×
20.01.2016
216.013.a0c0

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения теплофизических параметров компонентов силовой электроники и может быть использовано для контроля их качества. Способ заключается в том, что нагрев мощного МДП-транзистора осуществляют греющей мощностью, модулированной по гармоническому закону, для чего через транзистор пропускают последовательность импульсов греющего тока постоянной амплитуды, постоянным периодом следования и изменяющейся по гармоническому закону длительностью. Импульсы пропускают через встроенный в мощный МДП-транзистор антипараллельный диод при закрытом канале транзистора, измеряют и запоминают для каждого греющего импульса напряжение на диоде и вычисляют временную зависимость средней за период следования греющей мощности. В паузах между импульсами греющего тока измеряют и запоминают значения температурочувствительного параметра - прямого напряжения на диоде при малом постоянном измерительном токе и вычисляют временную зависимость температуры кристалла в процессе нагрева транзистора, после чего с помощью Фурье-преобразования вычисляют амплитуду основной гармоники температуры кристалла и амплитуду основной гармоники греющей мощности, отношение которых равно модулю теплового импеданса транзистора на частоте модуляции греющей мощности. Затем процесс измерения повторяют на других частотах модуляции, получают частотную зависимость модуля теплового импеданса транзистора, содержащую участок с постоянным значением модуля теплового импеданса, которое принимают равным тепловому сопротивлению переход-корпус мощного МДП-транзистора. 4 ил.
Основные результаты: Способ измерения теплового сопротивления переход-корпус мощных МДП-транзисторов, заключающийся в том, что через мощный МДП-транзистор пропускают последовательность импульсов греющего тока, в паузах между ними измеряют и запоминают значения температурочувствительного параметра U при измерительном токе I, вычисляют среднюю рассеиваемую мощность при каждом импульсе греющего тока и соответствующие изменения температурочувствительного параметра, отличающийся тем, что нагрев мощного МДП-транзистора осуществляют греющей мощностью, модулированной по гармоническому закону, для чего через мощный МДП-транзистор пропускают последовательность импульсов греющего тока постоянной амплитуды I, постоянным периодом следования Т и изменяющейся по гармоническому закону длительностью τ, импульсы пропускают через встроенный в мощный МДП-транзистор антипараллельный диод при закрытом канале мощного МДП-транзистора, измеряют и запоминают для каждого греющего импульса напряжение на антипараллельном диоде и вычисляют временную зависимость средней за период следования Т греющей мощности , в паузах между импульсами греющего тока измеряют и запоминают значения температурочувствительного параметра U - прямого напряжения на антипараллельном диоде при измерительном токе I и вычисляют временную зависимость температуры T(t) кристалла в процессе нагрева мощного МДП-транзистора, с помощью Фурье-преобразования временных зависимостей T(t) и вычисляют амплитуду Τ основной гармоники температуры кристалла и амплитуду P основной гармоники греющей мощности, отношение которых равно модулю теплового импеданса Z мощного МДП-транзистора на частоте модуляции ω греющей мощности, после чего процесс измерения повторяют на других частотах модуляции ω греющей мощности, получают частотную зависимость модуля теплового импеданса Ζ(ω) мощного МДП-транзистора, содержащую участок с постоянным значением модуля теплового импеданса, которое принимают равным тепловому сопротивлению переход-корпус R мощного МДП-транзистора.

Изобретение относится к технике измерения теплофизических параметров компонентов силовой электроники и может быть использовано для контроля их качества.

Среди существующих способов измерения теплового сопротивления полупроводниковых приборов известен способ измерения теплового сопротивления переход-корпус силовых полупроводниковых приборов в корпусном исполнении (RU 2240573, МПК G01R 31/26, опубл. 20.11.2004), заключающийся в том, что полупроводниковый кристалл нагревают путем пропускания через него постоянного тока Ι0 заданной амплитуды и в процессе нагревания измеряют значение его температурочувствительного параметра, в качестве которого используют прямое падение напряжения на кристалле Uп и одновременно измеряют температуру основания корпуса Тк прибора в выбранной точке. Запоминают эти значения, получая их зависимости от времени. Прекращают нагрев полупроводникового кристалла при достижении температуры Тк заданного значения и в режиме естественного охлаждения при подаче на кристалл коротких измерительных импульсов тока с амплитудой, равной значению постоянного греющего тока Ι0, и скважностью, не влияющими на тепловое равновесие прибора, измеряют и запоминают значения температурочувствительного параметра и температуры основания корпуса, получая зависимости Uп(t) и Тк(t) на интервале охлаждения. При этом длительность интервала охлаждения выбирают из условия безусловного выполнения t>>3τ, где τ - наибольшая тепловая постоянная конструкция прибора, определяют момент динамического равновесия на интервале нагрева и по полученным зависимостям вычисляют тепловое сопротивление переход-корпус.

