×
10.01.2016
216.013.9f08

Результат интеллектуальной деятельности: СИСТЕМА КОНТРОЛЯ ФОТОСИНТЕТИЧЕСКОГО И ДЫХАТЕЛЬНОГО СО-ГАЗООБМЕНА РАСТЕНИЙ, ИЗОЛИРОВАННЫХ ОРГАНОВ И ТКАНЕЙ IN VITRO

Вид РИД

Изобретение

Аннотация: Изобретение относится к области биохимии. Предложена система контроля фотосинтетического и дыхательного СО-газообмена в культуре in vitro. Система герметичным образом через типовой уплотнитель сопрягается с прозрачным технологическим объемом in vitro с культивируемыми полноценными растениями на различных этапах онтогенеза, регенерантами, изолированными органами и тканями. Система образует вместе с подключенным технологическим объемом общий замкнутый герметичный воздушный контур. Контур состоит из последовательно соединенных между собой указанного технологического объема и воздушного насоса, ротаметра, воздушного осушителя и CO-газоанализатора. Контур между CO-газоанализатором и технологическим объемом in vitro дополнительно оборудован двухпозиционным газовым переключателем. Изобретение обеспечивает многократную воспроизводимость процедуры измерения. 1 з.п. ф-лы, 3 ил., 1 табл.

Прототип: Баранова Е.Н., Аканов Э.Н., Гулевич А.А., Куренина Л.В., Данилова С.А., Халилуев М.Р. Интенсивность темнового дыхания трансгенных растений томата, экспрессирующих ген FeSOD1, в условиях хлоридного и сульфатного засоления // Доклады РАСХН. - 2013. - №6. - с. 13-16.

Изобретение может быть использовано в сельском хозяйстве в ходе производственной деятельности, а также в области биотехнологии и физиологии растений при проведении научно-исследовательских работ, объектами которых служат культивируемые в условиях in vitro полноценные растения на различных этапах онтогенеза, регенераты, изолированные органы и ткани (в том числе, каллусная ткань).

Известна система контроля фотосинтетического и дыхательного СО2-газообмена растений LI-6200, разработанная американской фирмой LI-COR (LI-6200 Primer. Авторское право фирмы LI-COR Inc. 1987 г. Lincoln Nebraska 68504 USA). Система при ее работе по замкнутому принципу состоит из трех главных частей: листовой камеры, насоса и инфракрасного СО2-газоанализатора. Листовая камера имеет двухстворчатую конструкцию. С помощью эластичной прокладки неотделенный от целого растения лист во время измерения остается защемленным между двумя створками камеры. Прозрачная поверхность створок обеспечивает доступ света к фотосинтезирующей поверхности листа растения. В результате камера и в целом весь замкнутый контур системы оказываются герметично изолированными от воздуха в окружающей среде. Определение CO2-газообмена между листом и атмосферой производится расчетным путем в процессе отслеживания скорости изменения концентрации CO2 внутри замкнутого контура с учетом ряда факторов, таких как рабочая площадь листовой поверхности, объем системы, интенсивность освещения, температура и давление.

Однако с точки зрения возможности применения в условиях in vitro, а также по технической сущности, наиболее близкой к заявленной системе контроля является другая известная система фотосинтетического и дыхательного СО2-газообмена: Баранова Е.Н., Аканов Э.Н., Гулевич А.А., Куренина Л.В., Данилова С.А., Халилуев М.Р. Интенсивность темнового дыхания трансгенных растений томата, экспрессирующих ген FeSOD1, в условиях хлоридного и сульфатного засоления // Доклады РАСХН. - 2013. - №6. - с. 13-16.

На фиг. 1 представлена принципиальная схема замкнутого воздушного контура известной системы контроля.

Главной ее отличительной особенностью является то, что в качестве герметичного контролируемого объема вместо листовой камеры непосредственно используется технологический объем, применяемый в процессе культивирования in vitro (пробирка, чашка Петри, контейнер, колба). Культивирование индивидуальных регенерантов или же растений на ранних этапах развития наиболее часто осуществляют в пробирках различного размера, как это представлено на фиг. 1. В результате проводится измерение СО2-газообмена не отдельного фрагмента листа, а всего объекта (регенерантов, растений или их эксплантов (изолированных органов или их фрагментов, тканей, в том числе, каллусной)), тем самым увеличивая достоверность результатов измерения.

Герметизация пробирки осуществляется при помощи резиновой пробки 2 с двумя отверстиями, по одной из которых воздух забирается насосом 3, а по другой - возвращается в пробирку. В замкнутый циркулирующий контур последовательно вовлечены: ротаметр 4, осушитель воздуха 5 и инфракрасный CO2-газоанализатор 6.

