×
20.01.2016
216.013.a19e

Результат интеллектуальной деятельности: МИКРОВОЛНОВОЙ ПЛАЗМЕННЫЙ ГАЗИФИКАТОР БИОМАССЫ С ПЕРЕМЕЩАЮЩИМСЯ ПОТОКОМ И СПОСОБ ГАЗИФИКАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002573016
Дата охранного документа
20.01.2016
Аннотация: Изобретение относится к газификатору биомассы с газификацией в перемещающемся потоке и способу газификации с использованием газификатора для получения синтез-газа из биотоплива в присутствии СВЧ-возбужденной плазмы. Газификатор содержит корпус печи, расположенный вертикально и содержащий впуск для топлива, в виде форсунок, выпуск для синтез-газа и выпуск для шлака, систему предварительной обработки топлива, расположенную снаружи корпуса печи и содержащую устройство дробления топлива, отсеивающее устройство, первый топливный контейнер для приема частиц топлива пригодного размера, второй топливный контейнер для приема частиц топлива непригодного размера и питающий бункер, нижняя часть которого соединена с корпусом печи посредством форсунок, и блок мониторинга. Слои микроволновых генераторов плазмы расположены параллельно у зоны газификации корпуса печи, и каждый слой микроволновых генераторов плазмы содержит от 2 до 4 впусков для рабочего газа. Изобретение обеспечивает высокоинтенсивную газификацию биомассы и экономическую эффективность. 2 н. и 8 з.п. ф-лы, 2 ил.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Данное изобретение касается газификации биомассы, и, более конкретно, газификатора с газификацией в перемещающемся потоке, и способа газификации, использующего его для получения синтез-газа из биотоплива в присутствии СВЧ-возбужденной плазмы.

УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ

В настоящее время область использования энергии биомассы, технологии газификации биомассы, имеет широкую применимость и огромный потенциал для развития. Способ газификации биомассы обычно включает в себя газификацию в неподвижном слое, газификацию в псевдоожиженном слое, газификацию в перемещающемся потоке. Газификация в неподвижном слое имеет недостатки, такие как низкая температура газификации, высокое содержание смолы и низкое качество синтез-газа. Газификация в псевдоожиженном слое имеет среднюю температуру газификации, и удобную подачу сырья, и выпуск, гарантирующие стабильное псевдоожижение, температуру печи необходимо регулировать на среднем уровне. Низкая температура газификации приводит к высокому содержанию смолы в синтез-газе. Смола трудно удаляется, и легко блокирует, и коррозирует клапаны, трубы и вспомогательное оборудование. Удаление смолы дорого стоит. Газификация в перемещающемся потоке имеет высокую и равномерную температуру реакции, высокую эффективность газификации, и смола полностью крекирует. Однако газификация в перемещающемся потоке имеет высокие требования к размеру частиц исходных материалов. Обычно размер частиц должен быть меньше чем 0,1 мм. Биомасса содержит много целлюлозы, которую трудно дробить, чтобы получать маленький размер частиц, удовлетворяющий требованию слоя с перемещающимся потоком. Чем меньше требуемый размер частиц, тем больше истирание дробилки и тем выше потребляемая ей энергия. Большой размер частиц дает низкую величину превращения углерода и низкую эффективность холодного газа, которые сильно ограничивают применение обычных слоев с перемещающимся потоком в получении синтез-газа.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Ввиду вышеописанных проблем одной задачей данного изобретения является обеспечить газификатор с перемещающимся потоком и способ газификации с его применением для получения синтез-газа, содержащего моноксид углерода и водород, из биотоплива в присутствии СВЧ-возбужденной плазмы с отличиями в экономичности, высокой эффективности и удобоисполнимости.

Для достижения вышеуказанной цели приняты следующие технические схемы.

