×
27.12.2016
216.013.9dfd

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ МЕЖКРИСТАЛЛИТНЫХ КОРРОЗИОННЫХ ПОРАЖЕНИЙ НА АЛЮМИЕВЫЕ СПЛАВЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области проведения коррозионных испытаний алюминиевых сплавов. Способ нанесения межкристаллитных коррозионных поражений на деталь из алюминиевого сплава, в котором деталь обрабатывают путем наложения на нее анодного тока в водном электролите, содержащем хлорид натрия. При этом деталь обрабатывают в водном электролите, содержащем 0,1-10 мас. % сульфата натрия и 0,1-1 мас. % хлорида натрия, либо в потенциостатическом режиме при потенциале анодного растворения, соответствующем значению, установившемуся при плотности анодного тока 0,005-0,05 А/см, наложенного на материал обрабатываемой детали, с предварительной обработкой детали путем наложения на нее анодного тока в потенциостатическом режиме при более положительном потенциале анодного растворения, чем вышеупомянутый, либо в гальваностатическом режиме с плотностью анодного тока 0,005-0,05 А/см. Техническим результатом является снижение времени испытаний на межкристаллитную коррозию алюминиевого сплава при снижении агрессивности среды во время нанесения коррозионных поражений с использованием анодной поляризации, а также обеспечение возможности проводить испытания по нанесению коррозионных поражений межкристаллитного характера на алюминиевые сплавы при совместном воздействии усталостных нагрузок и коррозионной среды. 2 з.п. ф-лы, 3 табл., 2 пр.

Изобретение относится к области проведения коррозионных испытаний алюминиевых сплавов и предназначено для нанесения коррозионных поражений локального характера с целью выявления склонности алюминиевых сплавов к межкристаллитной коррозии (далее МКК) и определения их работоспособности в процессе действия усталостных нагрузок и коррозионных процессов. Изобретение может быть использовано в авиационной, авиакосмической и транспортной отраслях промышленности.

Алюминиевые сплавы широко используются во многих областях промышленности, но наибольшим спросом пользуются в авиационной, авиакосмической и транспортной отраслях промышленности. В этих отраслях особенно затребованы высокопрочные алюминиевые сплавы, обладающие повышенной коррозионной стойкостью. При этом алюминиевые сплавы в зависимости от режимов термообработки могут проявлять склонность к наиболее опасным видам коррозии - межкристаллитной, расслаивающей и коррозионному растрескиванию. Вследствие этого перед применением алюминиевые сплавы подвергают испытаниям на склонность к данным видам коррозии.

Известен метод нанесения коррозионных поражений межкристаллитного характера, метод ТЩК (травление в растворе щавелевой кислоты), заключающийся в анодном травлении образцов в 10-0,2% (согласно ГОСТ 22180) водном растворе щавелевой кислоты (ГОСТ 6032-2003).

Известен метод ускоренных электрохимических испытаний на склонность сталей и коррозионностойких сплавов на склонность к межкристаллитной коррозии (ГОСТ 9.914-91).

Недостатком указанных методов является то, что они предназначены только для сплавов системы Fe-Cr. Для развития межкристаллитных коррозионных поражений на алюминиевых сплавах необходимо создание совершенно иных условий электрохимического растворения.

Известен метод испытаний на коррозионное растрескивание алюминиевых сплавов, заключающийся в приложении статической нагрузки испытуемых образцов и попеременном погружении в раствор 3%-ного NaCl в течение 45 суток (метод постоянной осевой растягивающей нагрузки по ГОСТ 9.019-74).

Данный метод используется только при проведении статических испытаний для определения склонности алюминиевых сплавов к коррозионному растрескиванию под напряжением и неприменим при воздействии как коррозионной среды, так и усталостных нагрузок, когда наибольшую опасность представляют образующиеся очаги локальной коррозии, являющиеся концентраторами напряжений. При воздействии статических нагрузок в случае отсутствия чувствительности алюминиевого сплава к коррозионному растрескиванию под напряжением образование локальных очагов по большей части не представляет значимой опасности.

Наиболее близким аналогом заявленного способа является метод нанесения коррозионных поражений межкристаллитного характера, осуществляемый в рамках испытаний на межкристаллитную коррозию алюминиевых сплавов. Нанесение коррозионных поражений проводят выдержкой образцов в следующих водных растворах:

1) 3% NaCl+1% НС1, Τ=18-25°C, t=24 часа;

2) 58 г/л NaCl+10 мл/л 33% H2O2, Т=30°C, t=6 часов (ГОСТ 9.021-74).

