×
27.12.2016
216.013.9d52

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ ТИТАНСОДЕРЖАЩЕГО МАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической промышленности. Способ переработки титансодержащего материала включает выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии. Затем суспензию фильтруют и отделяют твердый остаток от сернокислого раствора выщелачивания, содержащего соединения титана и железа. Проводят экстракционную обработку раствора выщелачивания, разделение органической и водной фаз, водную реэкстракцию, термический гидролиз с образованием гидроксида титана. Гидроксид титана отделяют и обжигают с получением диоксида титана. Выщелачивание титансодержащего материала осуществляют серной кислотой с концентрацией 600-800 г/л. Экстракционную обработку сернокислого раствора выщелачивания проводят с переводом 55-65 мас.% серной кислоты в органическую фазу, а соединений титана, железа и остаточного количества серной кислоты - в водную фазу. Реэкстракцию ведут с получением раствора серной кислоты. Водную фазу обрабатывают постоянным электрическим током при плотности тока 0,02-0,10 А/см до обеспечения содержания TiO не более 5 г/л и подвергают термическому гидролизу. В качестве титансодержащего материала используют сфеновый, перовскитовый, ильменитовый концентраты с крупностью частиц не более 40 мкм. Изобретение позволяет повысить степень извлечения титана из титансодержащего материала в чистый диоксид титана, уменьшить объем материальных потоков, повысить экологичность. 8 з.п. ф-лы, 4 пр.

Изобретение относится к сернокислотной переработке титансодержащих материалов, в том числе сфенового, перовскитового, ильменитового концентратов, с получением диоксида титана, используемого в качестве пигмента, а также для производства катализаторов, специальных сплавов и конденсаторов.

При переработке титансодержащих материалов, в состав которых помимо ценных компонентов входят компоненты, снижающие качественные характеристики конечных продуктов, возникает необходимость полного или частичного удаления нежелательных примесей. Существующие методы переработки титансодержащих материалов при обеспечении высокой чистоты получаемого диоксида титана характеризуются недостаточно высокой степенью извлечения диоксида титана, а также значительным объемом материальных потоков, что отрицательно сказывается на экологии. На решение этой проблемы направлено настоящее изобретение.

Известен способ переработки титансодержащего материала, в частности сфенового концентрата (см. а.с. 1611909 СССР, МКИ5 С09С 1/36, 1990), включающий его обработку раствором, содержащим 230-240 г/л серной кислоты, в режиме кипения, отделение образовавшегося гидратированного титансодержащего осадка и кислотную обработку осадка раствором, содержащим 950-1100 г/л серной кислоты, при 130-155°С в течение 1-3 часов с переводом титана в жидкую фазу. После этого отделяют кальцийсиликатный твердый остаток, а полученный титансодержащий раствор выдерживают при той же температуре до остаточного содержания титана 0,5-3,0 г/л в расчете на TiO2 с образованием суспензии. Далее выделяют из суспензии твердую часть в виде титанилсульфата, растворяют его в воде, а образовавшийся при этом титансодержащий раствор подвергают термогидролизу в режиме кипения с получением осадка гидроксида титана, который отделяют, промывают водой и подвергают солевой обработке. После термообработки при 850°С получают пигментный диоксид титана рутильной модификации при его содержании 96%. Извлечение TiO2 в пигмент составляет 88,4-92,7%

Данный способ не предусматривает приемов, позволяющих ограничить переход примесей из концентрата в диоксид титана, и характеризуется недостаточно высокой степенью извлечения диоксида титана. Способ включает образование значительного количества труднофильтруемых промежуточных осадков, промывка которых требует большого объема водных растворов с образованием слабокислых стоков, что ухудшает экологичность способа. Все это снижает эффективность способа.