Газификатор биомассы с перемещающимся потоком на основе микроволновой плазмы содержит корпус печи и систему предварительной обработки топлива. Корпус печи расположен вертикально и содержит впуск для топлива, расположенный в нижней части корпуса печи, выпуск для синтез-газа, расположенный в верхней части корпуса печи, и выпуск для шлака, расположенный в нижней части корпуса печи. Впуск для топлива присутствует в форме форсунок. Система предварительной обработки топлива расположена вне корпуса печи и содержит устройство дробления топлива, отсеивающее устройство, находящееся ниже по потоку от устройства дробления топлива, первый топливный контейнер для приема частиц топлива пригодного размера, второй топливный контейнер для приема частиц топлива непригодного размера и питающий бункер, находящийся ниже по потоку от первого топливного контейнера. Первый топливный контейнер и второй топливный контейнер расположены рядом ниже по потоку от отсеивающего устройства; нижняя часть питающего бункера соединяется с корпусом печи посредством форсунок. Блок мониторинга расположен близко к выпуску для синтез-газа у верхней части корпуса печи. Форсунки расположены радиально вдоль корпуса печи числом от 2 до 4. Один или два слоя микроволновых генераторов плазмы расположены параллельно у зоны газификации корпуса печи, и каждый слой микроволновых генераторов плазмы содержит от 2 до 4 впусков для рабочего газа.

Микроволновые генераторы плазмы расположены горизонтально/тангенциально на корпусе печи так, чтобы увеличивать время удерживания расплавленных частиц биомассы в атмосфере плазмы.

Микроволновые генераторы плазмы имеют большое межэлектродное расстояние, высокую активность плазмы и широкой диапазон объема.

Источник микроволновой энергии микроволновых генераторов плазмы имеет базовую частоту 2,45 ГГц, и мощность одного микроволнового генератора плазмы находится в пределах 200 кВт.

Способ газификации биомассы, использующий газификатор с перемещающимся потоком, содержит:

1) дробление и отсеивание биотоплива с использованием системы предварительной обработки топлива, дающей частицы топлива пригодного размера, и перенос частиц топлива пригодного размера в питающий бункер для применения;

2) введение рабочего газа из впусков для рабочего газа в микроволновой генератор плазмы, возбуждение рабочего газа с получением высокотемпературной плазмы с высокой степенью ионизации и высокой активностью, и распыление данной плазмы в газификатор;

3) распыление частиц топлива пригодного размера в газификатор через форсунки, одновременное распыление окислителя через впуск для кислорода/пара в газификатор, так что происходит высокотемпературная и быстрая термическая химическая реакция между частицами топлива и окислителем в присутствии плазмы с высокой активностью, дающая синтез-газ, содержащий моноксид углерода и водород; и

4) мониторинг температуры и компонентов синтез-газа, регулирование скорости потока кислорода, скорости потока пара и микроволновой мощности, чтобы поддерживать параметры процесса в заданном диапазоне, отбор синтез-газа, имеющего температуру от 900 до 1200°С, из выпуска для синтез-газа в верхней части корпуса печи и выпуск жидких шлаков из выпуска для шлаков.

На этапе 1) частицы топлива пригодного размера принимаются первым топливным контейнером, частицы топлива непригодного размера сначала принимаются вторым топливным контейнером и затем возвращаются в систему предварительной обработки топлива для повторного дробления, пока не станут удовлетворять требованиям по размеру частиц; частицы топлива пригодного размера переносятся из первого контейнера в питающий бункер; и размер частиц топлива составляет от 0 до 5 мм.

На этапе 2) запуск микроволновых генераторов плазмы происходит на 2-3 секунды раньше, чем запуск форсунок газификатора; рабочий газ содержит вспомогательный окислитель и вводится в микроволновые генераторы плазмы через впуски для рабочего газа, чтобы возбуждаться, давая высокотемпературную плазму с высокой степенью ионизации и высокой активностью.

На этапе 3) частицы топлива пригодного размера переносятся газом-носителем и распыляются в газификатор через форсунки; окислители одновременно распыляются в газификатор через впуск для кислорода/пара, так что происходит реакция парциального окисления-восстановления и реакция высокотемпературной газификации между частицами топлива и окислителем, давая синтез-газ, содержащий большое количество моноксида углерода, и водорода, и небольшое количество СО2, СН4, Н2S и СОS.

