×
10.01.2016
216.013.9f78

Результат интеллектуальной деятельности: ИЗМЕРИТЕЛЬ РАСХОДА ПОТОКА СРЕДЫ

Вид РИД

Изобретение

№ охранного документа
0002572461
Дата охранного документа
10.01.2016
Аннотация: Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах. Измеритель расхода потока содержит последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока, соединенный с ним расходомер обратного потока, устройство сравнения расходов и индикатор расхода, по изобретению до сумматора для обратного потока подключен насос с характеристикой «давление-расход», работа которого выключается сигналом устройства сравнения расходов напорного и обратного потоков. Технический результат − расширение диапазона измерения расхода, его разделение на две части с понижением уровня измерения в первой части диапазона, не снижая верхнего значения второй части диапазона, уменьшение погрешности схемы измерения первой части диапазона, рассматривая изменения величин напорного и обратного потоков как информационные сигналы между звеньями измерительной системы, как измеритель, построенный на встречно параллельном соединении звеньев с отрицательной обратной связью, возможность получения различной функциональной связи между величинами напорного и обратного потоков среды. 1 з.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и может быть использовано в системах измерения газообразных и текучих сред, а также в коммерческих расчетах.

Известны устройства измерения расхода среды, при котором среду подают из магистрали через насос, расходомер и рабочую нагрузку (Кремлевский П.П. Расходомеры и счетчики количества. Справочник. // Л., Машиностроение, 1989, 702 с.). Недостатком известных устройств является расположение измерительного устройства в последовательном ряду устройств потребления расхода, что не обеспечивает достаточную точность измерения расхода.

Известно устройство измерения струйным расходомером (RU 1295230, А1, 07.03.1987) с недостаточной зоной чувствительности, которая ограничивает зону работоспособности и диапазон измерения. Недостатком известного устройства является существование противоречивых требований и невозможность их преодоления при реализации только одной физикой течения среды при использовании одного струйного генератора. Эти требования сведены к двум параметрам: минимальный измеряемый расход и максимальный допустимый перепад давления на расходомере в максимальной точке диапазона.

Известно устройство измерения расхода текучей среды (RU 2157967, С2, 21.05.1998), принятое за прототип. Часть потока среды после магистрального расходомера возвращают через вспомогательный расходомер и ограничительный дроссель в магистраль перед насосом и расход на рабочую нагрузку определяют как разность расходов через магистральный и вспомогательный расходомеры. Этот прием позволяет сместить зону измерения магистрального расходомера в необходимый пониженный диапазон.

Недостатками известного устройства является требование о наличии в составе измерительного комплекса напорного устройства (насоса), установленного в магистраль, т.к. без него комплекс неработоспособен.

Кроме того, насос должен соответствовать магистральному расходу, что связано с выполнением других проектных требований: увеличенные габариты, вес, ресурс, цена и др.

Кроме того, должна существовать функциональная связь прямой линии подачи с магистральным расходомером и ее нагрузки, которая обязывает согласовывать их параметры между собой. Иначе работа комплекса невозможна, если нагрузка поглощает магистральный расход без остатка. Кроме того, второй измерительный прибор (вспомогательный расходомер) должен иметь погрешность измерения заведомо меньшую, что обременяет комплекс дополнительной технологией измерения другого диапазона с вынужденной тарировкой, ценой, габаритами, весом и др.

Кроме того, магистральный и вспомогательный расходомеры беспрерывно работают в полном диапазоне, что сокращает ресурс измерительной части комплекса, расположенной в линии возвращения части потока, которая, однако, предназначена только для расширения границы в нижней части диапазона, и при измерении в принятом (без понижения) диапазоне не имеет смысла функционировать.

Кроме того, диапазон измерения смещается при наличии линии обратного потока, которая понижает порог чувствительности и вместе с ним снижает верхнюю границу измерения (практически обратный поток сбрасывается как часть расхода в бак), что значительно сужает диапазон измерения и предлагает недоиспользовать образовавшийся запас по верхней границе магистрального расходомера.

Кроме того, потоки магистрального трубопровода и обратного взаимозависимы. Не существует такого состояния, когда один поток постоянный по величине и при этом другой поток изменяется и может быть независимым.