Недостатком способа является большая погрешность измерения, обусловленная тем, что зависимость температурочувствительного параметра от температуры кристалла, измеряемая при большом греющем токе, имеет нелинейный характер.

Наиболее близким по технической сущности к заявленному изобретению (прототипом) является способ измерения теплового сопротивления переход-корпус транзисторов с полевым управлением (RU 2516609, МПК G01R 31/26, опубл. 27.08.2013), суть которого заключается в следующем. Прибор нагревают путем пропускания через него импульсов тока произвольной формы в открытом состоянии. В паузах между импульсами греющего тока, пропуская через прибор измерительный ток, измеряют и запоминают значения температурочувствительного параметра, в качестве которого используют падение напряжения между стоком и истоком открытого прибора, и температуры корпуса. Периодически измеряют и запоминают значения греющего тока и вызываемого им падения напряжения на приборе. Вычисляют среднюю мощность, рассеиваемую в приборе при пропускании через него импульса греющего тока. Сравнивают вычисленную среднюю мощность потерь на n-м интервале измерения с предварительно установленной максимально допустимой для прибора рассеиваемой мощностью. Когда значение меньше, равно или больше РМАХ, соответственно увеличивают, оставляют неизменным или уменьшают среднее значение греющего тока. По достижении температурой корпуса прибора заданного максимума полностью прерывают протекание греющего тока. Через прибор пропускают измерительный ток и измеряют и запоминают значение температурочувствительного параметра. В режиме естественного охлаждения по достижении термодинамического равновесия периодически измеряют и запоминают значения термочувствительного параметра и температуры корпуса прибора, после чего рассчитывают тепловое сопротивление переход-корпус.

Недостатком прототипа является большая погрешность определения средней мощности, рассеиваемой в приборе при пропускании через него импульса греющего тока произвольной формы, и, как следствие, большая погрешность вычисления теплового сопротивления переход-корпус прибора.

Технический результат - повышение точности измерения теплового сопротивления переход-корпус мощных МДП-транзисторов.

Технический результат достигается тем, что, как и в прототипе, через мощный МДП-транзистор пропускают последовательность импульсов греющего тока, в паузах между ними измеряют и запоминают значения температурочувствительного параметра UТЧП при измерительном токе Iизм, вычисляют среднюю рассеиваемую мощность при каждом импульсе греющего тока и соответствующие изменения температурочувствительного параметра. В отличие от прототипа, в котором нагрев мощного МДП-транзистора осуществляют импульсами греющего тока произвольной формы, пропуская их через открытый канал мощного МДП-транзистора, а в качестве температурочувствительного параметра UТЧП используют напряжение между стоком и истоком мощного МДП-транзистора при открытом канале и измерительном токе Iизм, в заявляемом изобретении нагрев мощного МДП-транзистора осуществляют греющей мощностью, модулированной по гармоническому закону, для чего через мощный МДП-транзистор пропускают последовательность импульсов греющего тока постоянной амплитуды Ιгр, постоянным периодом следования Тсл и изменяющейся по гармоническому закону длительностью τ, импульсы пропускают через встроенный в мощный МДП-транзистор антипараллельный диод при закрытом канале мощного МДП-транзистора, измеряют и запоминают для каждого греющего импульса напряжение на антипараллельном диоде и вычисляют временную зависимость средней за период следования Тсл греющей мощности , в паузах между импульсами греющего тока измеряют и запоминают значения температурочувствительного параметра UТЧП - прямого напряжения на антипараллельном диоде при измерительном токе Iизм и вычисляют временную зависимость температуры T(t) кристалла в процессе нагрева мощного МДП-транзистора, с помощью Фурье-преобразования временных зависимостей T(t) и вычисляют амплитуду T1 основной гармоники температуры кристалла и амплитуду P1 основной гармоники греющей мощности, отношение которых равно модулю теплового импеданса ΖT мощного МДП-транзистора на частоте модуляции ω греющей мощности, после чего процесс измерения повторяют на других частотах модуляции ω греющей мощности, получают частотную зависимость модуля теплового импеданса ΖT(ω) мощного МДП-транзистора, содержащую участок с постоянным значением модуля теплового импеданса, которое принимают равным тепловому сопротивлению переход-корпус RТп-к мощного МДП-транзистора.