Синтез-газ течет вверх в зону газификации микроволновых генераторов плазмы и смешивается с горизонтально/тангенциально распыленным плазменным газом для высокотемпературной термохимической реакции газификации между 1200 и 1800°С, температура центральной зоны составляет от 1800 до 2000°С, время пребывания синтез-газа в зоне газификации составляет от 1 до 10 секунд, и мощность микроволновых генераторов плазмы регулируется так, чтобы заставлять реакцию протекать полностью.

На этапе 4) объемное содержание СО и Н2 в синтез-газе превышает 85%, синтез-газ не содержит смолы и фенольных соединений, жидкий шлак, выпускаемый из выпуска для шлака, застывает в состоянии, свободном от загрязнений, которое может быть использовано в качестве термоизолирующего материала.

На этапе 2) и 3) рабочий газ и газ-носитель представляют собой воздух, и/или кислород, и/или пар; и пар происходит от рециркуляции теплосодержания высокотемпературного синтез-газа.

В этом описании микроволновой генератор плазмы расположен в зоне газификации газификатора. Рабочий газ в микроволновом генераторе плазмы возбуждается микроволнами, образуя плазму. СВЧ-возбужденная плазма обогащена окислителями и отличается высокой температурой, высокой степенью ионизации, высокой дисперсностью и высокой активностью. Когда рабочий газ распыляется в редокс-зону слоя с перемещающимся потоком, в присутствии высокотемпературной плазмы с высокой активностью, с одной стороны, увеличивается температура реакции, что ускоряет химическую реакцию, с другой стороны, высокотемпературная плазма с высокой активностью может сильно улучшать химическую реакцию между синтез-газом и твердофазными/жидкофазными частицами биомассы, тем самым улучшая скорость тепло- и массопереноса и сокращая время химической реакции биотоплива. Превращение топлива существенно улучшается при том же времени пребывания. По сравнению с углем, биотопливо имеет большое пустое пространство, высокую активность и низкую точку плавления. Таким образом, в присутствии высокотемпературной плазмы с высокой активностью размер частиц применяемого биотоплива может быть существенно выше, чем требуется обычным слоем с перемещающимся потоком, и эффект превращения является идеальным.

Кроме того, микроволновой генератор плазмы поставляет вспомогательный окислитель для реакции газификации, что обеспечивает баланс и равномерность подачи реагентов, и вводит определенную термическую энергию, которая обеспечивается некоторым внешним термическим источником. Введение вспомогательного окислителя является хорошим средством регулировать работу газификатора.

Преимущества согласно вариантам осуществления данного изобретения суммируются следующим образом.

1. Биотопливо имеет высокую активность, в присутствии высокотемпературной СВЧ-возбужденной плазмы величина превращения углерода достигает приблизительно 99%, эффективность холодного газа превышает 85%, и активные компоненты СО и Н2 имеют высокое содержание.

2. Синтез-газ, полученный из газификатора с перемещающимся потоком, не содержит смолы и фенольных соединений, и последующий отбор газа является удобным.

3. В этом описании биотопливо не требуется дробить до исключительно мелкого размера частиц, то есть применяемый диапазон размера частиц биотоплива является широким, и, таким образом, газификатор имеет хорошую экономическую эффективность.

4. Подача материала и выпуск шлака являются легкими, а интенсивность газификации является высокой, что способствует популяризации.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Изобретение описывает ниже со ссылкой на сопровождающие чертежи, где:

Фиг. 1 показывает схематичное изображение газификатора биомассы с перемещающимся потоком на основе микроволновой плазмы и схему работы способа газификации, использующего газификатор согласно одному варианту осуществления данного изобретения.

Фиг. 2 представляет собой вид в разрезе, сделанном по линии А-А на Фиг. 1.