Известен также принятый за прототип способ переработки титансодержащего материала (см. пат. 2315123 РФ, МПК С22В 34/12, С22В 3/08, C01G 23/053, 2008), включающий двухстадийное выщелачивание в автоклаве измельченного до крупности 50% частиц 32 мкм титансодержащего материала, преимущественно ильменита, раствором, содержащим 400-700 г/л серной кислоты, в присутствии металлического железа в качестве восстановителя при температуре 95-120°С в течение 3-6 часов на каждой стадии. При этом образуется суспензия, которая включает кислый раствор титанилсульфата и сульфата двухвалентного железа и твердый остаток. Затем твердый остаток отделяют от раствора, из которого кристаллизацией осаждают сульфат железа, который отделяют фильтрацией. Полученный при этом раствор титанилсульфата подвергают экстракционной обработке при температуре 50°С и отношении O:B=2-5:1. В качестве экстрагента используют триоктилфосфиноксид и бутилдибутилфосфонат в сочетании с модификатором в виде метилизобутилкетона, диизобутилкетона и изотридеканола. Разделяют органическую и водную фазы. Реэкстракцию титанилсульфата из органической фазы производят водой при температуре 50-60°С и отношении О:В=0,33-30:1. Полученный разбавленный раствор титанилсульфата с концентрацией 12-25 г/л по титану (20-42 г/л по TiO2) подвергают термическому гидролизу с образованием твердой фазы в виде гидроксида титана. Разделяют твердую и жидкую фазы, производят водную промывку твердой фазы и обжигают ее при температуре 1000°С с образованием конечного продукта в виде диоксида титана. Получаемый продукт содержит 99,67 мас. % TiO2 и примеси в количестве: Fe - 0,07%, S<0,02%. Степень извлечения титана после 2-й стадии выщелачивания составляет 72-87%.

Известный способ характеризуется высокой чистотой получаемого диоксида титана, однако не позволяет обеспечить высокую степень извлечения титана по причине использования разбавленных растворов, что ведет к значительному повышению объемов материальных потоков и увеличению потерь диоксида титана. Проведение экстракции и реэкстракции при высокой температуре делает процесс пожароопасным. Наличие большого количества слабокислых стоков после гидролиза ухудшает экологичность способа. Кроме того, обжиг гидроксида титана при высокой (1000°С) температуре повышает энергоемкость способа. Все это снижает эффективность способа.

Технический результат заключается в повышении эффективности способа за счет увеличения степени извлечения титана при сохранении высокой чистоты получаемого диоксида титана. Технический результат заключается также в ограничении объема материальных потоков и улучшении экологичности способа.

Технический результат достигается тем, что в способе переработки титансодержащего материала, включающем выщелачивание измельченного материала серной кислотой при нагревании с получением суспензии, фильтрацию суспензии с отделением твердого остатка от сернокислого раствора выщелачивания, содержащего соединения титана и железа, экстракционную обработку раствора выщелачивания, разделение органической и водной фаз, водную реэкстракцию, термический гидролиз с образованием гидроксида титана, его отделение и обжиг с получением диоксида титана, согласно изобретению, выщелачивание титансодержащего материала осуществляют серной кислотой с концентрацией 600-800 г/л, экстракционную обработку сернокислого раствора выщелачивания проводят с переводом 55-65 мас. % серной кислоты в органическую фазу, а соединений титана, железа и остаточного количества серной кислоты - в водную фазу, реэкстракцию ведут с получением раствора серной кислоты, а водную фазу обрабатывают постоянным электрическим током при плотности тока 0,02-0,10 А/см2 до обеспечения содержания Ti2O3 не более 5 г/л и подвергают термическому гидролизу.

Достижению технического результата способствует то, что в качестве титансодержащего материала используют сфеновый, перовскитовый, ильменитовый концентраты с крупностью частиц не более 40 мкм.

Достижению технического результата способствует также то, что выщелачивание проводят при температуре не менее 115°С в течение 5-10 часов.

Достижению технического результата способствует также и то, что выщелачивание ильменитового концентрата проводят в присутствии восстановителя.

Достижению технического результата способствует и то, что экстракционную обработку ведут смесью, содержащей 65-90 об. % алифатических спиртов и 10-35 об. % третичных аминов, при отношении O:B=4-6:1 на 3-5 ступенях.

На достижение технического результата направлено то, что в качестве алифатических спиртов используют спирты, содержащие 8-10 атомов углерода.

На достижение технического результата направлено также то, что в качестве третичных аминов используют триалкиламин, триоктиламин, триизооктиламин.

На достижение технического результата направлено также и то, что реэкстракцию серной кислоты ведут при O:B=6-7:1 на 5-8 ступенях с получением сернокислого раствора, который используют на стадии выщелачивания.

