×
20.12.2015
216.013.9abe

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ КОРРОЗИИ СТАЛИ В СВИНЦОВОМ ТЕПЛОНОСИТЕЛЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерению физико-химических характеристик в системе теплоноситель - конструкционный материал. Способ включает определение скорости коррозии оксидированной стали для термодинамической активности кислорода в свинце в интервале 10÷1,0, температуры свинца в интервале 450°С ÷ 650°С, средней скорости свинца в потоке свинцового теплоносителя, омывающего поверхность стали, в интервале 0,5 м/с ÷ 2,0 м/с, по соотношению: где W - скорость коррозии стали в свинцовом теплоносителе, м/с, k - эмпирический коэффициент, К, T - температура свинца, К, k - эмпирический коэффициент, a - термодинамическая активность кислорода в свинце, k - эмпирический коэффициент, 1/с, τ - время пребывания стали в свинце в режиме оксидирования, с, n - показатель степени, τ - время предварительного оксидирования поверхности стали в свинце, с, ρ - плотность стали, кг/м, при этом для стали ЭП-823 используют k=-22100 К, k=-3,97, k=4,6·10 1/с; n=0,42, а для стали ЭИ-852 используют k=-16210 К, k=-10,8, k=4,2·10 1/с; n=0,44. Технический результат - снижение трудоемкости при определении скорости коррозии. 1 з.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к области измерений параметров физико-химических процессов в системе теплоноситель - конструкционный материал и может быть использовано при определении скорости коррозии стали в свинце.

Известно техническое решение по определению скорости коррозии [J. Zhang *, N. Li. Analysis on liquid metal corrosion-oxidation interactions.// Corrosion Science 49 (2007) 4154-4184.)].

Скорость коррозии предлагается вычислять по формуле

W=0,434U0,875d-0,125Co-4/3(1-α)exp(-305796,8/(RT)), м/с

где W - скорость коррозии стали в свинцовом теплоносителе, м/с; U - скорость свинца, м/с; d - гидравлический диаметр канала, м; Co - концентрация насыщения кислорода в свинце, вес. %; α - отношение пристеночной концентрации железа в свинце к средней по объему; R - универсальная газовая постоянная, Дж/К моль; T - температура теплоносителя, К.

К недостаткам этого способа относится то, что для использования приведенной формулы необходимо определение концентрации железа в свинце. В то же время пока не существует надежных методов ее определения, а приближенные расчетные методы могут дать погрешность более 1000%.

Наиболее близким по технической сущности к заявляемому решению является способ определения скорости коррозии стали в свинцовом теплоносителе [Алексеев В.В., Орлова Е.А., Козлов Ф.А., Торбенкова И.Ю. Моделирование процессов массопереноса и коррозии сталей в ядерных энергетических установках со свинцовым теплоносителем (часть 1): Препринт №3128. Обнинск: ГНЦ РФ-ФЭИ, 2008. 22 с.].

В работе представлено математическое описание процесса оксидирования при формировании двухслойной оксидной пленки на поверхности стали в свинцовом теплоносителе, включающее более 20 уравнений. Совместное решение полученных уравнений при заданных граничных условиях (гидродинамические и температурные режимы, активность кислорода в свинце, состав стали и оксидов) позволяет рассчитывать динамику образования (или растворения) оксидных слоев, их толщину, а также потоки железа, выходящего из стали и поступающего в теплоноситель. Разработаны алгоритм совместного решения уравнений, описывающих рассматриваемый процесс, и соответствующая программа расчета на ЭВМ. На основании полученных данных может быть рассчитана скорость коррозии стали.

К недостатку известного способа относятся сложность алгоритма расчета потока железа, определяющего скорость коррозии стали, отсутствуют стандартные методы решения полученной системы уравнений, и незавершенность способа, поскольку в математическом описании процесса коррозии отсутствует в явном виде формула для расчета скорости коррозии стали.

Задачей изобретения является упрощение процедуры определения скорости коррозии стали в свинцовом теплоносителе.

Технический результат состоит в уменьшении трудоемкости при определении скорости коррозии.

Для исключения указанного недостатка в способе определения скорости коррозии стали в свинцовом теплоносителе предлагается:

- определять термодинамическую активность кислорода в свинце, например, с использованием электрохимического активометра, в интервале 10-4÷1,0; температуру свинца в интервале 450°C ÷ 650°C; среднюю скорость свинца в потоке, омывающем поверхность стали, в интервале 0,5 м/с ÷ 2,0 м/с;

- скорость коррозии определять по приближенному полуэмпирическому соотношению с учетом эмпирических коэффициентов, температуры свинца, термодинамической активности кислорода в свинце, времени пребывания стали в свинце в режиме оксидирования, времени предварительного оксидирования поверхности стали в свинце, показателя степени и плотности стали.

