения в действие на множестве...
Тип: Изобретение
Номер охранного документа: 0002524219
Дата охранного документа: 27.07.2014
Showing 71-80 of 236 items.
20.04.2014
№216.012.bb02

Долото для управляемого направленного бурения, система бурения и способ бурения криволинейных стволов скважин

Изобретение относится к буровому инструменту и может быть использовано при наклонно-направленном бурении скважин. Предложен корпус долота, содержащий задний конец, направляющую секцию и разбуривающую секцию. При этом задний конец выполнен с возможностью разъемного скрепления с бурильной...
Тип: Изобретение
Номер охранного документа: 0002513602
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb85

Компоновка тандемного трактора с гидравлическим приводом

Компоновка тракторов для применения на забое нефтегазоносных скважин с использованием нескольких тракторов одновременно содержит гидравлический привод и может создавать существенное увеличение общей грузоподъемности при выполнении работы забойными тракторами. Таким образом, работы на гибкой...
Тип: Изобретение
Номер охранного документа: 0002513733
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bbd4

Система, способ и считываемый компьютером носитель для вычисления расходов скважин, создаваемых электропогружными насосами

Группа изобретений относится к мониторингу показателей скважин с забойным и устьевым оборудованием. Более конкретно, настоящие изобретения раскрывают систему и способ по определению и вычислению расходов в скважинах, которые создают электропогружные насосы. Обеспечивается повышение...
Тип: Изобретение
Номер охранного документа: 0002513812
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bbd6

Кабельная сборка увеличенной длины для применения в углеводородных скважинах

Изобретение относится к рабочим кабелям для размещения в углеводородных скважинах. Техническим результатом является обеспечение возможности использования кабеля в сверхглубоких скважинах. Предложена кабельная сборка для использования в углеводородной скважине увеличенной глубины, содержащая, по...
Тип: Изобретение
Номер охранного документа: 0002513814
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bbd7

Барьерное уплотнение и узел с данным барьерным уплотнением

Изобретение относится к барьерному уплотнению и оборудованию устья скважины, включающему данное барьерное уплотнение. Оборудование устья скважины содержит выпускную трубу, оснащенную контрольно-измерительным оборудованием колонны, содержащую первый патрубок, образующий уплотняющий профиль,...
Тип: Изобретение
Номер охранного документа: 0002513815
Дата охранного документа: 20.04.2014
10.05.2014
№216.012.c0d2

Нейтронный скважинный прибор для измерения пористости с увеличенной точностью и уменьшенными литологическими влияниями

Использование: для измерения пористости. Сущность изобретения заключается в том, что нейтронный скважинный прибор для определения пористости включает источник нейтронов, устройство контроля нейтронов, детектор нейтронов и схему обработки данных. Источник нейтронов может излучать нейтроны в...
Тип: Изобретение
Номер охранного документа: 0002515111
Дата охранного документа: 10.05.2014
10.06.2014
№216.012.ce54

Система и способ коррекции влияния диаметра скважины и ее гидродинамического совершенства при измерениях пористости методом нейтронного каротажа

Использование: для измерения пористости методом нейтронного каротажа. Сущность изобретения заключается в том, что представлены система, способ и прибор для определения значений пористости подземного пласта, скорректированных с учетом влияния скважины. Скважинный прибор, опускаемый в скважину...
Тип: Изобретение
Номер охранного документа: 0002518591
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf62

Способы, установки и изделия промышленного производства для обработки измерений струн, вибрирующих в флюидах

Изобретение относится к области разведочной геологии и может быть использовано для определения различных свойств углеводородных пластовых флюидов. В заявленном изобретении раскрыты примеры способов, установок и изделий промышленного производства для обработки измерений струн, вибрирующих во...
Тип: Изобретение
Номер охранного документа: 0002518861
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.cf71

Способ определения плотности подземных пластов, используя измерения нейтронного гамма-каротажа

Использование: для определения плотности подземных пластов. Сущность изобретения заключается в том, что определение плотности подземного пласта, окружающего буровую скважину, производят на основании измерения гамма-излучения, возникающего в результате облучения пласта ядерным источником в...
Тип: Изобретение
Номер охранного документа: 0002518876
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d0de

Платформа клапана-регулятора расхода

Группа изобретений относится к горному делу и может быть применена в скважинных клапанных системах. Скважинная система включает в себя насосно-компрессорную трубу, проходящую в изолированную зону скважины, и множество модулей штуцеров, расположенных в изолированной зоне, для управления...
Тип: Изобретение
Номер охранного документа: 0002519241
Дата охранного документа: 10.06.2014
+ добавить свой РИД