На достижение технического результата направлено и то, что обжиг гидроксида титана ведут при температуре 870-900°С.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Выщелачивание измельченного титансодержащего материала серной кислотой с концентрацией 600-800 г/л активизирует переход титана в жидкую фазу суспензии, что позволяет повысить извлечение титана в конечный продукт в виде диоксида титана. Выщелачивание титансодержащего материала серной кислотой с концентрацией менее 600 г/л приводит к снижению степени извлечения титана в жидкую фазу и, соответственно, к снижению извлечения титана в конечный продукт, а с концентрацией более 800 г/л вызывает снижение устойчивости титана в жидкой фазе суспензии и сопровождается его переходом в титансодержащую твердую фазу и затем в твердый остаток, что также приводит к снижению извлечения титана в конечный продукт.

Экстракционная обработка сернокислого раствора выщелачивания с переводом в органическую фазу 55-65 мас. % серной кислоты обеспечивает высокую избирательность процесса, что позволяет повысить извлечение титана и железа в водную фазу и далее в конечный продукт, а также обеспечивает снижение кислотности водной фазы при сохранении в ней высокой концентрации титана, что исключает разбавление водной фазы перед гидролизом и обеспечивает значительное сокращение материальных потоков. Перевод в органическую фазу менее 55 мас. % серной кислоты приводит к повышению кислотности водной фазы, что снижает извлечение титана на стадии гидролиза и, соответственно, понижает извлечение титана в конечный продукт. Перевод в органическую фазу более 65 мас. % серной кислоты приводит к формированию при гидролизе труднофильтруемого гидроксидного осадка, что увеличивает продолжительность его промывки, ведет к повышенному расходу промывной воды и, соответственно, к увеличению количества слабокислых стоков.

Реэкстракция из органической фазы раствора серной кислоты водой обеспечивает получение серной кислоты с минимальным количеством примесей и регенерацию экстрагента для его повторного использования, что способствует повышению степени извлечения титана и снижению объема материальных потоков.

Обработка водной фазы постоянным электрическим током при плотности тока 0,02-0,10 А/см2 обеспечивает перевод трехвалентного железа в двухвалентное, которое не осаждается совместно с титаном при последующем гидролизе. Плотность тока менее 0,02 А/см2 сопровождается повышением длительности обработки водной фазы, что нежелательно, а плотность тока более 0,10 А/см2 затрудняет регулирование процесса с точки зрения обеспечения требуемого количества Ti2O3 в водной фазе.

Наличие в водной фазе трехвалентного титана Ti2O3 в количестве не более 5 г/л препятствует обратному процессу перехода железа в трехвалентное состояние.

Термический гидролиз водной фазы, предварительно обработанной постоянным электрическим током, обеспечивает осаждение гидрооксида титана с минимальным количеством примесей, что способствует получению чистого диоксида титана. Термический гидролиз водной фазы предпочтительно проводить в режиме кипения.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в увеличении степени извлечения титана при сохранении высокой чистоты получаемого диоксида титана, уменьшении объема материальных потоков и улучшении экологичности способа. Все это повышает его эффективность.

В частных случаях осуществления изобретения предпочтительны следующие режимные параметры.

Использование в качестве титансодержащего материала сфенового, перовскитового, ильменитового концентратов обусловлено перспективами использования этих концентратов на территории РФ и способствует расширению ассортимента титанового сырья для получения высококачественного диоксида титана. Крупность частиц концентрата не более 40 мкм обеспечивает его высокую химическую активность на стадии выщелачивания.

Выщелачивание титансодержащего материала при температуре не менее 115°С в течение 5-10 часов обеспечивает высокую степень извлечения титана в раствор выщелачивания. Выщелачивание при температуре менее 115°С приводит к снижению извлечения титана в раствор выщелачивания. Выщелачивание в течение менее 5 часов ведет к снижению извлечения титана в раствор выщелачивания, а в течение более 12 часов - технологически неоправданно, так как практически не влияет на дополнительное извлечение титана.

Проведение выщелачивания ильменитового концентрата в присутствии восстановителя необходимо для перевода трехвалентного железа в двухвалентное и частичного выделения его в виде кристаллического сульфата железа (II), что снижает содержание железа в растворе выщелачивания, направляемом на экстракционную обработку. В качестве восстановителя предпочтительно использовать железную стружку или чугунный скрап.

