×
20.12.2015
216.013.9996

Результат интеллектуальной деятельности: СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергетики. В способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего подогревателей, конденсируется на поверхности подогреваемых трубок подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют, соответственно, утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с охладителем масла, в тепловой электрической станции используют конденсационную установку, имеющую конденсатор второй паровой турбины и систему маслоснабжения ее подшипников с маслоохладителем, дополнительно осуществляют утилизацию высокопотенциальной теплоты пара, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников первой паровой турбины и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников второй паровой турбины, при этом все указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре. Изобретение позволяет утилизировать теплоту и дополнительно осуществить выработку электроэнергии. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины с производственным отбором пара, утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины и утилизации высокопотенциальной теплоты пара производственного отбора.

Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).

Прототипом является тепловая электрическая станция, содержащая подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод маслоснабжения подшипников паровой турбины, бак маслоснабжения подшипников паровой турбины, насос маслоснабжения подшипников паровой турбины и охладитель маслоснабжения подшипников паровой турбины, выход которого по нагреваемой среде соединен с напорным трубопроводом маслоснабжения подшипников паровой турбины (патент RU №2268372, МПК F01K 17/02, 20.01.2006).

В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода. В паровой турбине используют систему маслоснабжения подшипников паровой турбины с охладителем масла.

Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, при этом при конденсации отработавшего пара и пара отопительных отборов осуществляют, соответственно, утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара и утилизацию низкопотенциальной теплоты пара отопительных отборов из паровой турбины при помощи охлаждающей жидкости, причем в паровой турбине используют систему маслоснабжения подшипников паровой турбины с охладителем масла.

Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, что обусловлено наличием вторичного контура (теплонасосной установки), отсутствие утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, а также отсутствие утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины, для дополнительной выработки электроэнергии.

Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.

Задачей изобретения является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации низкопотенциальной теплоты пара отопительных отборов из паровой турбины для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.

Технический результат достигается тем, что в способе работы тепловой электрической станции, по которому отработавший пар поступает из первой паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, конденсат с помощью конденсатного насоса конденсатора первой паровой турбины направляют в систему регенерации, а пар из отборов первой паровой турбины поступает в паровое пространство нижнего и верхнего подогревателей, конденсируется на поверхности подогреваемых трубок подогревателей, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в первой турбине пара при помощи охлаждающей жидкости, причем в первой паровой турбине используют систему маслоснабжения подшипников первой паровой турбины с охладителем масла, согласно изобретению в тепловой электрической станции используют конденсационную установку, имеющую вторую паровую турбину с выходом пара при температуре около 573 К, конденсатор второй паровой турбины и систему маслоснабжения ее подшипников с маслоохладителем, дополнительно осуществляют утилизацию высокопотенциальной теплоты пара, поступающего из второй паровой турбины при температуре около 573 К, утилизацию низкопотенциальной теплоты пара из отборов первой паровой турбины и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников первой паровой турбины и утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников второй паровой турбины, при этом все указанные утилизации осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в теплообменнике-рекуператоре теплового двигателя, нагревают в конденсаторе первой паровой турбины, нагревают в охладителе масла, нагревают в маслоохладителе, нагревают в нижнем подогревателе первой паровой турбины, нагревают в верхнем подогревателе первой паровой турбины, нагревают и испаряют в конденсаторе второй паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя, снижают его температуру в теплообменнике-рекуператоре теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.

В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации низкопотенциальной теплоты системы маслоснабжения подшипников первой паровой турбины, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников второй паровой турбины, утилизации низкопотенциальной теплоты пара отборов из паровой турбины и утилизации высокопотенциальной теплоты пара из второй турбины, которые осуществляют путем последовательного нагрева, соответственно, в конденсаторе первой паровой турбины, охладителе маслоснабжения подшипников первой паровой турбины, маслоохладителе системы маслоснабжения подшипников второй паровой турбины, в подогревателях и конденсаторе второй паровой турбины, низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменником-рекуператором, подогреватели и конденсационную установку.

