×
20.12.2015
216.013.9a52

Результат интеллектуальной деятельности: СПЛАВ ДЛЯ ПОЛУЧЕНИЯ ВОДОРОДА НА ОСНОВЕ АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химии и может быть использовано для получения водорода. Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, содержит в качестве добавки лантан при следующем соотношении компонентов: лантан- 1,5÷3,0 мас.%, алюминий - остальное. Изобретение позволяет получить сплав, характеризующийся простым составом наряду с высокой полнотой газовыделения. 3 пр.
Основные результаты: Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, отличающийся тем, что он содержит в качестве добавки лантан при следующем соотношении компонентов, мас. %:

Изобретение относится к области химии и может быть использовано для получения водорода.

Известна гидрореагирующая композиция для получения водорода, содержащая алюминий и активирующий сплав из группы металлов: галлий, индий, олово и цинк при следующем соотношении компонентов, масс.%: индий 10-40: олово 1-40; цинк 1-20; галлий - остальное, причем алюминий и активирующий сплав входят в состав композиции при следующем соотношении компонентов, масс.%: активирующий сплав 1-10; алюминий - остальное (патент RU 2394753, МПК C01B 3/08, 2010 г.). Известная композиция обеспечивает высокий выход выделившегося водорода (в пересчете на металлический алюминий 98-98,5%).

Однако известная композиция имеет недостатки: ухудшение реакционных свойств с течением времени при хранении на воздухе, многостадийность получения.

Известен сплав на основе алюминия для генерирования водорода (патент RU 2253606, МПК C01B 3/08, 2005 г.) на основе алюминия и в качестве добавки обезвоженного гидроксида щелочного металла (натрия, лития или калия) в весовом количестве до 10% или обезвоженного гидроксида щелочного металла и медь до 5% так, чтобы в сумме этот сплав содержал эти добавки до 10% (прототип).

Недостатками известного сплава на основе алюминия для генерирования водорода являются его сложный состав с использованием гидроксида щелочного металла, высокая энергоемкость и технологическая трудоемкость его получения, при этом полнота газовыделения по сравнению с теоретической не достигает максимальной величины и составляет 92%.

Таким образом, перед авторами стояла задача разработать простой по составу сплав для получения водорода, характеризующийся наряду с этим высокой полнотой газовыделения.

Поставленная задача решена в составе сплава для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, который в качестве добавки содержит лантан, при следующем соотношении компонентов, масс. %:

лантан 1,5÷3,0
алюминий остальное.

В настоящее время из патентной и научно-технической литературы не известен сплав для получения водорода предлагаемого состава, содержащий компоненты в предлагаемых интервалах значений.

Авторами были проведены исследования по определению оптимального состава сплава, в частности авторами экспериментально установлено (методом РФЭС) наличие значительной сегрегации лантана на поверхности алюминиевых порошков. Лантан также является и слабо снижающим поверхностное натяжение алюминия элементом, при этом наиболее активно из ряда РЗМ взаимодействует с водой. Высокая поверхностная и химическая активность лантана позволяет активизировать процесс окисления в воде порошков на основе алюминия, наличие щелочной среды приводит к разрушению оксидной пленки и ускорению выделения водорода, а также к повышению полноты протекания процесса (степени превращения), практически до полного окисления металла. Экспериментальным путем авторами установлены пределы количественного содержания добавки, оказывающие влияние на получения положительного технического результата. Так, при содержании добавки менее 1,5 масс. % наблюдается снижение гидрореакционной активности алюминиевого сплава. Содержание добавки в количестве 1,5-3,0 масс. % обеспечивает оптимальную концентрацию ее на поверхности порошка сплава и тем самым достигается наибольшая активность при взаимодействии с водой. Дальнейшее увеличение содержания более 3 масс. % является нецелесообразным и не увеличивает выход водорода.

Предлагаемый порошок сплава может быть получен методом газоплазменной переконденсации. При получении использован замкнутый газовый цикл. Предварительно систему вакуумируют до остаточного давления 5. 10-3 мм рт. ст. и заполняют инертным газом (аргоном). В качестве реактора используют плазменный испаритель-конденсатор ИК-150.