Использование в качестве экстрагента смеси, содержащей 65-90 об. % алифатических спиртов и 10-35 об. % третичных аминов, обеспечивает наилучшие условия для проведения экстракции серной кислоты. Содержание в смеси спиртов более 90 об. %, а третичных аминов менее 10 об. % ухудшает расслаивание фаз при реэкстракции, что снижает производительность процесса. При содержании в смеси третичных аминов более 35 об. % получаются очень вязкие экстракты, что затрудняет расслаивание фаз и перекачку экстрагента. Содержание в смеси алифатических спиртов менее 65 об. % требует введения в смесь инертного разбавителя, что не позволяет получить при реэкстракции концентрированные растворы серной кислоты в силу недостаточной емкости экстракционной смеси.

Проведение экстракционной обработки раствора выщелачивания при отношении O:B=4-6:1 на 3-5 ступенях обусловлено следующим. Проведение экстракционной обработки при соотношении O:B менее 4:1 не обеспечивает достаточного извлечения кислоты в органическую фазу, а при O:B более 6:1 приводит к слишком большому расходу экстрагента и получению разбавленных по кислоте экстрактов. Число ступеней экстракции менее 3 недостаточно для требуемого (55-65 мас. %) извлечения серной кислоты из раствора выщелачивания, а при числе ступеней более 5 возрастают затраты на оборудование без существенного увеличения извлечения кислоты.

Использование в качестве алифатических спиртов - спиртов, содержащих 8-10 атомов углерода, в частности октилового спирта, деканола и др., обусловлено их физико-химическими свойствами: пониженной плотностью, высокой химической стойкостью, малой растворимостью и низкой токсичностью.

Предпочтительно в качестве третичных аминов использовать триалкиламин, триоктиламин или триизооктиламиа в силу того, что эти экстрагенты позволяют осуществить селективную экстракцию серной кислоты из растворов с умеренной кислотностью и проводить последующую регенерацию экстракционной смеси водой.

Проведение водной реэкстракции при O:B=6-7:1 на 5-8 ступенях позволяет получить реэкстракт в виде раствора серной кислоты, который может быть использован на стадии выщелачивания. При числе ступеней менее 5 в указанном интервале соотношения O:В будет иметь место недоизвлечение кислоты в реэкстракт, а число ступеней свыше 8 не приводит к увеличению реэкстракции кислоты.

Обжиг гидроксида титана при температуре 870-900°С позволяет снизить энергетические затраты при сохранении стабильной структуры диоксида титана и максимальном удалении серы. Обжиг при температуре ниже 870°С увеличивает длительность формирования стабильной структуры диоксида титана, а обжиг при температуре выше 900°С нежелателен по причине ухудшения пигментных характеристик диоксида титана.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения увеличения степени извлечения титана из концентрата в конечный продукт, уменьшения объема материальных потоков и улучшения экологичности способа при сохранении высокой чистоты получаемого диоксида титана.

Сущность и преимущества заявленного способа могут быть более наглядно проиллюстрированы следующими примерами.

Пример 1. Берут 1 кг сфенового концентрата с крупностью частиц не более 40 мкм, содержащего 32% TiO2, 1,5% Fe2O3, загружают его в 4 л раствора серной кислоты с концентрацией 600 г/л H2SO4 и проводят выщелачивание при температуре 115°С в течение 10 часов с переводом титана и железа в жидкую фазу. Образовавшуюся суспензию фильтруют с отделением твердого остатка. При этом получают сернокислый раствор выщелачивания объемом 3,7 л, содержащий, г/л: H2SO4 - 540, титан в пересчете на TiO2 - 76,2, железо в пересчете на Fe2O3 - 3,9, который подвергают экстракционной обработке. Экстракцию проводят смесью, содержащей 65 об. % октилового спирта и 35 об. % триизооктиламина, при температуре 40°С и отношении O:B=5:1 на 4 противоточных ступенях с переводом 65 мас. % серной кислоты в органическую фазу с получением экстракта объемом 22,3 л с содержанием 58,2 г/л H2SO4, а соединений титана, железа и остаточного количества серной кислоты - в водную фазу объемом 3 л с содержанием, г/л: H2SO4 - 540, титан в пересчете на TiO2 - 87,2, железо в пересчете на Fe2O3 - 4,5. Реэкстракцию серной кислоты из экстракта проводят водой в режиме противотока при температуре 40°С и O:B=7:1 на 8 ступенях с получением 3,4 л раствора серной кислоты с концентрацией 390 г/л H2SO4. Водную фазу обрабатывают постоянным электрическим током при плотности тока 0,02 А/см2 до обеспечения содержания Ti2O3 2,5 г/л, после чего подвергают термическому гидролизу. Гидролиз проводят при добавке в раствор титановых зародышей в количестве 1% по отношению к TiO2 в растворе в режиме кипения в течение 6 часов. Образовавшийся при этом осадок гидроксида титана промывают 2,5 л воды и подвергают обжигу при 900°С с получением 301,5 г диоксида титана. Степень извлечения титана из сфенового концентрата составила 94,2% TiO2. Содержание примеси железа в расчете на металл - 0,03%, серы - 0,035%.

