×
10.12.2015
216.013.992e

Результат интеллектуальной деятельности: МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Технический результат состоит в повышении надежности, энергоэффективности и минимизация тепловыделений, повышении кпд Диэлектрический остов статора выполнен в виде рубашки охлаждения с аксиальными трубками. Форма трубок профилирует форму пространства между подковообразными сердечниками. По периметру диэлектрического остова введены дополнительные каналы охлаждения. Боковые поверхности, дно и внутренняя поверхность пазов с уложенной в них обмоткой залиты неэлектропроводящим немагнитным материалом с высокой теплопроводностью так, что нутренняя поверхность расточки статора гладкая. 4 н.п. ф-лы, 6 ил.

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов.

Известен сердечник из аморфного железа [патент US №5903082 А, H02K 1/12, H02K 21/12, H02K 37/12, H02P 9/18, H02K 21/24, H02K 1/14, H02K 1/02, H02K 1/04, H02K 29/10, H02K 1/18, 11.05.1999], содержащий отдельно сформированные аморфное ярмо и аморфные полюса, которые совместно установлены в корпусе из диэлектрика, образовывая при этом сердечник статора электромеханического преобразователя энергии.

Недостатками данного магнитопровода статора из аморфного железа являются сложность его изготовления и низкие магнитные свойства, обусловленные значительными нарушениями геометрии магнитопровода статора из аморфного железа при сборки отдельных полюсов и ярма, а также низкий теплоотвод потерь энергии от магнитопровода статора из аморфного железа.

Известен статор электрической машины, например электродвигателя электрического транспортного средства [патент DE 102012207508 A1, H02K 1/06, H02K 1/12, H02K 15/02, 7.11.2013], содержащий П-образные сердечники, которые ламинированы из нескольких листов электротехнической стали. Из n-П-образных сердечников набирается магнитопровод.

Недостатками данного магнитопровода статора являются сложность его изготовления и установки в корпусе электрической машины, а также значительные аэродинамические потери энергии на трение ротора с воздухом.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является магнитопровод статора из аморфного железа [патент US 6960860 В1, H02K 1/14, H02K 1/12, H02K 15/02, 01.10.2005], содержащий ротор, n подковообразных сердечников, набранных из ленты аморфного железа, установленных в диэлектрическом остове.

Недостатками данного магнитопровода статора из аморфного железа является его низкая эффективность и низкие удельные показатели в составе электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения, обусловленные повышенными габаритными размерами, из-за низкой индукции насыщения ленты аморфного железа, а также значительными потерями энергии на трение ротора с воздухом, обусловленными не гладкой внутренней поверхностью расточки статора.

Задача изобретения - расширение функциональных возможностей магнитопровода статора из аморфного железа в составе электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения благодаря повышению выходной мощности при неизменных массогабаритных показателях, повышение эффективности и удельных показателей магнитопровода статора из аморфного железа в составе электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения благодаря интеграции системы охлаждения в магнитопровод статора, повышение выходной мощности а также минимизация потерь энергии на трение ротора с воздухом благодаря выполнению внутренней поверхности расточки статора гладкой.

Техническим результатом является повышение надежности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, повышение КПД ЭМПЭ на 1-2%, и при использовании на роторе постоянных магнитов достигается защита от их теплового размагничивания, а также повышенная линейная токовая нагрузка электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения.

Поставленная задача решается и указанный результат достигается по первому варианту тем, что в магнитопроводе электромеханических преобразователей энергии с интенсивным охлаждением, содержащем ротор, n подковообразных сердечников, набранных из ленты аморфного железа, установленных в диэлектрическом остове и образующих пазы и зубцы магнитопровода статора, обмотку, уложенную в пазах статора, согласно изобретению диэлектрический остов выполнен в виде рубашки охлаждения с аксиальными трубками, при этом форма трубок профилирует форму пространства между подковообразными сердечниками, а по периметру диэлектрического остова введены дополнительные каналы охлаждения, причем боковые поверхности и дно пазов с уложенной в них обмоткой залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью, а внутренняя поверхность пазов залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью таким образом, что внутренняя поверхность расточки статора гладкая.