На чертеже цифрами обозначены:

1 - паровая турбина,

2 - конденсатор паровой турбины,

3 - конденсатный насос конденсатора паровой турбины,

4 - основной электрогенератор,

5 - тепловой двигатель с замкнутым контуром циркуляции,

6 - турбодетандер,

7 - электрогенератор,

8 - теплообменник-конденсатор,

9 - конденсатный насос,

10 - верхний подогреватель,

11 - нижний подогреватель,

12 - система маслоснабжения подшипников паровой турбины,

13 - сливной трубопровод маслоснабжения подшипников паровой турбины,

14 - бак маслоснабжения подшипников паровой турбины,

15 - насос маслоснабжения подшипников паровой турбины,

16 - охладитель маслоснабжения подшипников паровой турбины,

17 - напорный трубопровод маслоснабжения подшипников паровой

турбины,

18 - конденсационная установка,

19 - вторая паровая турбина,

20 - электрогенератор второй паровой турбины,

21 - конденсатор второй паровой турбины,

22 - конденсатный насос конденсатора второй паровой турбины,

23 - система маслоснабжения подшипников второй паровой турбины,

24 - сливной трубопровод,

25 - маслобак,

26 - маслонасос,

27 - маслоохладитель,

28 - напорный трубопровод,

29 - теплообменник-рекуператор.

Тепловая электрическая станция включает последовательно соединенные первую паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 подогревателями, которые между собой соединены по нагреваемой среде, а также систему 12 маслоснабжения подшипников первой паровой турбины 1, содержащую последовательно соединенные по греющей среде сливной трубопровод 13 маслоснабжения подшипников паровой турбины, бак 14 маслоснабжения подшипников паровой турбины, насос 15 маслоснабжения подшипников паровой турбины и охладитель 16 маслоснабжения подшипников паровой турбины, выход которого по нагреваемой среде соединен с напорным трубопроводом 17 маслоснабжения подшипников паровой турбины.

В тепловую электрическую станцию введены тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, и конденсационная установка 18.

Конденсационная установка 18 содержит последовательно соединенные вторую паровую турбину 19, имеющую электрогенератор 20, конденсатор 21 второй паровой турбины, конденсатный насос 22 конденсатора второй паровой турбины, и систему 23 маслоснабжения подшипников второй паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод 24, маслобак 25, маслонасос 26 и маслоохладитель 27, выход которого по нагреваемой среде соединен с напорным трубопроводом 28.

Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим турбодетандер 6 с электрогенератором 7, теплообменник-рекуператор 29, теплообменник-конденсатор 8, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом теплообменника-рекуператора 29, который соединен по нагреваемой среде с входом конденсатора 2 первой паровой турбины, выход которого соединен по нагреваемой среде с входом охладителя 16, выход охладителя 16 соединен по нагреваемой среде с входом маслоохладителя 27 системы маслоснабжения подшипников второй паровой турбины, выход которого соединен по нагреваемой среде с входом нижнего подогревателя 11, а выход верхнего подогревателя 10 соединен по нагреваемой среде с входом конденсатора 21 второй паровой турбины, выход конденсатора 21 второй паровой турбины соединен по нагреваемой среде с входом турбодетандера 6, выход которого соединен по греющей среде с теплообменником-рекуператором 29, выход теплообменника-рекуператора 29 соединен по греющей среде с теплообменником-конденсатором 8, выход которого соединен по нагреваемой среде с входом конденсатного насоса 9, образуя замкнутый контур охлаждения.

Способ работы тепловой электрической станции осуществляют следующим образом.

Отработавший пар поступает из первой паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации, а пар из отборов паровой турбины 1 поступает в паровое пространство нижнего 11 и верхнего 10 подогревателей, конденсируется на поверхности подогреваемых трубок подогревателей 11 и 10, внутри которых протекает охлаждающая жидкость, при этом при конденсации отработавшего пара и пара отборов осуществляют, соответственно, утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара и утилизацию низкопотенциальной теплоты пара отборов из паровой турбины 1 при помощи охлаждающей жидкости, причем в паровой турбине 1 используют систему 12 маслоснабжения подшипников паровой турбины с охладителем масла 16.

Отличием предлагаемого способа является то, что в тепловой электрической станции используют конденсационную установку 18, имеющую конденсатор 21 второй паровой турбины пара и систему 23 маслоснабжения ее подшипников с маслоохладителем 27, и дополнительно осуществляют утилизацию высокопотенциальной теплоты пара, утилизацию низкопотенциальной теплоты системы 12 маслоснабжения подшипников паровой турбины 1 и утилизацию низкопотенциальной теплоты системы 23 маслоснабжения подшипников второй паровой турбины 19, при этом все указанные утилизации осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе 9 теплового двигателя, нагревают в теплообменнике-рекуператоре 29 теплового двигателя, нагревают в конденсаторе 2 первой паровой турбины, нагревают в охладителе масла 16, нагревают в маслоохладителе 27, нагревают в нижнем подогревателе 11 паровой турбины, нагревают в верхнем подогревателе 10 паровой турбины, нагревают и испаряют в конденсаторе 21 второй паровой турбины, расширяют в турбодетандере 6 теплового двигателя, снижают его температуру в теплообменнике-рекуператоре 29 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.