Кроме того, при анализе известного комплекса как измерительного устройства показано, что звенья измерительной цепи (два расходомера) соединены по схеме встречно параллельного соединения с положительной обратной связью, т.е. при увеличении расхода в магистральном трубопроводе одновременно увеличивается возвращающий расход через вспомогательный расходомер. Такое соединение в комплексе значительно увеличивает погрешность измерения не только в зоне понижения диапазона до порога чувствительности, так и после, т.к. в этом случае погрешности звеньев суммируются. (Браславский Д.А. Приборы и датчики летательных аппаратов. М., Машиностроение, 1970, с.108).

Кроме того, в известном комплексе измерения характеристика звена, расположенного в обратной связи, не инверсная, что не позволяет рассматривать систему как встречно параллельное соединение с отрицательной обратной связью, которое уменьшает общую погрешность измерения всего комплекса измерения.

Техническим результатом является расширение диапазона измерения расхода, его разделения на две части с понижением уровня измерения в первой части диапазона, не снижая верхнего значения второй части диапазона, уменьшение погрешности схемы измерения первой части диапазона, рассматривая изменения величин напорного и обратного потоков как информационные сигналы между звеньями измерительной системы, как измеритель, построенный на встречно параллельном соединении звеньев с отрицательной обратной связью, возможность получения различной функциональной связи между величинами напорного и обратного потоков среды.

Технический результат достигается тем, что в предложенном измерителе расхода потока, содержащего последовательно соединенные с входным каналом сумматор, расходомер напорного потока и делитель потока, соединенный с ним расходомер обратного потока, устройство сравнения расходов и индикатор расхода, по изобретению до сумматора для обратного потока подключен насос с инверсной характеристикой, работа которого выключается сигналом устройства сравнения расходов напорного и обратного потоков.

Кроме того, измеритель расхода потока среды, в котором дополнительно в канал между насосом и сумматором установлен обратный клапан.

На фиг.1 представлена структурная схема измерителя расхода потока с пониженным начальным уровнем измерения (порогом), на фиг.2 - характеристика измерителя в координатах «Q-P», на фиг.3 - циклограмма работы при произвольном поступлении расхода Q среды на входе по каналу 1 в измеритель.

Измеритель содержит последовательно соединенные с входным каналом 1 сумматор 2 (гидравлический приточный тройник), канал 3 с расходомером 4 напорного потока и делитель 5 потоков (гидравлический вытяжной тройник), соединенный с ним расходомер 9 обратного потока, устройство 11 сравнения показаний расходомеров 4 напорного потока и 9 обратного потока, индикатор 12 расхода, а также для функционирования обратного потока 7 подключен насос 8 (например, пьезонасос ПН) с инверсной характеристикой «Q-Р», расположение которого вместе с расходомером 9 обратного потока в обратной связи создает ООС (отрицательная обратная связь) по расходу, которая выключается сигналом устройства 11 сравнения расходов 4 напорного и обратного 9 потоков.

Обратный поток 7, измеряемый своим расходомером 9, образуется под воздействием насоса (например, микронасоса) 8, образуя принудительную циркуляцию 7 расхода обратного потока через расходомер 4. Насос управляется через блок питания 10 устройством 11 сравнения сигналов.

Напорный поток 1 среды проходит через сумматор 2 потоков, образуя суммарный поток 3 за счет присоединения обратного потока 7, который отделяется от суммарного потока 3 в разделителе 5, в устройстве 11 происходит вычитание из суммарного потока 3 величины обратного потока 7 и фиксации сигнала фактического расхода напорного потока 1 на индикаторе 12. При этом полагается, что после процедуры вычитания тот поток 6, который прошел через нагрузку, считается равным по величине напорному потоку 1 и измерен с некоторой погрешностью ζ. При изменении величины напорного потока 1 изменяется, например, пропорционально, с противоположным знаком (инверсно) величина обратного потока 7.

Весь диапазон измерения (фиг.2) разделяют на две части: в первой работает обратный поток 7, во второй не работает обратный поток, в первой части диапазона обратный поток 7 принудительно направляют к напорному потоку 1, изменяют величину обратного потока 7:

- увеличивают его при уменьшении напорного потока 1 до согласованного (выбранного нижнего) значения первой части диапазона, или

- уменьшают его величину до нуля по мере увеличения напорного потока 1 до согласованного (выбранного верхнего) значения первой части диапазона.