Поставленная задача решается и указанный результат достигается по второму варианту тем, что в магнитопроводе электромеханических преобразователей энергии с интенсивным охлаждением, содержащем ротор, n подковообразных сердечников, набранных из ленты аморфного железа, установленных в диэлектрическом остове и образующих пазы и зубцы магнитопровода статора, обмотку, уложенную в пазах статора, согласно изобретению диэлектрический остов выполнен в виде рубашки охлаждения с аксиальными трубками, при этом форма трубок профилирует форму пространства между подковообразными сердечниками, а по периметру диэлектрического остова введены дополнительные каналы охлаждения, причем по всей осевой длине боковых поверхностей пазов установлена система из охлаждающих трубок, одна из поверхностей которой плотно прилегает к обмотке, а другая - к зубцу, дно пазов с уложенной в них обмоткой и трубками охлаждения залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью, а внутренняя поверхность пазов залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью таким образом, что внутренняя поверхность расточки статора гладкая.

Поставленная задача решается и указанный результат достигается по третьему варианту тем, что в магнитопроводе электромеханических преобразователей энергии с интенсивным охлаждением, содержащем ротор, n подковообразных сердечников, набранных из ленты аморфного железа, установленных в диэлектрическом остове и образующих пазы и зубцы магнитопровода статора, обмотку, уложенную в пазах статора, согласно изобретению диэлектрический остов выполнен в виде рубашки охлаждения с аксиальными трубками, при этом форма трубок профилирует форму пространства между подковообразными сердечниками, а по периметру диэлектрического остова введены дополнительные каналы охлаждения, причем по всей осевой длине дна пазов установлена система из охлаждающих трубок, одна поверхность которых выполнена профилирующей дно паза, а другая - прямоугольной формы, боковые поверхности и дно пазов с уложенной в них обмоткой и трубками охлаждения залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью, а внутренняя поверхность пазов залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью таким образом, что внутренняя поверхность расточки статора гладкая.

Поставленная задача также достигается тем, что способ изготовления магнитопровода статора электромеханических преобразователей энергии с интенсивным охлаждением осуществляют путем последовательной сборки n подковообразных сердечников, набранных из ленты аморфного железа, в диэлектрическую основу, которая в отличие от прототипа представляет собой систему охлаждения, при этом внутри n подковообразных сердечников укладывают обмотку, залитую неэлектропроводящим, немагнитным материалом с высокой теплопроводностью, оставляя пространство между воздушным зазором и обмоткой для монтажа аксиальных трубок охлаждения и для заливки неэлектропроводящего, немагнитного материала с низкой теплопроводностью, в пространство между подковообразными сердечниками и дополнительными каналами охлаждения, расположенными по периметру диэлектрического остова, монтируют аксиальные трубки.

Сущность изобретения поясняется чертежами.

На фиг. 1 изображен магнитопровод статора электромеханических преобразователей энергии с интенсивным охлаждением по первому варианту. На фиг. 2 изображен паз магнитопровода статора электромеханических преобразователей энергии с интенсивным охлаждением. На фиг. 3 изображен магнитопровод статора электромеханических преобразователей энергии с интенсивным охлаждением по второму варианту. На фиг. 4 изображена система из охлаждающих трубок с зубцовой и пазовой поверхностями. На фиг. 5 изображен магнитопровод статора электромеханических преобразователей энергии с интенсивным охлаждением по третьему варианту. На фиг. 6 изображена система охлаждающих трубок с поверхностью, профилирующей дно паза, и прямоугольной поверхностью.

Предложенное устройство по первому варианту (фиг. 1) содержит ротор 1, n подковообразных сердечников 2, набранных из ленты аморфного железа 3, установленных в диэлектрическом остове 4 и образующих пазы 5 и зубцы 6 магнитопровода статора 7, обмотку 8, уложенную в пазах магнитопровода статора 7, аксиальные трубки 9, установленные в пространстве между подковообразными сердечниками 2, дополнительные каналы охлаждения 10, расположенные по периметру диэлектрического остова 4, боковые поверхности пазов 11 (фиг. 2), дно пазов 12, внутреннюю поверхность пазов 13, неэлектропроводящий, немагнитный материал с высокой теплопроводностью 14, неэлектропроводящий, немагнитный материал с низкой теплопроводностью 15.