В качестве теплообменника-конденсатора 8 теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.

В качестве низкокипящего рабочего тела используют сжиженный пропан С3Н8.

Пример конкретного выполнения

Отработавший пар, поступающий из первой паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.

Преобразование сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара, низкопотенциальной тепловой энергии системы 12 маслоснабжения подшипников первой паровой турбины 1 и системы 23 маслоснабжения подшипников второй паровой турбины 19, а также низкопотенциальной тепловой энергии пара отборов из паровой турбины 1 и высокопотенциальной тепловой энергии пара из второй паровой турбины 19 в механическую и далее в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.

Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего в первой турбине 1 пара, утилизацию низкопотенциальной теплоты системы 12 маслоснабжения подшипников паровой турбины 1, утилизацию низкопотенциальной теплоты системы 23 маслоснабжения подшипников второй паровой турбины 19, утилизацию низкопотенциальной теплоты пара отборов из паровой турбины 1 и утилизацию высокопотенциальной теплоты пара из второй паровой турбины 19 осуществляют путем последовательного нагрева, соответственно, в конденсаторе 2 паровой турбины, охладителе 16 маслоснабжения подшипников первой паровой турбины, маслоохладителе 27 системы маслоснабжения подшипников второй паровой турбины, в подогревателях 11, 10 и конденсаторе 21 второй паровой турбины, низкокипящего рабочего тела (сжиженного пропана СзН8) теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.

Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана С3Н8, который последовательно направляют на нагрев в начале в теплообменник-рекуператор 29, куда поступает перегретый газообразный пропан С3Н8 из турбодетандера 6, далее в конденсатор 2 первой паровой турбины, куда поступает отработавший в турбине 1 пар с температурой в интервале от 300 К до 313,15 К, затем в охладитель 16, куда поступает нагретое масло системы 12 маслоснабжения подшипников первой паровой турбины 1 и в маслоохладитель 27, куда поступает нагретое масло системы 23 маслоснабжения подшипников второй паровой турбины 19, а потом в нижний подогреватель 11, куда поступает пар отбора из паровой турбины 1 при температуре около 365 К и в верхний подогреватель 10, куда поступает пар отбора из паровой турбины 1 при температуре около 400 К. При этом температура нагретого масла в охладителе 16 и маслоохладителе 27 может варьироваться в интервале от 318,15 К до 348,15 К.

В процессе теплообмена перегретого газообразного пропана С3Н8 с сжиженным пропаном С3Н8 в теплообменнике-рекуператоре 29, в процессе конденсации отработавшего в турбине 1 пара в конденсаторе 2 паровой турбины и теплообмена нагретого масла с сжиженным пропаном С3Н8 в охладителе 16, и в маслоохладителе 27, а также в процессе конденсации пара отборов в нижнем подогревателе 11, и в верхнем подогревателе 10 паровой турбины 1, происходит нагрев сжиженного пропана С3Н8 до критической температуры 369,89 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, и далее его направляют на нагрев и испарение в конденсатор 21 второй паровой турбины, куда поступает пар паровой турбины 19 при температуре около 573 К.

Пар, поступающий из второй паровой турбины 19 в паровое пространство конденсатора 21, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 19 передается соединенному на одном валу основному электрогенератору 20.

Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 22 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.

В процессе конденсации пара в конденсаторе 21 паровой турбины происходит испарение сжиженного пропана СзН8 и дальнейший его перегрев до сверхкритической температуры от 369,89 К до 420 К при сверхкритическом давлении от 4,2512 МПа до 8 МПа, который направляют в турбодетандер 6.

Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана С3Н8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан СзН8, имеющий температуру перегретого газа около 288 К, направляют в теплообменник-рекуператор 29 для снижения температуры.

В теплообменнике-рекуператоре 29 в процессе отвода теплоты на нагрев сжиженного пропана С3Н8 снижается нагрузка на теплообменник-конденсатор 8, выполненный, например, в виде конденсатора воздушного охлаждения, и затраты мощности на привод вентиляторов воздушного охлаждения.