В первой части диапазона из суммарного потока 3 вычитают обратный поток 7, фиксируя величину на индикаторе 12, во второй остальной части диапазона измерения при нулевой величине обратного потока 7 напорный поток 1 измеряют расходомером 4, сигнал которого непосредственно проходит через устройство 11 на индикатор 12, фиксируя расход напорного потока 1 во втором диапазоне.

В схеме на фиг.1 звеном 14 обратной связи служат расходомер обратного потока 9 и насос 8, который имеет инверсную характеристику «расход-давление» по отношению к изменению расхода (потенциалу) напорного потока, звеном 13 прямой цепи является расходомер 4, разделитель потока 5.

Звенья 13 и 14 включены по встречно-параллельной схеме для уменьшения относительной погрешности ζ, измерения схемы, которая расчитывается по известной формуле (Браславский Д.А. Приборы и датчики летательных аппаратов. М., Машиностроение, 1970, с.108):

ζ=ψ1ζ12ζ2,

где ψ1=1/(1+S1S2) - коэффициент влияния звена 1 и ζ1 - его относительная погрешность,

ψ2=-S1S2/(1+S1S2) - коэффициент влияния звена 2 и ζ2 - его относительная погрешность,

здесь S1 - крутизна характеристики «давление-расход» звена прямой цепи,

S2 - крутизна характеристики «давление-расход» звена обратной связи.

Поскольку ψ2 при такой схеме включения звеньев всегда со знаком минус, то общая относительная погрешность схемы измерения в первой части диапазона измерения снижена по сравнению с относительной погрешностью общей схемы.

Расширение диапазона измерения расхода достигается разделением его на две части с понижением уровня измерения в первой части диапазона. Величина обратного потока 7 звена обратной связи 14 позволяет повысить чувствительность расходомера 4 до согласованной нижней границы измерения, добавляя часть расхода, которой не хватает для начала уверенной работы расходомера 4. В известном устройстве обратный поток возвращается в магистраль (бак, емкость), в которой информационное поле по величине сигнала давления близко к нулю, т.к. насос, расположенный после точки суммирования потоков, определяет величину потенциала перед нагрузкой, а перед сумматором 2 создается разрежение (всасывание потока) и потенциал близок к нулю. В предложенном измерителе обратный поток возвращается в информационную линию с давлением по величине, отличной от нуля. В этом случае для реализации встречно-параллельной схемы с отрицательной обратной связью необходима инверсная характеристика «давление-расход» звена на обратной связи. Т.е. при увеличении потенциала (давления) и расхода измеряемого потока Q в точке суммирования расход обратного потока 7 уменьшается согласно характеристике «Q-Р» звена обратной связи независимо от сигнала управления на его снижение. Сигнал управления от устройства сравнения 11 совпадает по знаку со знаком снижения расхода насоса 8 по характеристике «Q-Р» и необходим для стабилизации расхода по каналу 3 и поддержания на постоянном уровне, для сохранения ООС и уменьшения погрешности схемы измерения расхода в первой части диапазона.

Работа (фиг.3, см. строка «Q2», колонка 1) обратного потока 7 начинается с условного нуля, например Q2=20 л/ч, рабочей точки интервала между точкой уверенной работы расходомера 4 (например, Q1=40 л/ч) и пониженной согласованной границы измерения (например, Q=20 л/ч).

При недостаточном суммарном расходе по каналу 3, например Q<20 л/ч (строка «вход Q», колонка 1) и Q1=Q+Q2<40 л/ч, проходящем через расходомер 4, индикатор 12 не показывает процесса измерения (строка «индикатор Q», колонка 1). Т.е. расход Q<20 л/ч вообще не измеряется.

При достаточном Q1=Q+Q2≥40 л/ч суммарном расходе по каналу 3, проходящем через расходомер 4, индикатор 12 показывает процесс измерения Q=Q1-Q2≥20 л/ч. В устройстве 10 заложена изначально величина - задан «условный» ноль Q20=20 л/ч для сравнения с поступающим приращением по расходу от расходомера 4. В этом же устройстве 10 фиксируется приращение δQ=Q2-Q20≥0, которое является сигналом к изменению производительности насоса 8, и величина Q2 обратного потока 7 понижается на величину превышения над величиной 40 л/ч, поддерживая величину 40 л/ч постоянной (строка «Q1», колонка 2), и так далее, величина Q2 обратного потока 7 с увеличением напорного потока 1 (строка «вход Q», колонка 2) уменьшается по команде устройства сравнения 11 блоком питания 10 насоса 8 обратного потока 7.