CO2-газообмен рассчитывается аналогично тому, как это осуществляется в описанной выше известной системе контроля.

Одним из недостатков вышеописанной системы для оценки фотосинтетического и дыхательного СО2-газообмена растений является то, что исходная концентрация CO2 внутри системы формируется случайным образом одномоментно при ее замыкании и зависит от того, каким было нерегулируемое содержание этого газа в окружающем воздухе, например под влиянием выдыхаемого оператором воздуха.

Другим недостатком является отсутствие электрического источника света, который необходим для обеспечения полноценного прохождения процесса фотосинтеза.

Была поставлена цель - устранить отмеченные недостатки. Для этого воздушный контур системы, как это представлено на фиг. 1, между составными элементами 1 и 6 дополнительно оборудован двухпозиционным газовым переключателем 7, благодаря которому заявленная система контроля приобретает способность многократно воспроизводить процедуру измерения.

В зависимости от положения А или Б воздушный контур становится, соответственно, замкнутым или открытым. В положении А система контроля переключается в рабочий режим, а в другом положении Б воздушный контур «промывается» воздухом из внешнего воздушного источника 8, в качестве которого может быть использован чистый наружный воздух, находящийся за пределами рабочей зоны. По окончании данной операции в воздушном контуре устанавливается концентрация CO2, соответствующая заданному технологическому регламенту, и система контроля занимает исходное положение перед началом нового измерительного цикла.

Для получения эффекта объемного освещения технологический объем оборудован электрическим источником света. Источником света является кольцевая люминисцентная лампа фирмы OSRAM (Германия). Как видно на фиг. 2, технологический объем, в котором находится объект для измерений, находится в центре кольцевого источника света.

Заявленная система контроля была технически реализована на базе инфракрасного CO2-газоанализатора ГОА 4-07 (НПО Химавтоматика), имеющего шкалу 0-0,05% CO2, и электрической лампы OSRAM (L 22W/840 LUMILUX Cool White 1230 lm). Лампа создавала световой квантовый поток, равный 90 мкм/м2с.

В качестве растительного материала для апробации заявленной системы были использованы асептические проростки томата сорта Форвард. Асептические донорные проростки были получены из семян. Впоследствии 8-10-суточные асептические проростки томата переносили на базовую питательную среду, составленную по прописи Мурасиге-Скуга, с различным содержанием нитрата аммония: I вариант среды содержал 10,3 мМ NH4+ и 29,1 мМ NO3-, II вариант - 20,6 мМ NH4+ и 39,4 мМ NO3-, III вариант - 30,9 мМ NH4+ и 49,7 мМ NO3-. Проростки культивировали в одинаковых по размеру технологических объемах, представляющих собой прозрачные стеклянные сосуды для культивирования емкостью 300 см. В каждом сосуде с различными вариантами аммонийно-нитратного питания находилось по 10 проростков томата. После 8 суток культивирования проводили измерение интенсивности фотосинтетического и дыхательного CO2-газообмена с помощью заявленной системы. Для этого каждый сосуд для культивирования герметичным образом подключали к системе контроля. Процесс непрерывного измерения осуществляли с помощью самописца КСП-4 (0-10 mV), подключенного к газоанализатору. На диаграммной ленте регистрировали изменение концентрации CO2 в технологическом объеме при включенной и выключенной лампе. В результате соответствующий участок записи на диаграммной ленте, как показано на фиг. 3, отражал процесс темнового дыхания и видимого фотосинтеза. По полученным записям, согласно известной методике для закрытых газометрических систем (Вознесенский В.Л., Заленский О.В., Семихатова О.А. Методы исследования фотосинтеза и дыхания растений. Л.: Наука, 1965. 305 с.), рассчитывали интенсивность фотосинтеза и темнового дыхания в мкг CO2/чмг, приведенные к нормальным условиям, учитывая, что общий объем замкнутого контура системы, включая сам технологический объем, составляет 400 см, температура воздуха - 294 K. Полученные результаты представлены в таблице ниже.


СИСТЕМА КОНТРОЛЯ ФОТОСИНТЕТИЧЕСКОГО И ДЫХАТЕЛЬНОГО СО-ГАЗООБМЕНА РАСТЕНИЙ, ИЗОЛИРОВАННЫХ ОРГАНОВ И ТКАНЕЙ IN VITRO
СИСТЕМА КОНТРОЛЯ ФОТОСИНТЕТИЧЕСКОГО И ДЫХАТЕЛЬНОГО СО-ГАЗООБМЕНА РАСТЕНИЙ, ИЗОЛИРОВАННЫХ ОРГАНОВ И ТКАНЕЙ IN VITRO
СИСТЕМА КОНТРОЛЯ ФОТОСИНТЕТИЧЕСКОГО И ДЫХАТЕЛЬНОГО СО-ГАЗООБМЕНА РАСТЕНИЙ, ИЗОЛИРОВАННЫХ ОРГАНОВ И ТКАНЕЙ IN VITRO
Источник поступления информации: Роспатент