В частных случаях реализации способа предлагаются численные значения эмпирических коэффициентов применительно к определению скорости коррозии сталей ЭИ-852 и ЭП-823.

Способ определения скорости коррозии стали в свинцовом теплоносителе включает определение термодинамической активности кислорода в свинце, например с использованием электрохимического активометра. Определение скорости коррозии стали в свинцовом теплоносителе выполняют для следующих диапазонов изменения физико-химических характеристик: термодинамическая активность кислорода в свинце в интервале 10-4÷1,0; температура свинца в интервале 450°C ÷ 650°C; средняя скорость свинца в потоке, омывающем поверхность стали, в интервале 0,5 м/с ÷ 2,0 м/с.

Скорость коррозии стали в потоке свинца определяют по приближенному полуэмпирическому соотношению

где W - скорость коррозии стали в свинцовом теплоносителе, м/с; k1 - эмпирический коэффициент, К; T - температура свинца; К; k2 - эмпирический коэффициент; ao - термодинамическая активность кислорода в свинце; k3 - эмпирический коэффициент, 1/сn; τ - время пребывания стали в свинце в режиме оксидирования, с; n - показатель степени; τo - время предварительного оксидирования поверхности стали в свинце, с; ρ - плотность стали, кг/м3.

В частных случаях способ определения скорости коррозии стали в свинце реализуется соотношением (1) с использованием следующих эмпирических коэффициентов: k1=- 22100 К, k2=-3,97, k3=4,6·10-8 1/сn; n=0,4 для стали ЭП-823, и k1=-16210 К, k2=-10,8, k3=4,2·10-8 1/сn; n=0,44 для стали ЭИ-852.

Пример конкретного осуществления способа

Производятся замеры термодинамической активности кислорода в свинце с использованием электрохимического активометра и температуры в исследуемом участке контура со свинцовым теплоносителем. Магнитным расходомером измеряется расход свинца через исследуемый участок, откуда рассчитывается средняя скорость теплоносителя в потоке, омывающем поверхность, как отношение объемного расхода свинца к проходному сечению каналов. Фиксируется время нахождения стали в свинце для заданного режима работы контура, а также время предварительного оксидирования поверхности стали (например, по данным рабочего журнала и технической документации на установку).

В результате измерений получено: Т=923, К; ao=0,01; U=1,0 м/с.

Известно, что сталь была предварительно оксидирована в течение τo=8,64·105 с.

Для рассматриваемого примера время пребывания стали в свинце в режиме оксидирования составляет τ=107, с.

Расчет скорости коррозии проводится для стали ЭП-823 по формуле (1).

Для расчета используются значения эмпирических коэффициентов:

k1=-22100 К, k2=-3,97, k3=4,6·10-8 1/сn; n=0,42.

Плотность стали составляет ρ=7800, кг/м3.

На чертеже представлена полученная расчетным путем зависимость скорости коррозии стали в свинцовом теплоносителе от времени, на которой 1 соответствует расчетной кривой, 2 - экспериментальной точке.

Результаты расчета скорости коррозии для всего диапазона времени оксидирования стали приведены на чертеже (кривая 1): результаты расчета скорости коррозии стали ЭП-823 от времени при Т=650°C, ao=0,01: 1 - расчетная кривая; 2 - экспериментальная точка [Abramov V.Y., Bozin S.N., Evropin S.V. et al. Corrosion and mechanical properties of BREST-OD-300 reactor structural materials. // 11-th International conference on nuclear engineering. Tokyo, Japan, April 20-23, 2003. ICONE11-36413]. Расчетная скорость коррозии стали в искомой точке составляет 1,23 10-12 м/с (при τ=107, с). На чертеже показана также экспериментальная точка, обозначенная цифрой 2. Из сопоставления полученных данных с экспериментом следует, что их отличие не превышает 15%.


СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ КОРРОЗИИ СТАЛИ В СВИНЦОВОМ ТЕПЛОНОСИТЕЛЕ
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ КОРРОЗИИ СТАЛИ В СВИНЦОВОМ ТЕПЛОНОСИТЕЛЕ
Источник поступления информации: Роспатент

Showing 461-470 of 567 items.
11.03.2019
№219.016.dcd3

Способ изготовления металлокерамического малогабаритного электрического гермовывода

Изобретение может быть использовано в электровакуумных приборах. Способ изготовления металлокерамического малогабаритного электрического гермовывода включает сборку предварительно подготовленных элементов: изолятора, электрических выводов и вспомогательных материалов. Перед установкой...
Тип: Изобретение
Номер охранного документа: 0002433494
Дата охранного документа: 10.11.2011
11.03.2019
№219.016.ddd2