Если расход Q>40 л/ч и более (строка «вход Q», колонка 3 или 7,8), то насос ПН выключается из работы, расход Q2 равен нулю (см. строка «Q2», колонка 3), и работает только расходомер 4, измеряя Q1=Q по второй части диапазона измерения (строка «индикатор Q», колонка 3, 7, 8).

На фиг.2 показано, что величина расхода Q1 поддерживается (горизонтальная линия) по каналу 3 постоянной и равной, например, 40 л/ч. Такое поддержание расхода Q1=const на выбранном уровне необходимо для согласованной работы насоса 8 обратного потока с инверсной характеристикой (уменьшение расхода) по увеличению перепада давления во входном трубопроводе 1 в точке суммирования 2.

В другом варианте исполнения связи между расходом Q1 и Q2 можно допустить, что Q1=var≤60 л/ч и Q2=const=20 л/ч, при достижении Q1=60 л/ч, звено обратной связи 14 выключается из работы. При такой схеме работы, напоминающей работу схемы прототипа, в которой насос работает постоянно, существуют два недостатка.

Первый недостаток - насос 8 должен по своим техническим данным иметь возможность преодолевать уровень потенциала в канале 1 при наращивании расхода, например, до 60 л/ч, т.к. при увеличении расхода Q на входе 1 увеличивается перепад давления в точке суммирования. В предложенном измерителе насос ПН в схеме находится до сумматора 2 по течению обратного потока 7, а не после, и прокачивает только обратный поток 7.

Второй - самый важный недостаток - в такой схеме суммирования (подобно известной) напорного и обратного потоков возникает ПОС (положительная обратная связь) вместо ООС, которая увеличивает погрешность измерения в диапазоне от сниженного порога (20 л/ч) до начала уверенной работы расходомера (40 л/ч).

Принципиальное отличие схем понижения уровня порога чувствительности в предложенном способе и в прототипе в части определения погрешности измерения состоит в изменении существа обратной связи - ПОС заменяется на ООС.

Предложенный способ предоставляет возможность получения различной функциональной связи между величинами напорного и обратного потоков среды. Например, для сокращения постоянной времени звеньев прямой цепи насос 8 включается с упреждением.

Когда в процессе увеличения напорного потока 1 достигается точка уверенной работы расходомера 4, то к этому моменту величина обратного потока 7 близка к нулю (фиг.2) и дальнейшее увеличение величины напорного потока 1 доводит его до полного исчезновения. Звено 14 выключается из работы измерения напорного потока 1 и осуществляется переход во вторую часть диапазона измерения, в которой расход Q напорного потока 1 измеряется только расходомером 4. Диапазон измерения второй части остается прежним, который не уменьшается при включении в работу первой части диапазона. Общий диапазон измерения расширен и понижен нижний уровень измерения расходомера 4, который ранее, до включения обратного потока 7, был недоступен, не снижая верхнего значения второй части диапазона. Проходное сечение закрыто для циркуляции потока 7 при неработающем насосе и неработающий насос 8 через себя не пропускает поток 7.

При открытом проходном сечении неработающего насоса 8 его канал может использоваться как байпас с пересчетом коэффициента пропускания потока через всю схему, увеличивая общую пропускную способность схемы измерения и расширяя общий диапазон измерения. При этом часть напорного потока проходит через проходное сечение насоса 8 (фиг.2, верхняя кривая характеристики «P-Q»). В случае использования канала байпаса достигается расширение второй части диапазона измерения увеличением максимального значения расхода.

При малых сечениях байпаса при измерении во второй части диапазона этим потоком можно пренебречь.


ИЗМЕРИТЕЛЬ РАСХОДА ПОТОКА СРЕДЫ
ИЗМЕРИТЕЛЬ РАСХОДА ПОТОКА СРЕДЫ
ИЗМЕРИТЕЛЬ РАСХОДА ПОТОКА СРЕДЫ
Источник поступления информации: Роспатент

Showing 171-180 of 283 items.
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.351d

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 1 в электрическую энергию содержит опору 2, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002645842
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3976

Устройство для измерения толщины покрытий

Изобретение относится к области контрольно-измерительной техники. Техническим результатом является повышение точности измерения толщины покрытий. Технический результат достигается тем, что в устройство для измерения толщины покрытий, содержащее чувствительный элемент в виде трансформатора с...
Тип: Изобретение
Номер охранного документа: 0002647180
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.39f9