Недостатками способа-прототипа являются большая длительность процесса, а также агрессивность растворов, что не позволяет использовать его для проведения испытаний по нанесению коррозионных поражений межкристаллитного характера на алюминиевые сплавы при совместном воздействии усталостных нагрузок и коррозионной среды.

Техническим результатом предлагаемого изобретения является снижение времени испытаний на межкристаллитную коррозию алюминиевого сплава при снижении агрессивности среды во время нанесения коррозионных поражений с использованием анодной поляризации, а также обеспечение возможности проводить испытания по нанесению коррозионных поражений межкристаллитного характера на алюминиевые сплавы при совместном воздействии усталостных нагрузок и коррозионной среды.

Технический результат достигается предложенным способом нанесения межкристаллитных коррозионных поражений на деталь из алюминиевого сплава, в котором деталь обрабатывают путем наложения на нее анодного тока в водном электролите, содержащем хлорид натрия, при этом деталь обрабатывают в водном электролите, содержащем 0,1-10 мас. % сульфата натрия и 0,1-1 мас. % хлорида натрия, либо в потенциостатическом режиме при потенциале анодного растворения, соответствующем значению, установившемуся при плотности анодного тока 0,005-0,05 А/см2, наложенного на материал обрабатываемой детали, с предварительной обработкой детали путем наложения на нее анодного тока в потенциостатическом режиме при более положительном потенциале анодного растворения, чем вышеупомянутый, либо в гальваностатическом режиме с плотностью анодного тока 0,005-0,05 А/см2.

Предварительную обработку детали предпочтительно проводить при потенциале анодного растворения, который на 200-400 мВ положительнее потенциала анодного растворения, соответствующего значению, установившемуся при плотности анодного тока 0,005-0,05 А/см2, наложенного на материал обрабатываемой детали.

При соблюдении данного режима предварительную обработку детали можно проводить в течение 0,5-2-х минут.

При склонности алюминиевого сплава к МКК его электрохимическое поведение в хлорсодержащих растворах электролитов характеризуется наличием определенной области потенциалов, в которой при поляризации появляются коррозионные поражения межкристаллитного характера. Такую область потенциалов называют областью потенциалов МКК. При более отрицательных значениях потенциалов разрушение сплавов носит слабовыраженный питтинговый характер. При более положительных значениях потенциала вследствие гидролиза продуктов коррозии алюминиевого сплава происходит изменение кислотности среды в приэлектродной зоне, сопровождающееся значительным выделением водорода с поверхности сплава и увеличением интенсивности и неравномерности растворения. В этом случае растворение носит язвенный характер. Сплавы, не склонные к МКК, обнаруживают питтинговый характер коррозии и в области потенциалов МКК.

Серией испытаний был подобран электролит, содержащий 0,1-10 мас. % сульфата натрия и 0,1-1 мас. % хлорида натрия. Сульфат-ион практически не влияет на коррозию алюминиевых сплавов, но его наличие необходимо для увеличения электропроводности электролита. При концентрациях сульфат-иона менее 0,1 мас. % электропроводность раствора недостаточна, что приводит к неоднозначному определению потенциала анодного растворения вследствие наличия омической составляющей.

Хлорид-ионы способствуют возникновению пробоя пассивной пленки на алюминиевых сплавах, образующейся в нейтральных растворах электролитов. При концентрации NaCl менее 0,1 мас. % вследствие конкурирующей адсорбции установление потенциала анодного растворения в области МКК происходит за достаточно долгий период времени - более часа, что снижает эффективность применяемого метода. При больших концентрациях раствора трудно поддерживать необходимое значение потенциала в области МКК, что может привести к язвенным коррозионным поражениям, затрудняющим определение межкристаллитной коррозии.

Нанесение коррозионных поражений проводят в стандартной электрохимической ячейке в гальваностатическом либо в потенциостатическом режиме. Гальваностатический режим применяют для большинства деталей из алюминиевых сплавов. Потенциостатический режим используют в случае наличия затруднений в определении площади испытуемой поверхности.

Испытания в гальваностатическом режиме проводят при постоянной плотности тока от 0,005 до 0,05 А/см2. При меньших значениях плотности тока необходимо наносить коррозионные поражения продолжительный период времени - более шести часов, что существенно снижает ценность метода. При более высоких значениях плотностей тока процесс коррозии приобретает язвенный характер.