Пример 2. Берут 1 кг перовскитового концентрата с крупностью частиц не более 40 мкм, содержащего 48% TiO2, 4% Fe2O3, загружают его в 4 л раствора серной кислоты с концентрацией 800 г/л H2SO4 и проводят выщелачивание при температуре 135°С в течение 7 часов с переводом титана и железа в жидкую фазу. Образовавшуюся суспензию фильтруют с отделением твердого остатка. При этом получают сернокислый раствор выщелачивания объемом 3,49 л, содержащий, г/л: H2SO4 - 759, титан в пересчете на TiO2 -169,8, железо в пересчете на Fe2O3 - 14,5, который подвергают экстракционной обработке. Экстракцию проводят смесью, содержащей 80 об. % октилового спирта и 20 об. % триоктиламина, при температуре 30°С и отношении O:B=4:1 на 5 противоточных ступенях с переводом 55 мас. % серной кислоты в органическую фазу с получением экстракта объемом 17,5 л с содержанием H2SO4 - 69,5 г/л, а соединений титана, железа и остаточного количества серной кислоты - в водную фазу объемом 2,8 л с содержанием, г/л: H2SO4 - 436, титан в пересчете на TiO2 - 201,6, железо в пересчете на Fe2O3 - 6,5. Реэкстракцию серной кислоты из экстракта проводят водой в режиме противотока при температуре 30°С и O:B=6:1 на 5 ступенях с получением 2,9 л раствора серной кислоты с концентрацией 419 г/л H2SO4. Водную фазу обрабатывают постоянным электрическим током при плотности тока 0,05 А/см2 до обеспечения содержания Ti2O3 4,0 г/л, после чего подвергают термическому гидролизу. Гидролиз проводят при добавке в раствор титановых зародышей в количестве 1% по отношению к TiO2 в растворе в режиме кипения в течение 6 часов. Образовавшийся при этом осадок гидроксида титана промывают 3,5 л воды и подвергают обжигу при 880°С с получением 445 г диоксида титана. Степень извлечения титана из перовскитового концентрата составила 92,5% TiO2. Содержание примеси железа в расчете на металл - 0,051%, серы - 0,038%.