На чертежах используются следующие ссылочные позиции: 1. Устройство дробления топлива; 2. Отсеивающее устройство; 3. Первый топливный контейнер для приема частиц топлива пригодного размера; 4. Второй топливный контейнер для приема частиц топлива непригодного размера; 5. Питающий бункер; 6. Форсунки; 7. Микроволновой генератор плазмы; 8. Газификатор; 9. Выпуск для синтез-газа; 10. Выпуск для шлака; 11. Впуск для рабочего газа; 12. Блок мониторинга; 13. Впуск для кислорода/пара.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ

Как показано на Фиг. 1 и 2, газификатор 8 биомассы с перемещающимся потоком на основе микроволновой плазмы содержит цилиндрический корпус печи и систему предварительной обработки топлива. Корпус печи расположен вертикально и содержит впуск для топлива, расположенный в нижней части корпуса печи, выпуск 9 для синтез-газа, расположенный в верхней части корпуса печи, и выпуск 10 для шлака, расположенный в нижней части корпуса печи. Впуск для топлива присутствует в форме форсунок 6. Система предварительной обработки топлива расположена вне корпуса печи и содержит устройство 1 дробления топлива, отсеивающее устройство 2, находящееся ниже по потоку от устройства 1 дробления топлива, первый топливный контейнер 3 для приема частиц топлива пригодного размера, второй топливный контейнер 4 для приема частиц топлива непригодного размера и питающий бункер 5, находящийся ниже по потоку от первого топливного контейнера. Первый топливный контейнер и второй топливный контейнер расположены рядом ниже по потоку от отсеивающего устройства. Нижняя часть питающего бункера 5 соединяется с корпусом печи посредством форсунок 6. Один или два слоя микроволновых генераторов 7 плазмы расположены параллельно у зоны газификации корпуса печи для расширения зоны плазменной реакции, и каждый слой микроволновых генераторов плазмы содержит от 2 до 4 впусков 11 для рабочего газа (их три на Фиг. 2). Корпус печи газификатора является цилиндрическим или комбинацией конуса и цилиндра.

Расположение микроволновых генераторов плазмы сильно влияет на газификацию биотоплива. В этом примере микроволновые генераторы 7 плазмы расположены на корпусе печи и горизонтально, и тангенциально. Таким образом, газовый поток полностью завихряется, увеличивая время пребывания расплавленных частиц биомассы в атмосфере плазмы.

Блок 12 мониторинга расположен близко к выпуску 9 для синтез-газа в верхней части корпуса печи, чтобы контролировать температуру и состав синтез-газа, чтобы регулировать величину потока кислорода, величину потока пара и микроволновую мощность, чтобы поддерживать параметры способа в заданном диапазоне.

Форсунки 6 расположены радиально вдоль корпуса печи числом от 2 до 4. Если необходимо, число форсунок может быть увеличено или уменьшено.

Микроволновые генераторы плазмы имеют большое межэлектродное расстояние, высокую активность плазмы и широкой диапазон объема.

Источник микроволновой энергии микроволновых генераторов плазмы имеет базовую частоту 2,45 ГГц, и мощность одного микроволнового генератора плазмы находится в пределах 200 кВт.

Способ газификации биомассы, использующий газификатор с перемещающимся потоком, содержит:

1.) Дробление и отсеивание биотоплива с использованием устройства 1 дробления топлива и отсеивающего устройства 2 с получением частиц топлива пригодного размера.

Более конкретно, биотопливо дробят с помощью устройства дробления топлива системы предварительной обработки топлива, чтобы оно имело надлежащий размер частиц. Размер частиц биотоплива является одним из ключевых факторов, влияющих на процесс газификации. Чем меньше требуемый размер частиц, тем больше истирание дробилки и тем выше потребление энергии. Большой размер частиц дает низкую величину превращения углерода и низкую эффективность охлажденного угольного газа. Дробленое биотопливо переносится в отсеивающее устройство 2. Через сито частицы топлива пригодного размера принимаются первым топливным контейнером 3, а частицы топлива непригодного размера сначала принимаются вторым топливным контейнером 4, а затем возвращаются в систему предварительной обработки топлива для повторного дробления до удовлетворения требования размера частиц. Возьмем рисовые отруби в качестве примера, размер частиц рисовых отрубей составляет от 7 до 10 мм в длину и 2 мм в ширину. Рисовые отруби необходимо дробить, чтобы они имели размер частиц от 1 до 5 мм. Ветки и солома имеют большой исходный размер частиц, и их можно сначала дробить с помощью дисковой или барабанной дробилки до размера частиц от 50 до 100 мм, а затем дробить молотковой мельницей до размера частиц от 1 до 5 мм.