Для образцов с трудноопределяемой площадью поверхности испытания проводят в потенциостатическом режиме при постоянной величине потенциала анодного растворения. Вначале определяют значение задаваемого потенциала. Для этого подготавливают дополнительные образцы (не менее трех) из такого же материала с известной площадью испытуемой поверхности. Образцы поляризуют в гальваностатическом режиме, фиксируя значения потенциала, который используют в качестве потенциала испытаний Еисп. Исследуемые образцы вначале подвергают предварительной анодной обработке в течение непродолжительного времени при потенциале, величина которого положительнее потенциала испытаний Еисп, предпочтительно, на 200-400 мВ. При меньших значениях потенциала установление стационарной величины тока происходит с задержкой по времени более 5 минут, а при больших процесс анодной поляризации переходит в область язвенной коррозии. При соблюдении указанного режима предварительную обработку достаточно проводить в течение 0,5-2 минуты.

После этого устанавливают значение потенциала испытаний Еисп и выдерживают образец в течение требуемого времени.

Для определения склонности материала к МКК в зависимости от величины наложенной плотности тока испытания достаточно проводить в течение 0,5-6 часов. Для выявления склонности к межкристаллитной коррозии необходимо нанести коррозионные поражения с приведенной мощностью 0,5-1,5 А·ч/см2.

При нанесении коррозионных поражений с целью определения совместного воздействия механических нагрузок и коррозионной среды время выдержки определяют в соответствии с программой испытаний, определяющей режим нанесения коррозионных поражений, усталостную нагрузку, количество циклов усталостного нагружения, а также количество циклов испытаний, представляющих собой попеременное воздействие электрохимической обработки и усталостной нагрузки.

Примеры осуществления

Пример 1

Использовали образцы из алюминиевых сплавов 1163Т и В-1469Н в состоянии исходной поставки, а также термообработаные при 150°C в течение 10 и 100 часов соответственно с целью получить различную склонность к межкристаллитной коррозии. Образцы имели размер 40×20×3 мм.

Подготовку поверхности образцов к испытаниям проводили согласно ГОСТ 9.913. Травление проводили в растворе 10%-ного NaOH при температуре 60°C в течение 8-12 мин, чтобы удалить плакированный слой, затем осветляли в растворе 30%-ной азотной кислоты в течение 1 минуты. Промывку осуществляли сначала водопроводной, затем дистиллированной водой. Проводили сушку образцов. Далее образцы частично изолировали лаком, оставляя незакрашенной исследуемую поверхность образца. Кромки образца также были заизолированы. Площадь поляризуемой поверхности образца составляла 4 см2. Подготовленные образцы не позднее, чем через 1 час после осветления в азотной кислоте, загружали в электрохимическую ячейку.

Образцы крепили с помощью металлических зажимов таким образом, чтобы контакт металлического зажима с электролитом отсутствовал. Образцы поляризовали в открытой стеклянной трехэлектродной ячейке с объемом рабочей части раствора не менее 200 см3 на 1 см2 поверхности образца. Использовали вспомогательный электрод с площадью рабочей поверхности не менее 5 см2 из платиновой пластины. Использовали насыщенный хлорсеребряный электрод сравнения.

Для поляризации применяли электронный потенциостат-гальваностат. Параметры электрохимического нанесения коррозионных поражений, а также сведения о глубине коррозионных поражений межкристаллитного характера на поверхности образцов из алюминиевых сплавов приведены в таблице 1.

Сравнение полученных результатов проводили с результатами испытаний на склонность к межкристаллитной коррозии согласно ГОСТ 9.021-74 (таблица 2). Отсюда получаем, что для определения склонности алюминиевого сплава к МКК электрохимическим методом следует использовать следующий режим: плотность тока растворения от 0,02 до 0,05 А/см2 при длительности испытаний 1 час (вместо 6 и 24 часов согласно ГОСТ 9.021-74).

Пример 2

Использовали образцы из алюминиевого сплава в виде полосы с отверстием (Kt=2,6). Подготовку поверхности образцов проводили согласно ГОСТ 9.913. Травили в растворе 10-ти % щелочи при температуре 60°C в течение 8-12 мин, чтобы удалить плакированный слой, затем осветляли в растворе 30% азотной кислоты в течение 1 минуты. Промывку осуществляли сначала водопроводной, затем дистиллированной водой. Проводили сушку образцов.

Перед проведением усталостных испытаний проводили анодную обработку образцов в специальной трехэлектродной ячейке, позволяющей использовать стандартные образцы для усталостных испытаний. Использовали вспомогательный электрод с площадью рабочей поверхности не менее 5 см2 из платиновой пластины. Использовали насыщенный хлорсеребряный электрод сравнения. Для поляризации применяли электронный потенциостат-гальваностат. Использовали электрохимический метод с несколькими режимами нанесения коррозионных поражений.