Пример 3. Берут 1 кг ильменитового концентрата с крупностью частиц не более 40 мкм, содержащего 48,2% TiO2, 40,0% Fe2O3, загружают его в 4 л раствора серной кислоты с концентрацией 750 г/л H2SO4 и проводят выщелачивание в присутствии восстановителя в виде железной стружки, обеспечивающего восстановление трехвалентного железа до двухвалентного состояния, при температуре 130°С в течение 5 часов с переводом титана и железа в жидкую фазу. Образовавшуюся суспензию фильтруют с отделением твердого остатка. При этом получают сернокислый раствор выщелачивания, из которого кристаллизацией выделяют сульфат железа (II) в виде соли FeSO4·7H2O с переводом 50% железа (II) из раствора в соль. Полученную соль отделяют от сернокислого раствора объемом 2,8 л, содержащего, г/л: H2SO4 - 850, титан в пересчете на TiO2 - 162,1, железо в пересчете на Fe2O3 - 67,8, который подвергают экстракционной обработке. Экстракцию проводят смесью, содержащей 90 об. % деканола и 10 об. % триалкиламина, при температуре 20°С и отношении O:B=6:1 на 3 противоточных ступенях с переводом 65 мас. % серной кислоты в органическую фазу с получением экстракта объемом 16,8 л с содержанием 93,4 г/л H2SO4, а соединений титана, железа и остаточного количества серной кислоты - в водную фазу объемом 2 л с содержанием, г/л: H2SO4 - 399, титан в пересчете на TiO2 - 200,6 и железо в пересчете на Fe2O3 - 79,8. Реэкстракцию серной кислоты из экстракта проводят водой в режиме противотока при температуре 30°С и O:B=6:1 на 5 ступенях с получением 3 л раствора серной кислоты с концентрацией 520 г/л H2SO4, которую используют для получения сульфата кальция в виде гипса. Водную фазу обрабатывают постоянным электрическим током при плотности тока 0,1 А/см2 до обеспечения содержания Ti2O3 5 г/л, после чего подвергают термическому гидролизу. Гидролиз проводят при добавке в раствор титановых зародышей в количестве 1% по отношению TiO2 в растворе в режиме кипения в течение 6 часов. Образовавшийся при этом осадок гидроксида титана промывают 4 л воды и подвергают обжигу при 870°С с получением 425 г диоксида титана. Степень извлечения титана из ильменитового концентрата составила 88,1% TiO2. Содержание примеси железа в расчете на металл - 0,085%, серы - 0,042%.

Пример 4. Берут 1 кг измельченного сфенового концентрата с крупностью частиц не более 40 мкм, содержащего 32% TiO2, 1,5% Fe2O3, загружают его в 4 л раствора серной кислоты с концентрацией 600 г/л H2SO4, приготовленного путем смешения 3,4 л раствора серной кислоты, полученного по Примеру 1, с концентрацией 390 г/л H2SO4 и 0,6 л концентрированной серной кислоты, содержащей 1810 г/л H2SO4, и проводят выщелачивание при температуре 115°С в течение 10 часов с переводом титана и железа в жидкую фазу. Образовавшуюся суспензию фильтруют с отделением твердого остатка. При этом получают сернокислый раствор выщелачивания объемом 3,7 л, содержащий, г/л: H2SO4 - 540, титан в пересчете на TiO2 - 76,8, железо в пересчете на Fe2O3 - 3,95, который подвергают экстракционной обработке. Экстракцию проводят смесью, содержащей 65 об. % октилового спирта и 35 об. % триизооктиламина, при температуре 40°С и отношении O:B=5:1 на 4 противоточных ступенях с переводом 65 мас. % серной кислоты в органическую фазу с получением экстракта объемом 22,3 л с содержанием 58,4 г /л H2SO4, а соединений титана, железа и остаточного количества серной кислоты - в водную фазу объемом 3 л с содержанием, г/л: H2SO4 - 540, титан в пересчете на TiO2 - 87,5, железо в пересчете на Fe2O3 - 4,6. Реэкстракцию серной кислоты из экстракта проводят водой в режиме противотока при температуре 40°С и O:B=7:1 на 8 ступенях с получением 3,4 л раствора серной кислоты с концентрацией 390 г/л H2SO4. Водную фазу обрабатывают постоянным электрическим током при плотности тока 0,02 А/см2 до обеспечения содержания Ti2O3 2,5 г/л, после чего подвергают ее термическому гидролизу. Гидролиз проводят при добавке в раствор титановых зародышей в количестве 1% по отношению к TiO2 в растворе в режиме кипения в течение 6 часов. Образовавшийся при этом осадок гидроксида титана промывают 2,5 л воды и подвергают обжигу при 900°С с получением 300 г диоксида титана. Степень извлечения титана из сфенового концентрата составила 93,5% TiO2. Содержание примеси железа в расчете на металл - 0,031%, серы - 0,036%.

Из анализа вышеприведенных Примеров видно, что предлагаемый способ позволяет повысить степень извлечения титана из титансодержащего материала в диоксид титана до 94,2% при содержании в нем примесей железа и серы в количестве: Fe - 0,03-0,085%, S - 0,035-0,042%. В способе согласно изобретению для гидролиза используются концентрированные титансодержащие растворы - 87,2-201,6 г/л по TiO2. С учетом этого объем материальных потоков уменьшается в 2-10 раз. Соответственно снижается и количество слабокислых стоков и улучшается экологичность способа. Предлагаемый способ может быть реализован на стандартном оборудовании.