2.) Введение рабочего газа из впусков 11 для рабочего газа в микроволновой генератор 7 плазмы, возбуждение рабочего газа с получением высокотемпературной плазмы с высокой степенью ионизации и высокой активностью, и распыление данной плазмы в газификатор 8.

Более конкретно, запуск микроволновых генераторов 7 плазмы происходит на 2-3 секунды раньше, чем запуск форсунок 6 газификатора. Рабочий газ содержит вспомогательный окислитель и вводится в микроволновые генераторы 7 плазмы через впуски 11 для рабочего газа, чтобы возбуждаться, давая высокотемпературную плазму с высокой степенью ионизации и высокой активностью, которая далее распыляется в газификатор 8.

3.) Распыление частиц топлива пригодного размера в газификатор 8 через форсунки 6, одновременное распыление окислителя через впуск для 13 кислорода/пара в газификатор, так что происходит высокотемпературная и быстрая термическая химическая реакция между частицами топлива и окислителем в присутствии плазмы с высокой активностью, дающая синтез-газ, содержащий большое количество моноксида углерода, и водород, и маленькое количество СО2, СН4, Н2S и СОS.

Синтез-газ течет вверх в зону газификации микроволновых генераторов плазмы и смешивается с горизонтально/тангенциально распыленным плазменным газом для высокотемпературной термохимической реакции газификации между 1200 и 1800°С, температура центральной зоны составляет от 1800 до 2000°С, время пребывания синтез-газа в зоне газификации составляет от 1 до 10 секунд, и мощность микроволновых генераторов плазмы регулируется так, чтобы заставлять реакцию протекать полностью. Синтез-газ в итоге отбирают из выпуска 9 для синтез-газа, расположенного в верхней части газификатора. Объемное содержание СО и Н2 в синтез-газе превышает 85%. Синтез-газ не содержит смолы и фенольных соединений. Жидкий шлак, выпускаемый из выпуска 9 для шлака, застывает в состоянии, свободном от загрязнений, которое может быть использовано в качестве термоизолирующего материала. Пар происходит от рециркуляции высокотемпературного синтез-газа.

4.) Контроль температуры и состава синтез-газа, регулирование скорости потока кислорода, скорости потока пара и микроволновой мощности, чтобы поддерживать параметры способа в заданном диапазоне, отбор синтез-газа, имеющего температуру от 900 до 1200°С, из выпуска 9 для синтез-газа в верхней части корпуса печи и выпуск жидких шлаков из выпуска 10 для шлаков.

На этапе 1) размер частиц топлива составляет от 0 до 5 мм, в особенности приблизительно 2 мм.

На этапах 2) и 3) рабочий газ и газ-носитель представляют собой воздух, и/или кислород, и/или пар; и пар происходит от рециркуляции теплосодержания высокотемпературного синтез-газа.

Чтобы достичь оптимальных рабочих условий и удовлетворить требованию полного выполнения газификации, ключом является контроль температуры слоя с перемещающимся потоком и регулирование скорости потока кислорода, скорости потока пара и микроволновой мощности. Блок мониторинга, расположенный близко к выпуску для синтез-газа, может контролировать вышеуказанные параметры в реальном времени, регулируя, тем самым, процесс газификации с помощью цепочечной и полной автоматизации и поддерживая стабильность работы газификатора.

Хотя показаны и описаны конкретные варианты осуществления данного изобретения, специалистам в данной области техники будет очевидно, что изменения и модификации могут быть сделаны без отклонения от данного изобретения в его широких аспектах, и поэтому задачей формулы изобретения является покрывать все такие изменения и модификации, как попадающие в истинную сущность и объем изобретения.