Резервированная двухпроцессорная вычислительная система

Изобретение относится к вычислительной технике и может быть использовано при построении надежных вычислительно-управляющих систем. Техническим результатом является уменьшение времени переключения на резервный канал и повышение надежности системы за счет введения дополнительных устройств и...
Тип: Изобретение
Номер охранного документа: 0002460121
Дата охранного документа: 27.08.2012
29.03.2019
№219.016.f471

Композитный высокопрочный провод с повышенной электропроводностью

Изобретение относится к металлургии и электротехнике и может быть использовано при получении высокопрочных проводов для тяжелонагруженных линий электропередач, например для токопередающих контактных проводов в системе железнодорожного высокоскоростного транспорта. Технической задачей...
Тип: Изобретение
Номер охранного документа: 0002417468
Дата охранного документа: 27.04.2011
04.04.2019
№219.016.fb58

Магнитная система

Изобретение относится к области измерения механических параметров, например ускорений, и может быть использовано для демпфирования колебаний чувствительных элементов измерительных устройств. Магнитная система содержит по крайней мере один электропроводящий элемент, установленный с возможностью...
Тип: Изобретение
Номер охранного документа: 0002683882
Дата охранного документа: 02.04.2019
04.04.2019
№219.016.fb60

Комплекс для определения инерционных характеристик с измерительной системой

Изобретение относится к измерительной технике и может быть использовано в машиностроении для определения массы и инерционных характеристик изделий. Устройство состоит из стола аэростатического с установленным опорно-поворотным устройством с измерительным прибором, системы регистрации, при этом...
Тип: Изобретение
Номер охранного документа: 0002683800
Дата охранного документа: 02.04.2019
10.04.2019
№219.017.060a

Формирователь цифровой последовательности с равномерным распределением

Изобретение относится к устройствам автоматики и вычислительной техники и может быть использовано в качестве генератора цифровых случайных сигналов с равномерным распределением. Техническим результатом изобретения является снижение уровня корреляции генерируемых чисел. Формирователь цифровой...
Тип: Изобретение
Номер охранного документа: 0002417406
Дата охранного документа: 27.04.2011
10.04.2019
№219.017.0844

Ударный стенд

Изобретение относится к испытательной технике и может быть использовано для динамических испытаний объектов на воздействие перегрузок. Устройство содержит камеру высокого давления, соединенную с полостью ствола, установленный в стволе контейнер в виде полого поршня, стол, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002438110
Дата охранного документа: 27.12.2011
11.04.2019
№219.017.0b4b

Управляющее устройство для переключателя

Изобретение относится к электротехнике и может быть использовано в качестве привода для переключателей, работающих в условиях вибрационных, линейных и ударных воздействий, а также в аварийных ситуациях. Управляющее устройство для переключателя содержит первый электродвигатель с редуктором, цепь...
Тип: Изобретение
Номер охранного документа: 0002684405
Дата охранного документа: 09.04.2019
11.04.2019
№219.017.0b54

Широкополосное согласующее устройство замедляющей системы

Изобретение относится к области электронной техники, в частности к устройствам согласования замедляющих систем сверхвысокочастотных приборов О-типа с длительным взаимодействием. Широкополосное согласующее устройство замедляющей системы содержит металлический цилиндрический корпус, внутри...
Тип: Изобретение
Номер охранного документа: 0002684428
Дата охранного документа: 09.04.2019
13.04.2019
№219.017.0c68

Инфразвуковой микробарометр

Изобретение относится к метрологии, в частности к инфразвуковым микробарометрам. Инфразвуковой микробарометр состоит из корпуса, содержащего приемную и опорную камеры. Камеры разделены мембраной и соединены дросселем, обеспечивающим фильтрацию длиннопериодных колебаний атмосферного давления....
Тип: Изобретение
Номер охранного документа: 0002684672
Дата охранного документа: 11.04.2019
Showing 431-432 of 432 items.
15.05.2023
№223.018.5ceb

Способ определения тальвега на агроландшафтах склоновых земель в полевых условиях

Изобретение относится к сельскому хозяйству, в частности, к способам изучения водной эрозии и может быть использовано в почвоведении, мелиорации и природообустройстве. Способ определения тальвега на агроландшафтах склоновых земель в полевых условиях включает применение технического средства...
Тип: Изобретение
Номер охранного документа: 0002751645
Дата охранного документа: 15.07.2021
16.05.2023
№223.018.614f

Способ контроля качества обработки почвы на агроландшафтах в полевых условиях

Использование: для контроля качества обработки почвы на агроландшафтах в полевых условиях. Сущность изобретения заключается в том, что применяют техническое средство профилирования дневной поверхности почвы с размещенным на нем дальномером, которое устанавливают в образованную борозду после...
Тип: Изобретение
Номер охранного документа: 0002741746
Дата охранного документа: 28.01.2021
+ добавить свой РИД