Режимы обработки следующие: электрическая мощность реактора - 15-25 кВт (I - 90 A, U - 180-250 В); расход технологического газа: в дозатор сырья - 3 нм3/ч, в закалочный узел - 7 нм3/ч, в вихревую камеру - 15 нм3/ч; расход сырья - 0,2 кг/ч. Исходное сырье (порошок алюминия с лантаном) загружают в дозатор, затем из дозатора подают в реактор пневмотранспортным способом, используя поток технологического газа. При этом образовавшийся в дозаторе аэрозоль через узел ввода подают в зону электрического разряда реактора. В реакторе при температуре 5000-6000°C происходит испарение порошка. На выходе из высокотемпературной зоны полученную парогазовую смесь резко охлаждают газовыми струями для создания условий конденсации. Затем аэрозоль с температурой 100-200°C подают в холодильник, где охлаждают до температуры 60-80°C. После конденсации получают порошок. Крупные частицы отделяют от ультрадисперсных частиц в классификаторе инерционного типа, улавливание ультрадисперсных частиц осуществляют рукавным тканевым фильтром. Получают ультрадисперсный порошок с размером частиц менее 300 нм. Из фильтра ультрадисперсные частицы выгружают в инертной атмосфере (в боксе) в герметично закрываемую тару или перемещают в систему микрокапсулирования, где на поверхность частиц наносят защитный слой, предохраняющий их от внешних воздействий при контакте с воздухом. Удельную поверхность полученного порошка сплава определяют, например, методом тепловой десорбции аргона. При использовании предлагаемого сплава для получения водорода наряду с водородом получают гидроксиды соответствующих металлов, которые могут быть использованы, например, в качестве сорбентов, носителей каталитических систем.

Ниже приведены примеры, иллюстрирующие получение сплава предлагаемого состава.

Пример 1. Порошковый сплав, содержащий 98,5 г (98,5 масс. %) алюминия и 1,5 г (1,5 масс. %) лантана загружают в дозатор, затем из дозатора подают в реактор пневмотранспортным способом, используя поток технологического газа. При этом образовавшийся в дозаторе аэрозоль через узел ввода подают в зону электрического разряда реактора. В реакторе при температуре 5000°C происходит испарение порошка. На выходе из высокотемпературной зоны полученную парогазовую смесь резко охлаждают газовыми струями для создания условий конденсации. Затем аэрозоль с температурой 200°C подают в холодильник, где охлаждают до температуры 80°C. После конденсации получают порошок. Крупные частицы отделяют от ультрадисперсных частиц в классификаторе инерционного типа, улавливание ультрадисперсных частиц осуществляют рукавным тканевым фильтром. Из фильтра ультрадисперсные частицы выгружают в инертной атмосфере (в боксе) в герметично закрываемую тару. Удельная поверхность полученного порошка сплава равна 27 м2/г.

Пример 2. Порошковый сплав, содержащий 97,0 г (97,0 масс. %) алюминия, 3,0 г (3,0 масс. %) лантана загружают в дозатор, затем из дозатора подают в реактор пневмотранспортным способом, используя поток технологического газа. При этом образовавшийся в дозаторе аэрозоль через узел ввода подают в зону электрического разряда реактора. В реакторе при температуре 5000°C происходит испарение порошка. На выходе из высокотемпературной зоны полученную парогазовую смесь резко охлаждают газовыми струями для создания условий конденсации. Затем аэрозоль с температурой 100°C подают в холодильник, где охлаждают до температуры 60°C. После конденсации получают порошок. Крупные частицы отделяют от ультрадисперсных частиц в классификаторе инерционного типа, улавливание ультрадисперсных частиц осуществляют рукавным тканевым фильтром. Из фильтра ультрадисперсные частицы выгружают в инертной атмосфере (в боксе) в герметично закрываемую тару, где на поверхность частиц наносят защитный слой, предохраняющий их от внешних воздействий при контакте с воздухом. Удельная поверхность полученного порошка сплава равна 13 м2/г.

Способ применения предлагаемого гидрореагирующего сплава, используемого для получения водорода, включает приготовление суспензии ультрадисперсного порошка сплава в дистиллированной воде при соотношении сплав:Н2О=1:10-25 (вес. ч.) и проведение окисления при температурах 25-80°С.