Испытания на усталость проводили при следующих условиях: коэффициент асимметрии R=0.1, напряжение . Температура испытаний равна 20°С. Результаты испытаний на малоцикловую усталость образцов после проведения анодной обработки отображены в таблице 3.

Из таблицы 3 видно, что при увеличении анодного тока электрохимической обработки, а также ее длительности уменьшается малоцикловая усталость склонного к МКК алюминиевого сплава. При сопоставлении режима электрохимической обработки и коррозионного воздействия, оказываемого в процессе эксплуатации изделий из испытуемого сплава, существует возможность определить стойкость к усталостным нагрузкам в процессе эксплуатации.

Таким образом, предложенный способ нанесения межкристаллитных коррозионных поражений на алюминиевые сплавы позволяет снизить время испытаний при одновременном снижении агрессивности среды нанесения поражений, а также обеспечивает возможность испытывать алюминиевые сплавы при совместном воздействии усталостных нагрузок и коррозионной среды.

Источник поступления информации: Роспатент

Showing 291-300 of 391 items.
29.03.2019
№219.016.f128

Покрытие для изделий из жаропрочных никелевых сплавов и способ его нанесения

Изобретение относится к области машиностроения и может быть использовано в энергетическом и авиационном турбостроении для защиты от коррозии и высокотемпературного окисления лопаток газовых турбин из жаропрочных никелевых сплавов. Покрытие для изделий из жаропрочных никелевых сплавов содержит...
Тип: Изобретение
Номер охранного документа: 0002398912
Дата охранного документа: 10.09.2010
29.03.2019
№219.016.f12f

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение относится к области машиностроения и может быть использовано при получении отливок, например, деталей горячего тракта ГТД, включая турбинные лопатки, створки. Устройство содержит вертикальную вакуумную камеру, внутри которой размещены индукционная плавильная печь, печь подогрева...
Тип: Изобретение
Номер охранного документа: 0002398653
Дата охранного документа: 10.09.2010
29.03.2019
№219.016.f134

Устройство для получения лопатки из жаропрочного никелевого сплава с монокристаллической структурой

Изобретение относится к области металлургии и может быть использовано при литье монокристаллических лопаток, имеющих замковые бандажные полки с лабиринтными гребешками, преимущественно крупногабаритных лопаток ГТУ. Устройство содержит керамическую форму, в основании которой выполнены...
Тип: Изобретение
Номер охранного документа: 0002392091
Дата охранного документа: 20.06.2010
29.03.2019
№219.016.f153

Вибропоглощающий слоистый материал

Изобретение относится к вибропоглощающему слоистому материалу для использования в качестве покрытий различных тонкостенных конструкций, работающих в широком диапазоне температур, в авиационной и аэрокосмической отраслях промышленности. Материал содержит синтетический волокнистый нетканый...
Тип: Изобретение
Номер охранного документа: 0002393095
Дата охранного документа: 27.06.2010
29.03.2019
№219.016.f154

Способ получения композиционного материала

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов на основе интерметаллида Nb. Может быть использовано при изготовлении деталей для длительной эксплуатации при высоких температурах в условиях значительных механических и термических нагрузок, в...
Тип: Изобретение
Номер охранного документа: 0002393060
Дата охранного документа: 27.06.2010
29.03.2019
№219.016.f185

Способ получения композиционного материала

Изобретение относится к получению тугоплавких, стойких к удару композиционных материалов с интерметаллидной матрицей, используемых в авиационной, космической, судостроительной и других областях промышленности. Собирают пакет из слоев фольги из одного или более металлов, выбранных из группы Ti,...
Тип: Изобретение
Номер охранного документа: 0002394665
Дата охранного документа: 20.07.2010
29.03.2019
№219.016.f193

Препрег герметичного органопластика и изделие, выполненное из него

Изобретение относится к области создания конструкционных полимерных композиционных материалов на основе волокнистых наполнителей из арамидных нитей и полимерных связующих, которые могут использоваться в качестве герметичных обшивок сотовых панелей, а также монолитных деталей в машино-,...
Тип: Изобретение
Номер охранного документа: 0002395535
Дата охранного документа: 27.07.2010
29.03.2019
№219.016.f1e8

Способ получения изделия из деформируемого жаропрочного никелевого сплава

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Для снижения напряжения течения металла при деформации заготовок и повышения выхода годного предложен способ...
Тип: Изобретение
Номер охранного документа: 0002387733
Дата охранного документа: 27.04.2010
29.03.2019
№219.016.f33a