Предложенное устройство по второму варианту (фиг. 3) содержит ротор 1, n подковообразных сердечников 2, набранных из ленты аморфного железа 3, установленных в диэлектрическом остове 4 и образующих пазы 5 и зубцы 6 магнитопровода статора 7, обмотку 8, уложенную в пазах магнитопровода статора 7, аксиальные трубки 9, установленные в пространстве между подковообразными сердечниками 2, дополнительные каналы охлаждения 10, расположенные по периметру диэлектрического остова 4, боковые поверхности пазов 11, дно пазов 12, внутреннюю поверхность пазов 13 (фиг. 2), неэлектропроводящий, немагнитный материал с высокой теплопроводностью 14, неэлектропроводящий, немагнитный материал с низкой теплопроводностью 15, при этом в пазах установлена система из охлаждающих трубок 16 (фиг. 4), с зубцовой 17 и пазовой 18 поверхностями.

Предложенное устройство по третьему варианту (фиг. 5) содержит ротор 1, n подковообразных сердечников 2, набранных из ленты аморфного железа 3, установленных в диэлектрическом остове 4 и образующих пазы 5 и зубцы 6 магнитопровода статора 7, обмотку 8, уложенную в пазах магнитопровода статора 7, аксиальные трубки 9, установленные в пространстве между подковообразными сердечниками 2, дополнительные каналы охлаждения 10, расположенные по периметру диэлектрического остова 4, боковые поверхности пазов 11, дно пазов 12, внутреннюю поверхность пазов 13 (фиг. 2), неэлектропроводящий, немагнитный материал с высокой теплопроводностью 14, неэлектропроводящий, немагнитный материал с низкой теплопроводностью 15, при этом в пазах установлена система из охлаждающих трубок 16 (фиг. 6), с поверхностью, профилирующей дно паза 17, и прямоугольной поверхностью 18.

Предложенное устройство по первому варианту работает следующим образом: при вращении ротора 1, по n подковообразным сердечникам 2, набранным из ленты аморфного железа 3, протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в обмотке 8 наводится электродвижущая сила, величина которой зависит от числа витков обмотки, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в обмотках 8 начинает протекать ток, при этом создаются тепловые потери в обмотках 8, обусловленные током в обмотках 8 и ее активным сопротивлением, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в магнитопроводе статора 7, обусловленные величиной магнитного потока возбуждения, массой магнитопровода статора 7 и удельными потерями материала магнитопровода статора 7, потери энергии на трение ротора 1 с воздухом, обусловленные частотой вращения ротора 1, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и магнитопроводом статора 7. Отвод всех вышеперечисленных потерь обеспечивается по законам теплопереноса, при протекании хладагента по аксиальным трубкам 9, установленным в пространстве между подковообразными сердечниками 2, и дополнительным каналам охлаждения 10, расположенным по периметру диэлектрического остова 4. При этом благодаря тому, что аксиальные трубки 9 установлены в пространстве между подковообразными сердечниками 2, достигается интеграция системы охлаждения в магнитопровод статора 7 электромеханических преобразователей энергии с интенсивным охлаждением. Так как магнитопровод статора 7 выполняется из n подковообразных сердечников 2, набранных из ленты аморфного железа 3, обладающего минимальными удельными потерями, достигается минимизация тепловых потерь в магнитопроводе статора 7. При этом благодаря тому, что боковые поверхности 11 и дно 12 пазов 5 с уложенными в них обмотками 8 залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью 14, а внутренняя поверхность пазов 13 залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15, достигается теплоперенос практически всех тепловых потерь в обмотки 8, аксиальными трубками 9 и дополнительными каналами охлаждения 10, при этом тепловые потери в обмотки практически не переносятся в воздушный зазор и тем самым не являются причиной увеличения потерь энергии ротора 1 на трение с воздухом. А также достигается при использовании постоянных магнитов защита их от теплового размагничивания. Кроме того, заливка пазов 5 немагнитным материалом с высокой теплопроводностью 14 и неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15 обеспечивает минимальные потери энергии ротора 1 на трение с воздухом.