Пример, иллюстрирующий способ использования предлагаемого сплава для получения водорода и оксидных продуктов соответствующих металлов, приведен ниже.

Пример 4. Берут 5 г сплава, включающего (масс. %): лантан 3,0; алюминий 97. Удельная поверхность порошка сплава - 13 м2/г.

Сплав при постоянном перемешивании помещают в реактор в воду комнатной температуры (21÷23°C). Объем воды в реакторе постоянен и составляет 12,5 мл.

Полученный гидроксид алюминия бемитной формы с небольшой примесью гидроксидов Са и La отфильтровывают и высушивают. Удельная поверхность оксидных продуктов реакции составляет 217 м2/г.

Содержание активного алюминия в продуктах реакции составляет 0,26%.

Полнота газовыделения (по сравнению с теоретической) составляет 97%.

Таким образом, авторами предлагается сплав на основе алюминия для получения водорода, характеризующийся простым составом наряду с высокой полнотой газовыделения (97-98%).

Сплав для получения водорода на основе алюминия и добавки, разрушающей окисную пленку алюминия при взаимодействии с водой, отличающийся тем, что он содержит в качестве добавки лантан при следующем соотношении компонентов, мас. %:

Источник поступления информации: Роспатент

Showing 21-30 of 102 items.
10.01.2016
№216.013.9f50

Способ получения нанокристаллического порошка сульфида серебра

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Нанокристаллический порошок сульфида серебра получают осаждение из водного раствора смеси нитрата серебра и сульфида...
Тип: Изобретение
Номер охранного документа: 0002572421
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.cea5

Способ получения метатитановой кислоты

Изобретение может быть использовано в неорганической химии. Способ получения метатитановой кислоты включает взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот и последующий трехступенчатый отжиг. Полученный продукт обрабатывают уксусной...
Тип: Изобретение
Номер охранного документа: 0002575041
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0496

Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом

Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия...
Тип: Изобретение
Номер охранного документа: 0002587446
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2ba8

Способ получения наноультрадисперсного порошка оксида металла

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при...
Тип: Изобретение
Номер охранного документа: 0002579632
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.6105

Способ получения нанокристаллического сульфида свинца

Изобретение относится к получению порошков, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Способ получения нанокристаллического сульфида свинца включает осаждение из водного раствора смеси неорганической соли свинца и сульфида...
Тип: Изобретение
Номер охранного документа: 0002591160
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7d3a

Способ получения водного коллоидного раствора наночастиц сульфида серебра

Изобретение может быть использовано в оптоэлектронике и медицине при получении источников излучения и флуоресцентных меток. Способ получения водного коллоидного раствора наночастиц сульфида серебра включает получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора. К...
Тип: Изобретение
Номер охранного документа: 0002600761
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8424

Способ получения наночастиц диоксида ванадия

Изобретение может быть использовано в производстве термохромного материала, катодного материала литиевых источников тока, терморезисторов, термореле, переключающих элементов. Для получения наночастиц диоксида ванадия моноклинной сингонии проводят гидротермальную обработку смеси метаванадата...
Тип: Изобретение
Номер охранного документа: 0002602896
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.87ee

Наночастицы сульфида серебра в лигандной органической оболочке и способ их получения

Изобретение может быть использовано в медицине, фотонике, гетерогенном катализе. Наночастицы сульфида серебра имеют лигандную оболочку, состоящую из цитратных групп. Толщина оболочки от 1 до 10 нм. Способ получения указанных наночастиц сульфида серебра включает получение исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002603666
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9d4e

Способ получения ванадата аммония

Изобретение относится к способам получения нано- и микроразмерных магнитных материалов, в частности к способу получения ванадата аммония со структурой фресноита состава (NH)VO. Способ включает получение исходного водного раствора метаванадата аммония, добавление в раствор сульфата ванадила...
Тип: Изобретение
Номер охранного документа: 0002610866
Дата охранного документа: 16.02.2017
25.08.2017
№217.015.9db4

Модуль реактора для получения синтез-газа (варианты) и реактор для получения синтез-газа