МИКРОВОЛНОВОЙ ПЛАЗМЕННЫЙ ГАЗИФИКАТОР БИОМАССЫ С ПЕРЕМЕЩАЮЩИМСЯ ПОТОКОМ И СПОСОБ ГАЗИФИКАЦИИ
МИКРОВОЛНОВОЙ ПЛАЗМЕННЫЙ ГАЗИФИКАТОР БИОМАССЫ С ПЕРЕМЕЩАЮЩИМСЯ ПОТОКОМ И СПОСОБ ГАЗИФИКАЦИИ
Источник поступления информации: Роспатент

Showing 41-49 of 49 items.
29.06.2018
№218.016.68ee

Структурированный катализатор на основе железа для производства α-олефина из синтез-газа и способ его изготовления и применение

Структурированный катализатор на основе железа для производства α-олефина из синтез-газа на неподвижном слое или в суспензионном слое, способ его изготовления и применение. Катализатор на основе железа в форме сферических частиц содержит между 50,0 и 99,8 % по массе железа, между 0 и 5,0 % по...
Тип: Изобретение
Номер охранного документа: 0002659067
Дата охранного документа: 28.06.2018
24.07.2018
№218.016.73d0

Катализатор синтеза фишера-тропша на основе кобальта, способ его получения и его применение

Изобретение относится к области синтеза Фишера-Тропша в промышленном катализе. Описан катализатор на основе кобальта для синтеза Фишера-Тропша, способ его приготовления и его применение. Катализатор состоит из активного компонента Co и композитного геля AlO-SiO в качестве носителя, где в...
Тип: Изобретение
Номер охранного документа: 0002661897
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.740c

Способ получения материала отрицательного электрода литий-ионной батареи с использованием фильтрационного остатка печи для газификации биомассы

Изобретение относится к технологии получения материалов литий-ионных батарей, и более конкретно к способу получения анодного материала для литий-ионных батарей с использованием остатков из газификаторов биомассы в установках для получения синтетической нефти из биомассы. Способ включает стадии,...
Тип: Изобретение
Номер охранного документа: 0002661911
Дата охранного документа: 23.07.2018
27.10.2018
№218.016.96f8

Мельница тонкого размельчения, работающая при высоком давлении

Изобретение относится к размельчающему устройству для угля и неметаллических минералов, работающему при высоком давлении. Мельница содержит основную часть, содержащую трубу для подачи и трубу для выгрузки, электродвигатель и сосуд. Сосуд содержит отверстие для подачи, отверстие для выгрузки и...
Тип: Изобретение
Номер охранного документа: 0002670873
Дата охранного документа: 25.10.2018
15.12.2018
№218.016.a7a8

Способ интерактивной сушки теплоизолированной печи каталитического окисления природного газа

Изобретение относится к технологии обработки в печи каталитического окисления, а именно к способу интерактивной сушки адиабатической печи каталитического окисления природного газа. Способ включает: 1) загрузку исходного газа, содержащего кислород и природный газ, а также терморегулирующего...
Тип: Изобретение
Номер охранного документа: 0002675014
Дата охранного документа: 14.12.2018
26.12.2018
№218.016.ab89

Нанокатализатор из монодисперсного переходного металла для синтеза фишера-тропша, способ его приготовления и его применение

Изобретение относится к области нанокатализатора для синтеза Фишера-Тропша. Описан нанокатализатор из монодисперсного переходного металла для синтеза Фишера-Тропша, включающий переходный металл и органический растворитель, где переходный металл устойчиво диспергирован в органическом...
Тип: Изобретение
Номер охранного документа: 0002675839
Дата охранного документа: 25.12.2018
31.01.2019
№219.016.b548

Способ гидроочистки низкотемпературного дистиллята фишера- тропша, имеющего высокий выход средних дистиллятов