Сущность способа поясняют фиг. 1-3. На фиг. 1а показана структура мощного n-канального МДП-транзистора, на фиг. 1б - его условное графическое изображение. Особенностью структуры транзистора является наличие антипараллельного диода, образованного p-областью истока и n-областью стока. При замкнутых между собой затворе и истоке мощного МДП-транзистора напряжение UЗИ между ними равно нулю, проводящий канал между истоком и стоком отсутствует и ток между истоком и стоком протекает через антипараллельный диод по пути, показанному на фиг. 1а стрелками.

На фиг. 2а показана временная зависимость тока I через антипараллельный диод мощного МДП-транзистора, представляющая собой последовательность греющих импульсов с постоянным периодом следования Тсл и изменяющейся по гармоническому закону длительностью. Широтно-импульсная модуляция греющего тока Iгр, осуществляемая по гармоническому закону, вызывает соответствующие изменения рассеиваемой в мощном МДП-транзисторе мощности , график которой показан на фиг. 2б. Модуляция греющей мощности вызывает соответствующие изменения температуры T(t) кристалла мощного МДП-транзистора, сдвинутые по фазе относительно мощности (фиг. 2в). Изменение температуры вызывает соответствующие изменения температурочувствительного параметра UТЧП(t) (фиг. 2г), в качестве которого используют прямое напряжение на антипараллельном диоде, измеряемое в паузах между греющими импульсами при измерительном токе Iизм. Прямое напряжение на диоде линейно зависит от температуры, что позволяет на основе измерения UТЧП(t) определить T(t). Отношение основной гармоники Τ1 температуры кристалла и основной гармоники P1 рассеиваемой в мощном МДП-транзисторе мощности определяет модуль теплового импеданса ΖT мощного МДП-транзистора на частоте модуляции греющей мощности ω.

На фиг. 3 представлена частотная зависимость модуля теплового импеданса ΖT(ω) мощного МДП-транзистора, полученная в результате измерений модуля теплового импеданса ΖT при различных частотах ω модуляции греющей мощности. Значение ΖT на пологом участке частотной зависимости определяет тепловое сопротивление переход-корпус RТп-к мощного МДП-транзистора.

Предлагаемый способ может быть реализован с помощью устройства, структурная схема которого показана на фиг. 4. Устройство содержит источник 1 измерительного тока; формирователь 2 греющих импульсов, управляемый микроконтроллером 3; аналого-цифровой преобразователь 4, вход которого соединен с объектом измерения - мощным МДП-транзистором 5, а выход - с микроконтроллером 3. Затвор и исток мощного МДП-транзистора 5 соединены между собой.

Способ осуществляют следующим образом. С выхода формирователя 2 греющих импульсов через объект измерения - мощный МДП-транзистор 5 - пропускают заданное микроконтроллером 3 количество импульсов греющего тока Iгр, период следования Тсл которых поддерживают постоянным, а длительность модулируют по гармоническому закону. Частота модуляции задается микроконтроллером. В паузах между греющими импульсами измеряют температурочувствительный параметр - прямое напряжение UТЧП на антипараллельном диоде мощного МДП-транзистора 5, возникающее при протекании через него измерительного тока Iизм, сформированного источником 1. Напряжение UТЧП с помощью аналого-цифрового преобразователя 4 преобразуют в цифровой код, поступающий в микроконтроллер 3, в результате чего в памяти микроконтроллера 3 формируют массив значений {UТЧП}, который затем преобразуют в массив температур {Т} кристалла. С помощью Фурье-преобразования вычисляют амплитуду Τ1 основной гармоники температуры кристалла и амплитуду P1 основной гармоники греющей мощности, отношение которых равно модулю теплового импеданса ΖT мощного МДП-транзистора на частоте модуляции греющей мощности ω. Затем процесс измерения повторяют при других частотах модуляции греющей мощности ω, получают частотную зависимость модуля теплового импеданса ΖT(ω) мощного МДП-транзистора, содержащую участок с постоянным значением модуля теплового импеданса, которое равно тепловому сопротивлению переход-корпус RТп-к мощного МДП-транзистора.