Далее, при снижении температуры газообразного пропана С3Н8 происходит его сжижение в теплообменнике-конденсаторе 8, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.

После теплообменника-конденсатора 8 в сжиженном состоянии пропан С3Н8 направляют для сжатия в конденсатный насос 9 теплового двигателя.

Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.

Использование в работе тепловой электрической станции конденсационной установки 18 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.

Использование способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты отработавшего пара, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников второй паровой турбины, утилизации низкопотенциальной теплоты пара отборов из первой паровой турбины и утилизации высокопотенциальной теплоты пара второй паровой турбины для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.


СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ
Источник поступления информации: Роспатент

Showing 41-50 of 164 items.
27.11.2014
№216.013.0be8

Метеодатчик системы контроля температуры

Изобретение относится к устройствам для измерения метеорологических параметров в системах контроля температуры нагреваемого оборудования. Сущность: устройство содержит шарообразный датчик (1), внутри которого расположены датчик (2) температуры и нагревательный элемент (3) с постоянной мощностью...
Тип: Изобретение
Номер охранного документа: 0002534456
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d08

Способ косвенного контроля температуры провода воздушных линий электропередачи

Использование: в области электроэнергетики. Технический результат - обеспечение точного контроля без необходимости непосредственных измерений и снижение числа контролируемых факторов с обеспечением точности контроля. Согласно способу измеряют токи, протекающие по проводу, и с использованием...
Тип: Изобретение
Номер охранного документа: 0002534753
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0fd2

Адаптивное цифровое дифференцирующее и прогнозирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов. Технический результат заключается в повышении точности прогноза на этапе восстановления заданного времени прогноза после завершения...
Тип: Изобретение
Номер охранного документа: 0002535467
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1740

Способ обнаружения гололеда на проводах воздушных линий электропередачи

Использование: в области электроэнергетики для обнаружения гололеда на проводах линии электропередачи. Технический результат - расширение функциональных возможностей. Способ включает передачу от начала линии до конца линии электропередачи высокочастотного сигнала и контроль параметров,...
Тип: Изобретение
Номер охранного документа: 0002537380
Дата охранного документа: 10.01.2015
20.02.2015
№216.013.2b62

Способ работы теплового пункта

Изобретение относится к области тепловой энергетики и может быть использовано в системах централизованного теплоснабжения для предотвращения образования илистых отложений на внутренних поверхностях водоподогревателей и трубопроводов. Способе работы теплового пункта, согласно которому холодная...
Тип: Изобретение
Номер охранного документа: 0002542563
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b84

Способ контроля качества проводов воздушной линии электропередачи

Изобретение относится к электроэнергетике и может быть использовано для непрерывного контроля качества проводов воздушной линии электропередачи. Измеряют напряжение и ток в первом и втором местоположениях на линии электропередачи. При этом измеренные напряжения и токи в первом и втором...
Тип: Изобретение
Номер охранного документа: 0002542597
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.2fcf

Способ измерения постоянной гравитации

Изобретение относится к области гравиметрии и может быть использовано для измерений постоянной гравитации γ. В указанном способе процесс измерения начинается после окончания вывешивания шаров с известной массой и удаления держателя, когда шары начинают свободное движение в поле тяготения данных...
Тип: Изобретение
Номер охранного документа: 0002543707
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3067

Способ очистки загрязненного воздуха

Изобретение относится к области вентиляции промышленных объектов и может быть использовано для очистки воздуха от газообразных и аэрозольных вредных веществ. В способе очистки загрязненного воздуха, заключающемся в отсосе загрязненного воздуха через один или несколько воздухоприемников,...
Тип: Изобретение
Номер охранного документа: 0002543859
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3255

Устройство для измерения состава и расхода многокомпонентных жидкостей методом ядерного магнитного резонанса

Использование: для измерения состава и расхода многокомпонентных жидкостей методом ядерного магнитного резонанса. Сущность изобретения заключается в том, что устройство для измерения состава и расхода многокомпонентных жидкостей с использованием метода ядерного магнитного резонанса (ЯМР)...
Тип: Изобретение
Номер охранного документа: 0002544360
Дата охранного документа: 20.03.2015
10.04.2015
№216.013.3fdd