Изобретение относится к способу для гидроочистки средних дистиллятов синтетических дистиллятов Фишера-Тропша полного диапазона, причем способ содержит стадии: 1) разделяют средние дистилляты синтетических дистиллятов Фишера-Тропша полного диапазона, чтобы обеспечить выход легких дистиллятов,...
Тип: Изобретение
Номер охранного документа: 0002678443
Дата охранного документа: 29.01.2019
14.02.2019
№219.016.b9d7

Устройство и способ для изготовления дизельного масла и реактивного топлива при использовании синтетической нефти от синтеза фишера-тропша

Устройство для изготовления дизельного топлива и топлива для реактивных двигателей с использованием синтетической нефти от синтеза Фишера-Тропша, содержащее реактор гидроочистки (A), горячий сепаратор (В) высокого давления, первую ректификационную колонну (С), реактор гидрокрекинга (D), реактор...
Тип: Изобретение
Номер охранного документа: 0002679662
Дата охранного документа: 12.02.2019
16.02.2019
№219.016.bbaf

Способ согласованного комплексного использования хлорщелочного процесса и синтеза фишера-тропша и соответствующее оборудование

Изобретение относится к синтезу Фишера-Тропша. Способ проведения синтеза Фишера-Тропша включает хлорщелочной процесс, при этом в целом способ включает: 1) газификацию исходного материала с целью получения сырого синтез-газа для синтеза Фишера-Тропша, содержащего Н, СО и СО; 2) электролиз...
Тип: Изобретение
Номер охранного документа: 0002679909
Дата охранного документа: 14.02.2019
Showing 41-45 of 45 items.
13.09.2018
№218.016.86cb

Способ и устройство для использования избыточного тепла от топочного газа электростанции для высушивания топлива из биомассы

Изобретение относится к способу и устройству для использования избыточного тепла от топочного газа электростанции для высушивания топлива из биомассы. Способ включает следующие стадии: 1) постепенное использование избыточного тепла от топочного газа; 2) высокотемпературное быстрое высушивание...
Тип: Изобретение
Номер охранного документа: 0002666839
Дата охранного документа: 12.09.2018
13.09.2018
№218.016.8732

Способ сушки топлива из биомассы и устройство для него, использующее мобильную платформу на транспортном средстве

Изобретение относится к способу сушки топлива из биомассы и мобильному платформенному устройству для сушки топлива из биомассы. Для его осуществления используют мобильную платформу на транспортном средстве для разделения основных процессов на производственной линии для сушки топлива из биомассы...
Тип: Изобретение
Номер охранного документа: 0002666844
Дата охранного документа: 12.09.2018
15.12.2018
№218.016.a7a8

Способ интерактивной сушки теплоизолированной печи каталитического окисления природного газа

Изобретение относится к технологии обработки в печи каталитического окисления, а именно к способу интерактивной сушки адиабатической печи каталитического окисления природного газа. Способ включает: 1) загрузку исходного газа, содержащего кислород и природный газ, а также терморегулирующего...
Тип: Изобретение
Номер охранного документа: 0002675014
Дата охранного документа: 14.12.2018
26.12.2018
№218.016.ab89

Нанокатализатор из монодисперсного переходного металла для синтеза фишера-тропша, способ его приготовления и его применение

Изобретение относится к области нанокатализатора для синтеза Фишера-Тропша. Описан нанокатализатор из монодисперсного переходного металла для синтеза Фишера-Тропша, включающий переходный металл и органический растворитель, где переходный металл устойчиво диспергирован в органическом...
Тип: Изобретение
Номер охранного документа: 0002675839
Дата охранного документа: 25.12.2018
17.10.2019
№219.017.d625

Фильтр нижней полой вены

Фильтр нижней полой вены содержит крючок (1) для извлечения, соединительную часть (12) и множество поддерживающих стержней. Соединительная часть (12) расположена под крючком (1) для извлечения, при этом в соединительной части расположен компонент, соединенный с толкающим устройством. Множество...
Тип: Изобретение
Номер охранного документа: 0002703136
Дата охранного документа: 15.10.2019
+ добавить свой РИД