Повышение точности измерения теплового сопротивления переход-корпус мощных МДП-транзисторов в заявляемом способе достигается за счет того, что, в отличие от прототипа, в нем с более высокой точностью определяются средняя мощность, рассеиваемая в объекте измерения при прохождении через него каждого импульса греющего тока, а также амплитуда основной гармоники температуры кристалла, вычисление которой производится с помощью Фурье-преобразования достаточно большого по объему массива данных.

Способ измерения теплового сопротивления переход-корпус мощных МДП-транзисторов, заключающийся в том, что через мощный МДП-транзистор пропускают последовательность импульсов греющего тока, в паузах между ними измеряют и запоминают значения температурочувствительного параметра U при измерительном токе I, вычисляют среднюю рассеиваемую мощность при каждом импульсе греющего тока и соответствующие изменения температурочувствительного параметра, отличающийся тем, что нагрев мощного МДП-транзистора осуществляют греющей мощностью, модулированной по гармоническому закону, для чего через мощный МДП-транзистор пропускают последовательность импульсов греющего тока постоянной амплитуды I, постоянным периодом следования Т и изменяющейся по гармоническому закону длительностью τ, импульсы пропускают через встроенный в мощный МДП-транзистор антипараллельный диод при закрытом канале мощного МДП-транзистора, измеряют и запоминают для каждого греющего импульса напряжение на антипараллельном диоде и вычисляют временную зависимость средней за период следования Т греющей мощности , в паузах между импульсами греющего тока измеряют и запоминают значения температурочувствительного параметра U - прямого напряжения на антипараллельном диоде при измерительном токе I и вычисляют временную зависимость температуры T(t) кристалла в процессе нагрева мощного МДП-транзистора, с помощью Фурье-преобразования временных зависимостей T(t) и вычисляют амплитуду Τ основной гармоники температуры кристалла и амплитуду P основной гармоники греющей мощности, отношение которых равно модулю теплового импеданса Z мощного МДП-транзистора на частоте модуляции ω греющей мощности, после чего процесс измерения повторяют на других частотах модуляции ω греющей мощности, получают частотную зависимость модуля теплового импеданса Ζ(ω) мощного МДП-транзистора, содержащую участок с постоянным значением модуля теплового импеданса, которое принимают равным тепловому сопротивлению переход-корпус R мощного МДП-транзистора.
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОВОГО СОПРОТИВЛЕНИЯ ПЕРЕХОД-КОРПУС МОЩНЫХ МДП-ТРАНЗИСТОРОВ
Источник поступления информации: Роспатент

Showing 81-90 of 262 items.
20.04.2015
№216.013.43d1

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида хрома. Затем наносят верхний слой из нитрида соединения титана,...
Тип: Изобретение
Номер охранного документа: 0002548859
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43d2

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида или карбонитрида титана, алюминия, кремния, хрома и ниобия при их соотношении, мас.%: титан...
Тип: Изобретение
Номер охранного документа: 0002548860
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43d3

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения титана,...
Тип: Изобретение
Номер охранного документа: 0002548861
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43d4

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение износостойкого покрытия из нитрида или карбонитрида титана, кремния, алюминия, хрома и молибдена при их соотношении, мас.%: титан...
Тип: Изобретение
Номер охранного документа: 0002548862
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43d5

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения титана,...
Тип: Изобретение
Номер охранного документа: 0002548863
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43d6

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения титана,...
Тип: Изобретение
Номер охранного документа: 0002548864
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.43d7

Способ изготовления осесимметричных полых изделий с отверстием в донной части

Изобретение относится к обработке металлов давлением, а именно к способам отбортовки отверстий, и может быть использовано при изготовлении осесимметричных полых изделий с отверстием в донной части. Способ включает вырубку плоской кольцевой заготовки, последующую отбортовку отверстия до...
Тип: Изобретение
Номер охранного документа: 0002548865
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4413