Showing 1-3 of 3 items.
20.02.2014
№216.012.a34a

Способ контроля дыхания почвы в посеве

Изобретение относится к сельскому хозяйству и может быть использовано для контроля дыхания почвы в посеве. Для этого выполняют выбор в посеве контролируемого участка и его подготовку, процедуру контроля дыхания почвы на выбранном в посеве контролируемом участке путем измерения величины...
Тип: Изобретение
Номер охранного документа: 0002507517
Дата охранного документа: 20.02.2014
27.06.2014
№216.012.d6b6

Способ тестирования солеустойчивости сельскохозяйственного растения

Изобретение относится к области физиологии растений. Изобретение представляет собой способ оценки устойчивости растений к засолению почвы. При реализации способа проводят фиксацию корней 3- и 6-дневных проростков тестируемых растений и приготовление препаратов мацерированных клеток....
Тип: Изобретение
Номер охранного документа: 0002520744
Дата охранного документа: 27.06.2014
24.08.2017
№217.015.9568

Морфотопографический способ оценки устойчивости сельскохозяйственных растений к ионной токсикации алюминием

Изобретение относится к области селекции зерновых культур. Способ включает асептическое культивирование проростков на голодном агаре (2%) (контроль) и агаре с добавлением 15 мг/л ионов алюминия и водорода (pH 4) (стрессовые условия). Изобретение представляет собой способ оценки устойчивости...
Тип: Изобретение
Номер охранного документа: 0002608654
Дата охранного документа: 23.01.2017
Showing 1-6 of 6 items.
20.02.2014
№216.012.a34a

Способ контроля дыхания почвы в посеве

Изобретение относится к сельскому хозяйству и может быть использовано для контроля дыхания почвы в посеве. Для этого выполняют выбор в посеве контролируемого участка и его подготовку, процедуру контроля дыхания почвы на выбранном в посеве контролируемом участке путем измерения величины...
Тип: Изобретение
Номер охранного документа: 0002507517
Дата охранного документа: 20.02.2014
24.08.2017
№217.015.9568

Морфотопографический способ оценки устойчивости сельскохозяйственных растений к ионной токсикации алюминием

Изобретение относится к области селекции зерновых культур. Способ включает асептическое культивирование проростков на голодном агаре (2%) (контроль) и агаре с добавлением 15 мг/л ионов алюминия и водорода (pH 4) (стрессовые условия). Изобретение представляет собой способ оценки устойчивости...
Тип: Изобретение
Номер охранного документа: 0002608654
Дата охранного документа: 23.01.2017
08.07.2018
№218.016.6dfc

Портативный почвенный респирометр для мониторинга эмиссии со в атмосферу

Изобретение относится к области измерительной техники и может быть использовано для контроля экологического обустройства окружающей среды. Изобретение представляет собой портативный респирометрический прибор с автономным питанием, рассчитанный на оперативный контроль дыхательной эмиссии СО...
Тип: Изобретение
Номер охранного документа: 0002660380
Дата охранного документа: 06.07.2018
28.09.2018
№218.016.8c63

Способ получения безвирусного посадочного материала картофеля ценных сортов

Изобретение относится к сельскохозяйственной биотехнологии. Изобретение представляет собой способ получения безвирусного посадочного материала картофеля ценных сортов, заключающийся в том, что проводят прививку поделенных на части микро- и мини-клубней картофеля ценного сорта после...
Тип: Изобретение
Номер охранного документа: 0002668153
Дата охранного документа: 26.09.2018
02.12.2018
№218.016.a318

Способ определения экологической безопасности и биологической эффективности почвогрунтов на основе осадков сточных вод в полевых условиях

Изобретение относится к экологии и может быть использовано при комплексном определении экологической безопасности и биологической эффективности почвогрунтов, создаваемых на основе осадка городских сточных вод в полевых условиях. Для этого на опытном участке с естественным почвенным покровом...
Тип: Изобретение
Номер охранного документа: 0002673671
Дата охранного документа: 29.11.2018
01.09.2019
№219.017.c577

Способ получения наночастиц оксида церия

Изобретение относится к бионанотехнологии, в частности к способу получения наночастиц оксида церия, и может быть использовано в медицинской и косметической промышленности, бытовой химии, производстве биосенсоров, а также в электронной промышленности. Способ включает подготовку водного экстракта...
Тип: Изобретение
Номер охранного документа: 0002698679
Дата охранного документа: 28.08.2019
+ добавить свой РИД