Способ контроля температуры проводов линий электропередачи

Изобретение относится к электроэнергетике и может быть использовано для непрерывного контроля температуры проводов линий электропередачи. В способе контроля температуры проводов линий электропередачи с использованием температурного коэффициента α активного сопротивления проводов, согласно...
Тип: Изобретение
Номер охранного документа: 0002547837
Дата охранного документа: 10.04.2015
Showing 41-50 of 179 items.
27.05.2014
№216.012.c964

Адаптивное цифровое прогнозирующее и дифференцирующее устройство

Изобретение относится к автоматике и вычислительной технике и может быть использовано для прогнозирования стационарных и нестационарных случайных процессов, повышения качества и точности управления в цифровых системах контроля и наведения различных объектов. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002517322
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cc9d

Ветроэлектрогенератор

Изобретение относится к области электромашиностроения, а именно к магнитоэлектрическим генераторам, использующим для вращения ротора энергию воздушного потока. Техническим результатом является сохранение выработки электроэнергии при малых и больших скоростях ветра, а также при повышенных...
Тип: Изобретение
Номер охранного документа: 0002518152
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d1dc

Способ измерения электропроводности раствора электролита

Изобретение относится к области кондуктометрии и может быть использовано при физико-химических исследованиях растворов. Способ измерения электропроводности раствора электролита, размещенного в жидкостном контуре первого и второго первичных преобразователей с обмотками возбуждения, включенными в...
Тип: Изобретение
Номер охранного документа: 0002519495
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d1dd

Способ оперативного контроля качества нефти и нефтепродуктов

Использование: для оперативного контроля качества нефти и нефтепродуктов. Сущность изобретения заключается в том, что выполняют возбуждение в образце, помещенном в постоянное магнитное поле, сигналов спин-эхо протонного магнитного резонанса (ПМР) сериями радиочастотных импульсов, регистрируют...
Тип: Изобретение
Номер охранного документа: 0002519496
Дата охранного документа: 10.06.2014
10.06.2014
№216.012.d1df

Счетчик активной энергии переменного тока

Изобретение относится к устройствам для учета потребляемой из электросети активной электрической энергии. Cчетчик переменного тока содержит провода электросети и провода нагрузки, а также электрически связанные между собой трансформатор, датчик тока, датчик напряжения, преобразователь мощности...
Тип: Изобретение
Номер охранного документа: 0002519498
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d820

Аккумуляторная батарея

Изобретение относится к устройствам для накапливания электрической энергии и последующего использования ее и преобразования в автономном режиме для функционирования различных аппаратов и может быть использовано, например, в двигателях транспортных средств, эксплуатирующихся в северных районах с...
Тип: Изобретение
Номер охранного документа: 0002521106
Дата охранного документа: 27.06.2014
10.07.2014
№216.012.dc42

Трансформатор источника питания подвесных измерительных датчиков

Изобретение относится к устройству источников питания подвесных измерительных датчиков, устанавливаемых на высоковольтные линии электропередачи. Технический результат состоит в расширении диапазона нагрузок. Трансформатор источника питания переводит его в режим насыщения, при котором выходное...
Тип: Изобретение
Номер охранного документа: 0002522164
Дата охранного документа: 10.07.2014
27.07.2014
№216.012.e5b4

Система впрыска воды осевого многоступенчатого компрессора

Изобретение относится к стационарным газотурбинным установкам (СГТУ), имеющим в своем составе осевой многоступенчатый компрессор. Технический результат достигается тем, что система впрыска воды осевого многоступенчатого компрессора, имеющая трубки и выпускные каналы, дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002524594
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e770

Способ работы газораспределительной станции

Способ предназначен для комбинированной выработки электроэнергии, промышленного холода и конденсата. Способ заключается в следующем: природный газ забирают из магистрали высокого давления перед редуцирующим устройством и через байпасный газопровод направляют в магистраль низкого давления, при...
Тип: Изобретение
Номер охранного документа: 0002525041
Дата охранного документа: 10.08.2014
10.08.2014
№216.012.e85c

Способ лечения кожных заболеваний и лазерное терапевтическое устройство для его осуществления

Группа изобретений относится к медицине. При осуществлении способа воздействуют на поверхность кожи дискретным по времени когерентным лазерным излучением, формируемым лазерным терапевтическим устройством. При этом длину волны выбирают в пределах от 300 нм до 1020 нм и дискретное лазерное...
Тип: Изобретение
Номер охранного документа: 0002525277
Дата охранного документа: 10.08.2014
+ добавить свой РИД