Источник поступления информации: Роспатент

Showing 51-60 of 66 items.
25.08.2017
№217.015.ac4c

Способ обработки фосфатного концентрата рзэ

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в промышленности для получения нерадиоактивного карбонатного или гидроксидного концентрата РЗЭ. Осуществляют обработку фосфатного...
Тип: Изобретение
Номер охранного документа: 0002612244
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ad31

Оксидно-цинковая варисторная керамика

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения (ОПН). Оксидно-цинковая варисторная керамика содержит оксиды цинка,...
Тип: Изобретение
Номер охранного документа: 0002612423
Дата охранного документа: 09.03.2017
25.08.2017
№217.015.b047

Способ получения диоксида титана

Изобретение относится к технологии получения титансодержащих материалов, а именно функционального диоксида титана, используемого в производстве термо- и светостойких пластмасс, красок, клеев, герметиков. Способ получения диоксида титана включает нагрев сульфата титанила и аммония при...
Тип: Изобретение
Номер охранного документа: 0002613509
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b34e

Способ получения концентрата драгоценных металлов из медно-никелевого файнштейна

Изобретение относится к способу переработки файнштейна с выделением металлизированной фракции. Способ включает окислительное гидрохлоридное выщелачивание путем постепенной подачи металлизированной фракции в хлоридный раствор при ОВП 400-450 мВ с переводом в раствор основной части цветных...
Тип: Изобретение
Номер охранного документа: 0002613823
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c162

Способ извлечения кобальта из сульфатного раствора, содержащего никель и кобальт

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для разделения Ni и Со в растворах, образующихся при выщелачивании Ni-Co сырья. Способ включает предварительное приготовление экстрагента в солевой Ni-Co и Ni формах. Затем осуществляют противоточную экстракцию...
Тип: Изобретение
Номер охранного документа: 0002617471
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.cbb7

Способ получения порошка металла подгруппы хрома

Изобретение относится к металлотермическому получению дисперсных порошков металлов подгруппы хрома. В реактор загружают тигли с порциями порошка оксидного соединения металла подгруппы хрома, в качестве которого используют по меньшей мере одно соединение, выбранное из группы, включающей CrO, WO,...
Тип: Изобретение
Номер охранного документа: 0002620213
Дата охранного документа: 23.05.2017
26.08.2017
№217.015.d4fa

Способ получения рутилирующих зародышей

Изобретение может быть использовано в неорганической химии. Способ получения рутилирующих зародышей включает структурное преобразование гидратированного диоксида титана с использованием нагрева. Нагреву подвергают гидратированный диоксид титана и проводят при температуре 50-250°С. К полученному...
Тип: Изобретение
Номер охранного документа: 0002622302
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.d93e

Способ переработки танталониобиевого концентрата

Изобретение относится к области гидрометаллургии. Танталониобиевый концентрат, содержащий 39,6-43,0 мас.% висмута, обрабатывают при начальной комнатной температуре смесью плавиковой кислоты с концентрацией 270-330 г/л HF и серной кислоты с концентрацией 400-500 г/л HSO при Т:Ж=1:(1,9-3,0) с...
Тип: Изобретение
Номер охранного документа: 0002623570
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.dd48

Способ переработки апатитового концентрата

Изобретение относится к способу переработки апатитового концентрата. Способ включает обработку концентрата кислым раствором в присутствии катионита с последующим отделением продукционной фосфорной кислоты от катионита, содержащего кальций и примесные металлы. Далее проводят регенерацию...
Тип: Изобретение
Номер охранного документа: 0002624575
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.dfb1

Способ получения модифицированного титаносиликата фармакосидеритового типа

Изобретение относится к способам получения титаносиликатов, используемых в качестве сорбентов с ионообменными и восстановительными свойствами, и может найти применение для концентрирования и выделения благородных металлов. Берут хлоридный титансодержащий реагент в виде четыреххлористого титана...
Тип: Изобретение
Номер охранного документа: 0002625118
Дата охранного документа: 11.07.2017
Showing 51-60 of 82 items.
25.08.2017
№217.015.ac4c