Предложенное устройство по второму варианту работает следующим образом: при вращении ротора 1, по n подковообразным сердечникам 2, набранным из ленты аморфного железа 3, протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в обмотке 8 наводится электродвижущая сила, величина которой зависит от числа витков обмотки, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в обмотках 8 начинает протекать ток, при этом создаются тепловые потери в обмотках 8, обусловленные током в обмотках 8 и ее активным сопротивлением, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в магнитопроводе статора 7, обусловленные величиной магнитного потока возбуждения, массой магнитопровода статора 7 и удельными потерями материала магнитопровода статора 7, потери энергии на трение ротора 1 с воздухом, обусловленные частотой вращения ротора 1, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и магнитопроводом статора 7. Отвод всех вышеперечисленных потерь обеспечивается по законам теплопереноса, при протекании хладагента по аксиальным трубкам 9, установленным в пространстве между подковообразными сердечниками 2, дополнительным каналам охлаждения 10, расположенным по периметру диэлектрического остова 4, системой из охлаждающих трубок 16 с зубцовой 17 и пазовой 18 поверхностями. При этом благодаря тому, что аксиальные трубки 9 установлены в пространстве между подковообразными сердечниками 2, достигается интеграция системы охлаждения в магнитопровод статора 7 электромеханических преобразователей энергии с интенсивным охлаждением, а благодаря тому, что используется система из охлаждающих трубок 16 с зубцовой 17 и пазовой 18 поверхностями достигается повышение интенсивности охлаждения электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения, и, как следствие этого, повышение мощности при неизменных массогабаритных показателях и их линейной токовой нагрузки. Так как магнитопровод статора 7 выполнен из n подковообразных сердечников 2, набранных из ленты аморфного железа 3, обладающего минимальными удельными потерями, то достигается минимизация тепловых потерь в магнитопроводе статора 7. При этом благодаря тому, что боковые поверхности 11 и дно 12 пазов 5 с уложенными в них обмотками 8 залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью 14, а внутренняя поверхность пазов 13 залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15, достигается теплоперенос практически всех тепловых потерь в обмотки 8, аксиальными трубками 9, дополнительными каналами охлаждения 10 и системой из охлаждающих трубок 16, с зубцовой 17 и пазовой 18 поверхностями. При этом тепловые потери в обмотки практически не переносятся в воздушный зазор, а отводятся в радиальном направлении по всей длине магнитопровода статора 7 аксиальными трубками 9 и в тангенциальном направлении по всей длине магнитопровода статора 7 системой из охлаждающих трубок 16 с зубцовой 17 и пазовой 18 поверхностями и тем самым не являются причиной увеличения потерь энергии ротора 1 на трение с воздухом. А также достигается при использовании постоянных магнитов защита их от теплового размагничивания. Кроме того, заливка пазов 5 немагнитным материалом с высокой теплопроводностью 14 и неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15 обеспечивает минимальные потери энергии ротора 1 на трение с воздухом.