Полимерная композиция

Изобретение относится к негорючим полимерным композициям, применяемым для местного упрочнения конструкций, в том числе трехслойных сотовых панелей, в зонах установки крепежа, заделки торцов и заполнения пустот в деталях из полимерных композиционных материалов, используемых на наземном, морском...
Тип: Изобретение
Номер охранного документа: 0002330050
Дата охранного документа: 27.07.2008
29.03.2019
№219.016.f34a

Фенолоформальдегидное связующее, препрег на его основе и изделие, выполненное из него

Предлагаемое изобретение относится к фенолоформальдегидным связующим и композиционным материалам на их основе, предназначенным для изготовления пожаробезопасных изделий интерьера пассажирских самолетов, в судо-, автомобилестроении и железнодорожном транспорте. Предложены: фенолоформальдегидное...
Тип: Изобретение
Номер охранного документа: 0002333922
Дата охранного документа: 20.09.2008
Showing 291-300 of 368 items.
29.03.2019
№219.016.f0bb

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых сплавов на основе никеля, преимущественно осесимметричных деталей газотурбинных и ракетных двигателей типа дисков, полусфер, оболочек, «стаканов» и изделий других форм, работающих в условиях...
Тип: Изобретение
Номер охранного документа: 0002340702
Дата охранного документа: 10.12.2008
29.03.2019
№219.016.f12f

Устройство для получения отливок с направленной и монокристаллической структурой

Изобретение относится к области машиностроения и может быть использовано при получении отливок, например, деталей горячего тракта ГТД, включая турбинные лопатки, створки. Устройство содержит вертикальную вакуумную камеру, внутри которой размещены индукционная плавильная печь, печь подогрева...
Тип: Изобретение
Номер охранного документа: 0002398653
Дата охранного документа: 10.09.2010
29.03.2019
№219.016.f134

Устройство для получения лопатки из жаропрочного никелевого сплава с монокристаллической структурой

Изобретение относится к области металлургии и может быть использовано при литье монокристаллических лопаток, имеющих замковые бандажные полки с лабиринтными гребешками, преимущественно крупногабаритных лопаток ГТУ. Устройство содержит керамическую форму, в основании которой выполнены...
Тип: Изобретение
Номер охранного документа: 0002392091
Дата охранного документа: 20.06.2010
29.03.2019
№219.016.f1e8

Способ получения изделия из деформируемого жаропрочного никелевого сплава

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Для снижения напряжения течения металла при деформации заготовок и повышения выхода годного предложен способ...
Тип: Изобретение
Номер охранного документа: 0002387733
Дата охранного документа: 27.04.2010
04.04.2019
№219.016.fcb1

Лазерное формообразование механических микроструктур на поверхности подложки

Изобретение относится к оптическим технологиям, в частности к лазерным методам формирования на подложках структурных образований нано- и микроразмеров для нано- и микромеханики и микроэлектроники. Способ включает осаждение частиц вещества из газовой фазы с использованием локального нагрева...
Тип: Изобретение
Номер охранного документа: 0002452792
Дата охранного документа: 10.06.2012
05.04.2019
№219.016.fd3f

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002684000
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fe23

Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей, работающих при температурах до 800°С во...
Тип: Изобретение
Номер охранного документа: 0002365657
Дата охранного документа: 27.08.2009
17.04.2019
№219.017.15e4

Устройство управляемого углового дискретного позиционирования оптического луча

Устройство относится к оптоэлектронной технике, в частности к устройствам сканеров и дефлекторов для управления положением оптического луча и для его переключения из одного углового положения в другое, и может быть использовано при лазерной локации объектов. Устройство содержит сканер с...
Тип: Изобретение
Номер охранного документа: 0002383908
Дата охранного документа: 10.03.2010
19.04.2019
№219.017.2ba8

Грунтовочная композиция для кремнийорганических герметиков

Настоящее изобретение относится к области химии полимеров, а именно к средствам для обеспечения адгезии кремнийорганических герметиков к разнообразным подложкам, и может применяться в авиационной и космической технике, приборостроении и других отраслях промышленности. Техническая задача -...
Тип: Изобретение
Номер охранного документа: 0002272059
Дата охранного документа: 20.03.2006
19.04.2019
№219.017.2bbc

Препрег и изделие, выполненное из него

Изобретение относится к препрегу и изделию, выполненному из него, используемому в качестве материала несущих элементов конструкций авиационной и космической техники. Препрег содержит 24-50 мас.% полимерного связующего и 50-76 мас.% волокнистого наполнителя. В качестве волокнистого наполнителя...
Тип: Изобретение
Номер охранного документа: 0002278028
Дата охранного документа: 20.06.2006
+ добавить свой РИД