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения границ раздела в трехкомпонентной среде, в частности воздуха и двух жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей способа. В способе измерения, при котором в емкости со средой размещают...
Тип: Изобретение
Номер охранного документа: 0002647186
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3a23

Устройство для идентификации стадии жизненного цикла тематики научных лабораторий

Изобретение относится к устройству для идентификации стадий жизненного цикла тематики научных лабораторий. Технический результат заключается в автоматизации определения конкретной стадии жизненного цикла исследований. Устройство содержит с первого по десятый входные регистры, с первого по...
Тип: Изобретение
Номер охранного документа: 0002647644
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.432a

Бесконтактный радиоволновый уровнемер

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости в емкости. Технический результат - повышение точности измерения в предлагаемом уровнемере - достигается тем, что он содержит последовательно соединенные модулятор, генератор...
Тип: Изобретение
Номер охранного документа: 0002649665
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.4378

Способ измерения уровня и проводимости электропроводящей среды и устройство для его осуществления

Изобретения относятся к электрическим методам измерения и предназначены для определения уровня и проводимости электропроводящей жидкости в резервуарах в условиях неконтролируемого изменения ее проводимости. Предлагаемый способ измерения и устройство для его осуществления позволяют исключить эту...
Тип: Изобретение
Номер охранного документа: 0002649672
Дата охранного документа: 04.04.2018
Showing 171-180 of 189 items.
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.351d

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 1 в электрическую энергию содержит опору 2, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002645842
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
05.07.2018
№218.016.6b7e

Многопозиционный пневматический модуль линейных перемещений

Изобретение относится к области машиностроения. Техническим результатом является упрощение конструкции. Многопозиционный пневматический модуль линейных перемещений содержит рабочий цилиндр с поршнем, выходной элемент, узел фиксации, фиксатор и углубления, с которыми взаимодействует фиксатор,...
Тип: Изобретение
Номер охранного документа: 0002659851
Дата охранного документа: 04.07.2018
10.07.2018
№218.016.6f0c

Устройство защиты средней полости задвижки от превышения давления и задвижка с устройством защиты средней полости от превышения давления

Изобретение относится к арматуростроению и может быть использовано в качестве запорной арматуры рабочих сред с высоким давлением и высокой температурой. Устройство защиты средней полости задвижки от превышения давления содержит корпус с внутренней полостью, сообщающейся с входным и выходным...
Тип: Изобретение
Номер охранного документа: 0002660684
Дата охранного документа: 09.07.2018
27.10.2018
№218.016.973d

Способ измерения расхода текучей среды

Изобретение относится к измерительной технике и может быть использовано для контроля расхода различных газов и жидкостей. Способ измерения расхода заключается в том, что поток пропускают последовательно через вращающийся его напором привод с дроссельным регулированием в байпасе и через...
Тип: Изобретение
Номер охранного документа: 0002670705
Дата охранного документа: 24.10.2018
09.11.2018
№218.016.9b62

Измеритель воздушной скорости

Изобретение относится к измерительной технике и может быть использовано в системах измерения расходов газообразных сред. Измеритель воздушной скорости содержит проточный корпус с расположенной, перпендикулярно потоку, внутри пластиной, на которой размещены по ее разные стороны в потоке струйные...
Тип: Изобретение
Номер охранного документа: 0002672037
Дата охранного документа: 08.11.2018
08.03.2019
№219.016.d4b5

Счетчик-расходомер

Изобретение может быть использовано для измерения объемного и массового расхода в технологических трубопроводах, а также измерения плотности и количества газа или жидкости в узлах учета энергоресурсов для коммерческого расчета. Расходомер содержит сужающее устройство (2), датчик перепада...
Тип: Изобретение
Номер охранного документа: 0002396517
Дата охранного документа: 10.08.2010
08.03.2019
№219.016.d525

Способ преобразования непрерывного сигнала в частоту и устройство для его осуществления

Изобретение относится к способам и устройствам преобразования сигнала. Техническим результатом является линеаризация преобразований от входного параметра до частотного выхода. Предложено устройство преобразования непрерывного сигнала в частоту, содержащее измерительное устройство с квадратичным...
Тип: Изобретение
Номер охранного документа: 0002413269
Дата охранного документа: 27.02.2011
+ добавить свой РИД