Способ обработки фосфатного концентрата рзэ

Изобретение относится к обработке фосфатного концентрата редкоземельных элементов (РЗЭ), получаемого при комплексной переработке апатита, и может быть использовано в промышленности для получения нерадиоактивного карбонатного или гидроксидного концентрата РЗЭ. Осуществляют обработку фосфатного...
Тип: Изобретение
Номер охранного документа: 0002612244
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ad31

Оксидно-цинковая варисторная керамика

Изобретение относится к способам получения варисторной керамики и может быть использовано в электроэнергетике при изготовлении высоковольтных варисторов, являющихся основным элементом нелинейных ограничителей перенапряжения (ОПН). Оксидно-цинковая варисторная керамика содержит оксиды цинка,...
Тип: Изобретение
Номер охранного документа: 0002612423
Дата охранного документа: 09.03.2017
25.08.2017
№217.015.b047

Способ получения диоксида титана

Изобретение относится к технологии получения титансодержащих материалов, а именно функционального диоксида титана, используемого в производстве термо- и светостойких пластмасс, красок, клеев, герметиков. Способ получения диоксида титана включает нагрев сульфата титанила и аммония при...
Тип: Изобретение
Номер охранного документа: 0002613509
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b34e

Способ получения концентрата драгоценных металлов из медно-никелевого файнштейна

Изобретение относится к способу переработки файнштейна с выделением металлизированной фракции. Способ включает окислительное гидрохлоридное выщелачивание путем постепенной подачи металлизированной фракции в хлоридный раствор при ОВП 400-450 мВ с переводом в раствор основной части цветных...
Тип: Изобретение
Номер охранного документа: 0002613823
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.c162

Способ извлечения кобальта из сульфатного раствора, содержащего никель и кобальт

Изобретение относится к гидрометаллургии цветных металлов и может быть использовано для разделения Ni и Со в растворах, образующихся при выщелачивании Ni-Co сырья. Способ включает предварительное приготовление экстрагента в солевой Ni-Co и Ni формах. Затем осуществляют противоточную экстракцию...
Тип: Изобретение
Номер охранного документа: 0002617471
Дата охранного документа: 25.04.2017
25.08.2017
№217.015.cbb7

Способ получения порошка металла подгруппы хрома

Изобретение относится к металлотермическому получению дисперсных порошков металлов подгруппы хрома. В реактор загружают тигли с порциями порошка оксидного соединения металла подгруппы хрома, в качестве которого используют по меньшей мере одно соединение, выбранное из группы, включающей CrO, WO,...
Тип: Изобретение
Номер охранного документа: 0002620213
Дата охранного документа: 23.05.2017
26.08.2017
№217.015.d4fa

Способ получения рутилирующих зародышей

Изобретение может быть использовано в неорганической химии. Способ получения рутилирующих зародышей включает структурное преобразование гидратированного диоксида титана с использованием нагрева. Нагреву подвергают гидратированный диоксид титана и проводят при температуре 50-250°С. К полученному...
Тип: Изобретение
Номер охранного документа: 0002622302
Дата охранного документа: 14.06.2017
26.08.2017
№217.015.d93e

Способ переработки танталониобиевого концентрата

Изобретение относится к области гидрометаллургии. Танталониобиевый концентрат, содержащий 39,6-43,0 мас.% висмута, обрабатывают при начальной комнатной температуре смесью плавиковой кислоты с концентрацией 270-330 г/л HF и серной кислоты с концентрацией 400-500 г/л HSO при Т:Ж=1:(1,9-3,0) с...
Тип: Изобретение
Номер охранного документа: 0002623570
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.dd48

Способ переработки апатитового концентрата

Изобретение относится к способу переработки апатитового концентрата. Способ включает обработку концентрата кислым раствором в присутствии катионита с последующим отделением продукционной фосфорной кислоты от катионита, содержащего кальций и примесные металлы. Далее проводят регенерацию...
Тип: Изобретение
Номер охранного документа: 0002624575
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.dfb1

Способ получения модифицированного титаносиликата фармакосидеритового типа

Изобретение относится к способам получения титаносиликатов, используемых в качестве сорбентов с ионообменными и восстановительными свойствами, и может найти применение для концентрирования и выделения благородных металлов. Берут хлоридный титансодержащий реагент в виде четыреххлористого титана...
Тип: Изобретение
Номер охранного документа: 0002625118
Дата охранного документа: 11.07.2017
+ добавить свой РИД