Предложенное устройство по третьему варианту работает следующим образом: при вращении ротора 1, по n подковообразным сердечникам 2, набранным из ленты аморфного железа 3, протекает магнитный поток возбуждения. При этом по закону электромагнитной индукции в обмотке 8 наводится электродвижущая сила, величина которой зависит от числа витков обмоток 8, частоты вращения ротора 1 и магнитного потока возбуждения. При подключении нагрузки в обмотках 8 начинает протекать ток, при этом создаются тепловые потери в обмотках 8, обусловленные током в обмотках 8 и ее активным сопротивлением, а также потери на вихревые токи, обусловленные частотой вращения ротора, размерами обмотки и ее удельным сопротивлением, тепловые потери в магнитопроводе статора 7, обусловленные величиной магнитного потока возбуждения, массой магнитопровода статора 7 и удельными потерями материала магнитопровода статора 7, потери энергии на трение ротора 1 с воздухом, обусловленные частотой вращения ротора 1, его геометрическими размерами, температурой воздуха и давлением в зазоре между ротором 1 и магнитопроводом статора 7. Отвод всех вышеперечисленных потерь обеспечивается по законам теплопереноса, при протекании хладагента по аксиальным трубкам 9, установленным в пространстве между подковообразными сердечниками 2, дополнительным каналам охлаждения 10, расположенным по периметру диэлектрического остова 4, системой охлаждающих трубок 16 с поверхностью, профилирующей дно паза 17, и прямоугольной поверхностью 18. При этом благодаря тому, что аксиальные трубки 9 установлены в пространстве между подковообразными сердечниками 2, достигается интеграция системы охлаждения в магнитопровод статора 7 электромеханических преобразователей энергии с интенсивным охлаждением, а благодаря тому, что используется система охлаждающих трубок 16, с поверхностью профилирующей дно паза 17 и прямоугольной поверхностью 18 достигается повышение интенсивности охлаждения электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения, и как следствие этого повышение мощности при неизменных массогабаритных показателях и их линейной токовой нагрузки. Так как магнитопровод статора 7 выполняется из n подковообразных сердечников 2, набранных из ленты аморфного железа 3, обладающего минимальными удельными потерями, то достигается минимизация тепловых потерь в магнитопроводе статора 7. При этом благодаря тому, что боковые поверхности 11 и дно 12 пазов 5 с уложенными в них обмотками 8 залиты неэлектропроводящим, немагнитным материалом с высокой теплопроводностью 14, а внутренняя поверхность пазов 13 залита неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15, достигается теплоперенос практически всех тепловых потерь в обмотки 8, аксиальными трубками 9, дополнительными каналами охлаждения 10 и системой охлаждающих трубок 16 с поверхностью, профилирующей дно паза 17, и прямоугольной поверхностью 18. При этом тепловые потери в обмотки практически не переносятся в воздушный зазор, а отводятся в радиальном направлении по всей длине магнитопровода статора 7 аксиальными трубками 9 и системой охлаждающих трубок 16 с поверхностью, профилирующей дно паза 17, и прямоугольной поверхностью 18, и тем самым не являются причиной увеличения потерь энергии ротора 1 на трение с воздухом. А также достигается при использовании постоянных магнитов защита их от теплового размагничивания. Кроме того, заливка пазов 5 немагнитным материалом с высокой теплопроводностью 14 и неэлектропроводящим, немагнитным материалом с низкой теплопроводностью 15 обеспечивает минимальные потери энергии ротора 1 на трение с воздухом.

Пример конкретной реализации способа изготовления.

Магнитопровод статора генератора мощностью 100 кВ·А изготавливают путем последовательной сборки шести подковообразных сердечников из аморфного железа Metglas 2605НВ1М (производства компании hitachi) с толщиной 25 мм, шириной 150 мм, высотой 75 мм, длиной 250 мм, набранных из ленты аморфного железа с толщиной 0,02 мм, в диэлектрическую остову, выполненную из алюминия марки АЛ2, с дополнительными каналами охлаждения (размеры определяются габаритами магнитопровода) при помощи болтов, в результате получаем магнитопровод статора с внутренним диаметром 220 мм и внешним диаметром 350 мм. Полученная конструкция образует пазы с высотой 50 мм, шириной 20 мм и зубцы с высотой 50 мм, шириной 15 мм. В пазы укладывается обмотка и в зависимости от вариантов охлаждающие трубки 16, залитые неэлектропроводящим, немагнитным материалом с высокой теплопроводностью, оставляя пространство между воздушным зазором и обмоткой для заливки неэлектропроводящего, немагнитного материала с низкой теплопроводностью. При сборке образуется пространство между шестью подковообразными сердечниками, в данное пространство прокладывают аксиальные трубки с габаритами охлаждения (размеры определяются габаритами магнитопровода).

При этом в процессе работы генератора в охлаждающих трубках индуцируются эдс, но так как в пазу установлено две аксиальные трубки, то эдс в них компенсируют друг друга, а следовательно, потери в предлагаемой системе охлаждения будут минимальны.

Итак, заявляемое изобретение позволяет расширить функциональные возможности магнитопровода статора из аморфного железа в составе электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения благодаря повышению выходной мощности, обеспечить повышение эффективности и удельных показателей магнитопровода статора из аморфного железа в составе электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения благодаря интеграции системы охлаждения в магнитопровод статора, обеспечить повышение выходной мощности при неизменных массогабаритных показателях, а также обеспечить минимизацию потерь энергии на трение ротора с воздухом благодаря выполнению внутренней поверхности статора гладкой.

Таким образом, достигаются повышение надежности, энергоэффективности и минимизация тепловыделений электромеханических преобразователей энергии, обеспечивается повышение кпд ЭМПЭ на 1-2%, и при использовании на роторе постоянных магнитов достигается защита от их теплового размагничивания, а также достигается возможность повышения линейной токовой нагрузки электромеханических преобразователей энергии с внешним жидкостным охлаждением поверхности статора через рубашку охлаждения.


МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
МАГНИТОПРОВОД СТАТОРА ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ С ИНТЕНСИВНЫМ ОХЛАЖДЕНИЕМ (ВАРИАНТЫ) И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ
Источник поступления информации: Роспатент

Showing 31-40 of 141 items.
10.12.2014
№216.013.0cd0

Способ локальной обработки материала с эффектом полого катода при ионном азотировании

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности, для поверхностного упрочнения материалов. Способ азотирования стальной детали в плазме тлеющего разряда включает катодное распыление, вакуумный...
Тип: Изобретение
Номер охранного документа: 0002534697
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d0b

Высокоскоростная бесконтактная электрическая машина (варианты)

Изобретение относится к области электромашиностроения и может быть использовано в качестве источников электрической энергии автономных систем электроснабжения. Технический результат заключается в повышении надежности и энергоэффективности, а также в повышении выходной мощности бесконтактной...
Тип: Изобретение
Номер охранного документа: 0002534756
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0da1

Способ локальной обработки материала с эффектом полого катода при ионном азотировании

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов. Способ азотирования стальной детали в плазме тлеющего разряда включает размещение стальной детали и...
Тип: Изобретение
Номер охранного документа: 0002534906
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0da2

Способ локальной обработки материала при азотировании в тлеющем разряде

Изобретение относится к области термической и химико-термической обработки и может быть использовано в машиностроении и других областях промышленности для поверхностного упрочнения материалов. Способ азотирования стальной детали в плазме тлеющего разряда включает размещение стальной детали и...
Тип: Изобретение
Номер охранного документа: 0002534907
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0da4

Способ термомеханической обработки для повышения технологической пластичности объемных полуфабрикатов из al-cu-mg-ag сплавов

Изобретение относится к области металлургии, а именно к способу термомеханической обработки полуфабрикатов из Al-Cu-Mg-Ag сплавов для дальнейшей формовки из них объемных деталей сложной формы, применяемых в авиакосмической технике и транспортном машиностроении. Термомеханическая обработка...
Тип: Изобретение
Номер охранного документа: 0002534909
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0ef9

Способ определения критической температуры резания

Способ заключается в том, что проводят сокращенные испытания стойкости инструмента на различных скоростях резания, при которых не доводят инструмент до полного затупления, и строят графики зависимостей h=ƒ(l), где h - величина износа инструмента по задней поверхности; f(l) - функция от пути...
Тип: Изобретение
Номер охранного документа: 0002535250
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.1157

Устройство для защиты покрытия сооружения от атмосферных воздействий

Изобретение может быть использовано для защиты покрытий мостов, эстакад и подобных сооружений, расположенных вблизи водоемов, от обледенения в холодное время года и размягчения в теплое. Технический результат: повышение эффективности устройства для защиты покрытия сооружения. Устройство...
Тип: Изобретение
Номер охранного документа: 0002535862
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.179d

Способ определения массы сжиженного газа в сливном рукаве и устройство для его осуществления

Способ определения массы сжиженного газа, по которому измеряют температуру и давление в емкости, выпускают вещество из емкости и контролируют время истечения вещества из емкости через насадку и изменение давления в емкости. Массу вещества определяют по газодинамическим соотношениям. При этом...
Тип: Изобретение
Номер охранного документа: 0002537473
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1c4d

Способ оценки силы и коэффициента трения при холодной обработке металлов давлением и устройство для его реализации

Группа изобретений относится к обработке металлов давлением, а именно к оценке силы и коэффициента трения при холодной обработке металлов давлением. Представлен способ оценки параметров трения при холодной обработке металлов давлением, по которому протягивают через валки с заданным обжатием...
Тип: Изобретение
Номер охранного документа: 0002538673
Дата охранного документа: 10.01.2015
27.01.2015
№216.013.2032

Способ бессенсорного управления положением ротора в бесконтактных подшипниках

Изобретение относится к области энергомашиностроения, в частности к электромеханическим преобразователям энергии на бесконтактных подшипниках. Технический результат заключается в повышении точности управления и повышении надежности электрической машины с ротором на бесконтактных подшипниках....
Тип: Изобретение
Номер охранного документа: 0002539690
Дата охранного документа: 27.01.2015
Showing 31-40 of 191 items.
10.07.2014
№216.012.dcad