Способ измерения последовательного сопротивления базы полупроводникового диода

Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества. Технический результат - повышение точности измерения последовательного сопротивления базы диода путем исключения саморазогрева...
Тип: Изобретение
Номер охранного документа: 0002548925
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4430

Ремень безопасности транспортного средства

Изобретение относится к области обеспечения пассивной безопасности водителя и пассажиров транспортных средств. Ремень включает лямку 1, пряжку 2, замок 3, укрепленный на боковине 4 рамы сиденья 5 с помощью соединительного устройства, выполненного в виде прикрепленной к замку стержневой скобы 6...
Тип: Изобретение
Номер охранного документа: 0002548954
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.4438

Способ деаэрации воды для тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях и котельных установках, работающих на природном газе. Способ деаэрации воды для тепловой электрической станции включает подачу в деаэратор исходной воды и десорбирующего агента и отвод...
Тип: Изобретение
Номер охранного документа: 0002548962
Дата охранного документа: 20.04.2015
Showing 81-90 of 432 items.
20.10.2013
№216.012.76be

Система теплоснабжения

Изобретение относится к области теплоэнергетики и может быть использовано в городских системах теплоснабжения. Система теплоснабжения содержит централизованный базовый и установленный в местной системе потребителя пиковый источники теплоты, подключенные подающими и обратными сетевыми...
Тип: Изобретение
Номер охранного документа: 0002496058
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.76bf

Система теплоснабжения

Изобретение относится к области теплоэнергетики и может быть использовано в городских системах теплоснабжения. Система теплоснабжения, содержащая централизованный базовый и установленный в местной системе потребителя пиковый источники теплоты, подключенные подающими и обратными сетевыми...
Тип: Изобретение
Номер охранного документа: 0002496059
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7b1f

Логический модуль

Изобретение предназначено для реализации симметричных логических функций и может быть использовано в системах цифровой вычислительной техники как средство преобразования кодов. Техническим результатом является обеспечение реализации любой из трех простых симметричных булевых функций, зависящих...
Тип: Изобретение
Номер охранного документа: 0002497181
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b28

Функциональный формирователь

Изобретение предназначено для воспроизведения функций непрерывной логики и может быть использовано в системах вычислительной техники как средство логической обработки континуальных данных. Техническим результатом является обеспечение воспроизведения произвольной непрерывно-логической функции,...
Тип: Изобретение
Номер охранного документа: 0002497190
Дата охранного документа: 27.10.2013
20.12.2013
№216.012.8cf4

Способ конвективной сушки керамических изделий с регенерацией сушильного агента в трубе газодинамической температурной стратификации

Изобретение относится к технологическим процессам сушки керамических изделий. Техническим результатом предлагаемого способа является повышение энергетической эффективности процесса сушки. Способ сушки включает регенерацию сушильного агента, заключающуюся в том, что сушильный агент подают в...
Тип: Изобретение
Номер охранного документа: 0002501767
Дата охранного документа: 20.12.2013
27.12.2013
№216.012.9140

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным...
Тип: Изобретение
Номер охранного документа: 0002502877
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9141

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным...
Тип: Изобретение
Номер охранного документа: 0002502878
Дата охранного документа: 27.12.2013
27.12.2013
№216.012.9142

Способ работы тепловой электрической станции

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях. В котле вырабатывают пар и направляют в турбину, затем пар конденсируют в конденсаторе, основной конденсат турбины удаляют из конденсатора по трубопроводу основного конденсата конденсатным...
Тип: Изобретение
Номер охранного документа: 0002502879
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.93ce

Способ комбинированной обработки точением и поверхностным пластическим деформированием

Способ относится к комбинированной обработке точением и поверхностным пластическим деформированием цилиндрической поверхности вращающейся заготовки. Для повышения производительности формирования в поверхностном слое заготовки остаточных сжимающих напряжений обработку ведут токарным резцом и...
Тип: Изобретение
Номер охранного документа: 0002503532
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.93cf

Устройство для микроподачи заготовок при шлифовании

Изобретение относится к абразивной обработке и может быть использовано в машиностроении и приборостроении при окончательной обработке заготовок шлифованием. Устройство для микроподачи заготовок содержит основание, расположенную параллельно ему верхнюю плиту и силовой элемент, включающий упор и...
Тип: Изобретение
Номер охранного документа: 0002503533
Дата охранного документа: 10.01.2014
+ добавить свой РИД