Изобретение относится к химической промышленности, а именно к реактору переработки газового углеводородного сырья для получения синтез-газа, который может быть использован в газохимии для получения метилового спирта, диметилового эфира, альдегидов и спиртов, углеводородов и синтетического...
Тип: Изобретение
Номер охранного документа: 0002610616
Дата охранного документа: 14.02.2017
Showing 21-30 of 48 items.
10.01.2016
№216.013.9f50

Способ получения нанокристаллического порошка сульфида серебра

Изобретение относится к технологии получения порошкового материала, содержащего наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Нанокристаллический порошок сульфида серебра получают осаждение из водного раствора смеси нитрата серебра и сульфида...
Тип: Изобретение
Номер охранного документа: 0002572421
Дата охранного документа: 10.01.2016
10.02.2016
№216.014.cea5

Способ получения метатитановой кислоты

Изобретение может быть использовано в неорганической химии. Способ получения метатитановой кислоты включает взаимодействие соединения титана с неорганической солью лития в присутствии лимонной и азотной кислот и последующий трехступенчатый отжиг. Полученный продукт обрабатывают уксусной...
Тип: Изобретение
Номер охранного документа: 0002575041
Дата охранного документа: 10.02.2016
20.06.2016
№217.015.0496

Способ получения ультрадисперсного порошка серебра и ультрадисперсный порошок серебра, полученный этим способом

Изобретение относится к способам получения порошкового материала, содержащего микрочастицы, и может быть использовано в медицине в качестве материала с бактерицидным действием; в химии для очистки питьевой воды; в производстве катализаторов; в химической промышленности для защитного покрытия...
Тип: Изобретение
Номер охранного документа: 0002587446
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2ba8

Способ получения наноультрадисперсного порошка оксида металла

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при...
Тип: Изобретение
Номер охранного документа: 0002579632
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.6105

Способ получения нанокристаллического сульфида свинца

Изобретение относится к получению порошков, содержащих наночастицы полупроводникового соединения, и может быть использовано в оптоэлектронике и медицине. Способ получения нанокристаллического сульфида свинца включает осаждение из водного раствора смеси неорганической соли свинца и сульфида...
Тип: Изобретение
Номер охранного документа: 0002591160
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.7d3a

Способ получения водного коллоидного раствора наночастиц сульфида серебра

Изобретение может быть использовано в оптоэлектронике и медицине при получении источников излучения и флуоресцентных меток. Способ получения водного коллоидного раствора наночастиц сульфида серебра включает получение смеси водных растворов нитрата серебра, сульфида натрия и стабилизатора. К...
Тип: Изобретение
Номер охранного документа: 0002600761
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.8424

Способ получения наночастиц диоксида ванадия

Изобретение может быть использовано в производстве термохромного материала, катодного материала литиевых источников тока, терморезисторов, термореле, переключающих элементов. Для получения наночастиц диоксида ванадия моноклинной сингонии проводят гидротермальную обработку смеси метаванадата...
Тип: Изобретение
Номер охранного документа: 0002602896
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.87ee

Наночастицы сульфида серебра в лигандной органической оболочке и способ их получения

Изобретение может быть использовано в медицине, фотонике, гетерогенном катализе. Наночастицы сульфида серебра имеют лигандную оболочку, состоящую из цитратных групп. Толщина оболочки от 1 до 10 нм. Способ получения указанных наночастиц сульфида серебра включает получение исходного раствора...
Тип: Изобретение
Номер охранного документа: 0002603666
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9d4e

Способ получения ванадата аммония

Изобретение относится к способам получения нано- и микроразмерных магнитных материалов, в частности к способу получения ванадата аммония со структурой фресноита состава (NH)VO. Способ включает получение исходного водного раствора метаванадата аммония, добавление в раствор сульфата ванадила...
Тип: Изобретение
Номер охранного документа: 0002610866
Дата охранного документа: 16.02.2017
25.08.2017
№217.015.9db4

Модуль реактора для получения синтез-газа (варианты) и реактор для получения синтез-газа

Изобретение относится к химической промышленности, а именно к реактору переработки газового углеводородного сырья для получения синтез-газа, который может быть использован в газохимии для получения метилового спирта, диметилового эфира, альдегидов и спиртов, углеводородов и синтетического...
Тип: Изобретение
Номер охранного документа: 0002610616
Дата охранного документа: 14.02.2017
+ добавить свой РИД