Ветроустановка

Изобретение относится к ветроэнергетике. Ветроустановка содержит воздухозаборник с расположенным внутри него ветроколесом с лопастями, прикрепленными к верхнему и нижнему кольцам, опирающимся на центрирующие ролики, установленные на валах роторов преобразователей энергии, расположенные сверху и...
Тип: Изобретение
Номер охранного документа: 0002522271
Дата охранного документа: 10.07.2014
20.07.2014
№216.012.e122

Система подзарядки аккумулятора электрического беспилотного летательного аппарата

Изобретение относится к области систем управления и автоматизации и может быть использовано для подзарядки аккумуляторов электрических беспилотных летательных аппаратов или других мобильных устройств, работающих от аккумуляторов. Система включает в себя зарядную станцию (1), на которой...
Тип: Изобретение
Номер охранного документа: 0002523420
Дата охранного документа: 20.07.2014
27.07.2014
№216.012.e387

Способ аргонодуговой обработки сварных соединений, полученных линейной сваркой трением

Изобретение может быть использовано при термической обработке сварных соединений, полученных линейной сваркой трением, в частности сварных соединений диска и лопаток, например дисков ротора в моноблоке с лопатками - блисков. Нагрев участка перехода от шва к основному металлу осуществляют...
Тип: Изобретение
Номер охранного документа: 0002524037
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e751

Заготовка для изготовления полой лопатки турбомашины способом сверхпластической формовки

Изобретение относится к машиностроению, а именно к области изготовления полых лопаток авиационных двигателей способом сверхпластической формовки, и может быть использовано при изготовлении, например, полой вентиляторной лопатки турбомашины. Заготовка содержит формуемую и неформуемую части. По...
Тип: Изобретение
Номер охранного документа: 0002525010
Дата охранного документа: 10.08.2014
20.08.2014
№216.012.ea52

Электрическое устройство приготовления пищи (варианты)

Изобретение относится к электрическому устройству для приготовления пищи. Электрическое устройство приготовления пищи содержит кожух, колбу, размещенную в кожухе, ручку, крышку, металлический прижим. В колбе установлены два электрода, соединенные электрически с регулируемым источником питания,...
Тип: Изобретение
Номер охранного документа: 0002525794
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ea89

Автономное зарядное устройство

Изобретение относится к области первичных источников электроэнергии. Технический результат: возможность выработки электрической энергии при ходьбе, беге, дыхании и прочей активности поясничной и тазобедренных частей тела человека. Сущность изобретения в том, что пневматический привод выполнен...
Тип: Изобретение
Номер охранного документа: 0002525849
Дата охранного документа: 20.08.2014
20.08.2014
№216.012.ec0a

Способ комплексной оценки эффекта геомагнитной псевдобури

Изобретение относится к области геофизики и может быть использовано для комплексной оценки эффекта геомагнитной псевдобури - эффекта возникновения эквивалента геомагнитной вариации, наблюдаемого в объеме существования объекта в среде невозмущенного анизотропного геомагнитного поля, при...
Тип: Изобретение
Номер охранного документа: 0002526234
Дата охранного документа: 20.08.2014
10.09.2014
№216.012.f24c

Способ диагностики помпажа компрессора газотурбинного двигателя

Изобретение относится области двигателестроения и может быть использовано для надежного и своевременного диагностирования помпажа газотурбинного двигателя, и позволяет устранить неустойчивый режим работы компрессора путем оперативного воздействия на различные системы регулирования двигателя....
Тип: Изобретение
Номер охранного документа: 0002527850
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f5f0

Ветроэнергетическая установка

Изобретение относится к энергетике и может быть использовано в устройствах для преобразовании энергии текучих сред в электрическую. Ветроэнергетическая установка содержит рабочий орган, преобразователь энергии и устройство защиты от запредельных ветровых нагрузок. Рабочий орган выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002528793
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f6c1

Магнитогидродинамическое устройство (варианты)

Изобретение относится к электротехнике, к магнитной гидродинамике, к электромагнитным насосам и может быть использовано в металлургии, в ядерной и нетрадиционной энергетике, машиностроении, химической промышленности, а также в космической технике. Технический результат состоит в введении...
Тип: Изобретение
Номер охранного документа: 0002529006
Дата охранного документа: 27.09.2014
+ добавить свой РИД